Добавляют синтетические волокна в настоящее. Синтетические

Волокна, из которых изготавливаются ткани, подразделяются на натуральные и искусственные. Существует три вида природных, натуральных волокон: 1) волокна растительного происхождения (хлопок и лен), 2)волокна животного происхождения (шерсть и шелк), 3)волокна, имеющие минеральное происхождение (асбест).

Достоинством материалов, полученных из натуральных, природных волокон является их высокая экологичность. Поскольку эти волокна имеют природное происхождение, то они, если можно так выразиться, прекрасно совместимы с человеческим телом, удобны в применении и гигиеничны.

Хлопок

Это волокно получают из хлопчатника.

Достоинством хлопчатобумажных тканей является их высокая гигиеничность. Они прекрасно пропускают воздух, позволяя коже дышать. Именно поэтому летняя одежда из хлопка очень практична. Хлопок чаще всего используется для изготовления детской одежды и белья, а также спортивной одежды.

Недостатком хлопка является то, что он мнется и довольно быстро изнашивается. Кроме того, он не слишком хорошо держит краску (линяет).

Льняное волокно получают из льна-долгунца.

Лен так же, как и хлопок, обладает высокими гигроскопическими свойствами. Льняное волокно обладает большей прочностью по сравнению с хлопковым, поэтому оно часто используется для изготовления постельного белья, полотенец и т. п. Кроме того, лен имеет способность охлаждать температуру тела, благодаря этому он незаменим для летней одежды.

Льняное волокно очень хорошо держит форму. В настоящее время его нередко смешивают с синтетическим, и из полученных тканей шьют элегантные женские и мужские летние костюмы, пиджаки, брюки и т. п.

Шелк

Шелковое волокно вырабатывают бабочки-шелкопряды, которые живут на шелковице (называемой также тутовым деревом), и питаются ее листьями. Эти бабочки, находясь на стадии гусениц, выделяют из своих желез волокно, необходимое им для окукливания. Это нежное, мягкое волокно и есть шелк.

Шелк-сырец получают при совместной размотке нескольких коконов. Затем из него вырабатывают крученый шелк, который используется в трикотажном производстве, а также для получения швейных ниток. Отходы шелка-сырца перерабатываются в пряжу. Впоследствии из этой пряжи изготавливается крепдешин, парашютный шелк и пр.

Натуральный шелк имеет прекрасные гигиенические свойства. Он пропускает воздух и великолепно впитывает влагу. Летом он приятно холодит кожу. Недостатками натурального шелка являются, во-первых, то, что он довольно сильно мнется, и, во-вторых, то, что от действия влаги (например, в результате потовых выделений или дождя) на нем появляются некрасивые пятна. Кроме того, натуральный шелк очень сильно садится после стирки. Поэтому его рекомендуется перед шитьем декатировать (намочить и высушить) или же не стирать готовые вещи, а подвергать их химической чистке.

Шерсть

Шерстяную пряжу вырабатывают из шерсти животных: овец, коз, верблюдов и т. д. Наиболее ценное сырье получают из пуха (подшерстка), дающего тонкое, мягкое, извитое шерстяное волокно.

К достоинствам шерсти относятся ее великолепные теплоизоляционные свойства, поэтому шерстяные материалы применяются, в основном, для зимней одежды. Недостатком шерсти является то, что она мнется и довольно быстро изнашивается.

Вещи, сшитые из чистой шерсти, выглядят весьма благородно и элегантно. Но в наше время из-за соображений практичности шерстяные волокна чаще всего смешиваются с синтетическими.

Искусственные материалы

Волокна, не принадлежащие к миру природы, делятся на искусственные и синтетические. Искусственные волокна получают из продуктов химической переработки природных полимеров (например, белков, нуклеиновых кислот, каучука). Синтетические же волокна получают из полимеров, не имеющихся в природе, то есть, синтезированных химическим путем.

Синтетические волокна быстро завоевали популярность во всем мире благодаря быстроте и дешевизне своего изготовления, а также тому, что они позволяют сберегать природные ресурс

Вискоза

Это волокно, полученное искусственным путем из целлюлозы. Целлюлоза содержится, в частности, в стволовой древесине, а также в коробочках хлопчатника и в лубяных волокнах. Производство вискозы считается выгодным благодаря доступности исходного сырья.

К несомненным достоинствам вискозного волокна относится то, что оно прекрасно впитывает влагу, легко окрашивается и хорошо утюжится. Вискоза очень хороша для изготовления летних вещей.

Недостатком вискозы является то, что она довольно быстро изнашивается, мнется, и легко рвется в мокром состоянии (что особенно неудобно при стирке). В настоящее время эти недостатки частично устраняются путем изготовления так называемой модифицированной вискозы.

Ацетат

Это искусственное волокно, формуемое из целлюлозы. Ацетат не является синтетикой, так как он вырабатывается хотя и искусственным путем, но из натурального сырья.

Достоинствами ацетатного волокна являются, прежде всего, его эластичность и мягкость. Оно мало мнется и хорошо пропускает ультрафиолетовые лучи. Недостатками ацетата являются следующие свойства: он непрочен, быстро изнашивается, неустойчив к воздействиям высокой температуры (например, довольно сильно деформируется в горячей воде и при глажении). Кроме того, ацетат достаточно сильно электризуется.

Ацетат применяется главным образом в производстве белья, преимущественно, женского. В настоящее время для улучшения качества изделий ацетат чаще всего смешивают с синтетическими или натуральными волокнами.

Полиэстер

Полиэстер является на сегодняшний день одним из самых распространенных синтетических волокон. К его достоинствам относится, во-первых, очень большая прочность (он фактически не изнашивается). Во-вторых, полиэстер практически не мнется (или моментально восстанавливается после смятия). Он не теряет своих качеств на свету или под воздействием разнообразных погодных явлений, он также стоек к органическим растворителям.

Недостатками полиэстера являются: недостаточная воздухопроницаемость, довольно сильная электризуемость и некоторая жесткость. В настоящее время эти недочеты частично устраняются модифицированием. Надо отметить, что синтетические волокна нового поколения обладают лучшими гигиеническими качествами, чем прежде. Они более мягкие на ощупь, лучше пропускают воздух и меньше электризуются.

Акрил

Акрил (полиакрилнитрил) – синтетическое волокно, по многим свойствам близкое к шерсти. На этикетках вещей акрил иногда обозначается аббревиатурой PAN (по первым буквам слова “поли-акрил-нитрил”).

Акрил устойчив к действию света и разнообразных погодных условий. Он стойко переносит воздействия кислот, слабых щелочей и других органических растворителей. Проще говоря, он хорошо переносит химическую чистку.

Достоинствами акрила являются его легкость, мягкость, а также визуальное сходство с шерстью. Его недостатки: во-первых, он довольно сильно электризуется, во-вторых, нередко растягивается при стирке, и, в-третьих, имеет обыкновение покрываться “катышками”. Акрил нельзя подвергать действию высоких температур. Его надо стирать в воде комнатной температуры и гладить слабо нагретым утюгом.

Из акрила изготавливают преимущественно верхний и бельевой трикотаж, а также шарфы, ковры и ткани. Акрил из-за соображений практичности часто смешивают с натуральными или другими синтетическими волокнами.

Полиамид

Полиамид является синтетическим волокном. Раньше его называли капроном, нейлоном или перлоном.

Полиамид необыкновенно прочен и эластичен. Он весьма устойчив к действию разнообразных химикатов, поэтому его часто используют для изготовления одежды, предназначенной для работы в агрессивной среде.

Существенными недостатками полиамида являются следующие: он почти не впитывает влагу, сильно электризуется, теряет свою прочность на ярком свету или при сильной жаре. Полиамид, как и все синтетические материалы, нельзя подвергать действию высоких температур.

В настоящее время полиамид в чистом виде практически не используется для изготовления тканей. Его почти всегда смешивают в тех или иных пропорциях с другими волокнами для достижения лучших потребительских свойств.

Полиуретан

Полиуретан (спандекс, лайкра) – синтетическое волокно, по своим механическим свойствам сходное с резиновыми нитями.

Полиуретан более чем другие синтетические волокна устойчив к кожному жиру и поту, а также к органическим растворителям. К числу недостатков полиуретана относится то, что он практически не впитывает воду и очень плохо пропускает воздух. Кроме того, полиуретан теряет свою прочность на ярком свету и при воздействии высоких температур. Поэтому вещи с большим содержанием спандекса или лайкры не годятся для жаркой и солнечной летней погоды.

Полиуретан применяется в основном в производстве чулочно-носочных и корсетных изделий, а также спортивной одежды. Кроме того, полиуретановые волокна (поскольку они обладают сходством с резиновыми нитями) нередко добавляются в трикотажные полотна для придания им большей эластичности.

Синтетические волокна

химические волокна, получаемые из синтетических полимеров. Синтетические волокна формуют либо из расплава полимера (полиамида , полиэфира , полиолефина ), либо из раствора полимера (полиакрилонитрила , поливинилхлорида , поливинилового спирта ) по сухому или мокрому методу. Синтетические волокна выпускают в виде текстильных и кордных нитей, моноволокна , а также штапельного волокна . Разнообразие свойств исходных синтетических полимеров позволяет получать синтетические волокна с различными свойствами, тогда как возможности варьировать свойства искусственных волокон очень ограничены, поскольку их формуют практически из одного полимера (целлюлозы или её производных). Синтетические волокна характеризуются высокой прочностью, водостойкостью, износостойкостью, эластичностью и устойчивостью к действию химических реагентов.

С 1931 года кроме бутадиенового каучука, синтетических волокон и полимеров еще не было, а для изготовления волокон использовались единственно известные тогда материалы на основе природного полимера - целлюлозы.

Революционные изменения наступили в начале 60-х годов, когда после объявления известной программы химизации народного хозяйства промышленность нашей страны начала осваивать производство волокон на основе поликапроамида, полиэфиров, полиэтилена, полиакрилонитрила, полипропилена и других полимеров.

В то время полимеры считали лишь дешевыми заменителями дефицитного природного сырья - хлопка, шелка, шерсти. Но вскоре пришло понимание того, что полимеры и волокна на их основе подчас лучше традиционно используемых природных материалов - они легче, прочнее, более жаростойки, способны работать в агрессивных средах. Поэтому все свои усилия химики и технологи направили на создание новых полимеров, обладающих высокими эксплуатационными характеристиками, и методов их переработки. И достигли в этом деле результатов, порой превосходящих результаты аналогичной деятельности известных зарубежных фирм.

В начале 70-х за рубежом появились поражающие воображение своей прочностью волокна кевлар (США), несколько позже - тварон (Нидерланды), технора (Япония) и другие, изготовленные из полимеров ароматического ряда, получивших собирательное название арамидов. На основе таких волокон были созданы различные композиционные материалы, которые стали успешно применять для изготовления ответственных деталей самолетов и ракет, а также шинного корда, бронежилетов, огнезащитной одежды, канатов, приводных ремней, транспортерных лент и множества других изделий.

Эти волокна широко рекламировались в мировой печати. Однако только узкому кругу специалистов известно, что в те же годы российские химики и технологи самостоятельно создали арамидное волокно терлон, не уступающее по своим свойствам зарубежным аналогам. А потом здесь же были разработаны методы получения волокон СВМ и армос, прочность которых превышает прочность кевлара в полтора раза, а удельная прочность (то есть прочность, отнесенная к единице веса) превосходит прочность высоколегированной стали в 10-13 раз! И если прочность стали на разрыв составляет 160-220 кг/мм2, то сейчас активно ведутся работы по созданию полимерного волокна с прочностью до 600 кг/мм2.

Другой класс полимеров, пригодных для получения высокопрочных волокон - жидкокристаллические ароматические полиэфиры, то есть полимеры, обладающие свойствами кристаллов в жидком состоянии. Волокнам на их основе свойственны не только достоинства арамидных волокон, но еще и высокая радиационная стойкость, а также устойчивость к воздействию неорганических кислот и различных органических растворителей. Это идеальный материал для армирования резины и создания высоконаполненных композитов; на его основе созданы образцы световодов, качество которых соответствует высшему мировому уровню. А ближайшая задача - создание так называемых молекулярных композитов, то есть композиционных материалов, в которых армирующими компонентами служат сами молекулы жидкокристаллических полимеров.

Молекулы обычных полимеров содержат, помимо углерода, еще и атомы других элементов - водорода, кислорода, азота. Но сейчас разработаны методы получения волокон, представляющих собой, по сути дела, чистый полимерный углерод. Такие волокна обладают рекордной прочностью (свыше 700 кг/мм2) и жесткостью, а также чрезвычайно малыми коэффициентами термического расширения, высокой стойкостью к износу и коррозии, к воздействию высоких температур и радиации. Это позволяет успешно использовать их для изготовления композиционных материалов - углепластиков, применяемых в самых ответственных конструкционных узлах скоростных самолетов, ракет и космических аппаратов.

Применение углепластика оказывается экономически весьма выгодным. На единицу веса изготовленного из него изделия нужно затратить в 3 раза меньше энергии, чем на изделие из стали, и в 20 раз меньше, чем из титана. Тонна углепластика может заменить 10-20 тонн высоколегированной стали. Турбина насоса, изготовленная из углепластика и пригодная для перекачки минеральных кислот при температурах до 150оС, оказывается вдвое дешевле и служит в шесть раз дольше. Уменьшается и трудоемкость изготовления деталей сложной конфигурации.

Производство синтетических волокон развивается более быстрыми темпами, чем производство искусственных волокон. Это объясняется доступностью исходного сырья и быстрым развитием сырьевой базы, меньшей трудоёмкостью производственных процессов и особенно разнообразием свойств и высоким качеством синтетических волокон. В связи с этим синтетические волокна постепенно вытесняют не только натуральные, но и искусственные волокна в производстве некоторых товаров народного потребления и технических изделий.

В 1968 мировое производство синтетических волокон составило 3760,3 тыс. т (около 51,6% от общего выпуска химических волокон). Впервые выпуск синтетических волокон в промышленном масштабе организован в середине 30-х гг. 20 в. в США и Германии.

Капрон

Волокно из полиамидных смол называют в нашей стране капрон и анид, качеством своим они почти не отличаются один от другого.

Капрон или капроновое волокно бело-прозрачное, очень прочное вещество. Эластичность капрона на много выше шелка. Капрон относится к полиамидным волокнам. Капрон изготовляется синтетическим путем на наших фабриках и из наших материалов. Исходное сырье производные аминокислот. Капрон можно рассматривать как продукт внутримолекулярного взаимодействие карбоксильной группы и аминогруппы молекулы 6-аминогексановой кислоты:

Упрощенно превращение капролактама в полимер, из которого производят капроновое волокно, можно представить следующим образом:

Капролактам в присутствии воды превращается в 6-аминогексановую кислоту, молекулы которой реагируют друг с другом. В результате этой реакции образуется высокомолекулярное вещество, макромолекулы которого имеют линейную структуру. Отдельные звенья полимера являются остатками 6-аминогексановой кислоты. Полимер представляет собой смолу. Для получения волокон её плавят, пропускают через фильеры. Струи полимера охлаждаются потоком холодного воздуха и превращаются в волоконца, при скручивании которого образуются нити.

После этого капрон подвергается дополнительной химической обработке. Прочность капрона зависит от технологии и тщательности производства. Окончательно выделанный капрон бело-прозрачный и очень прочный материал. Даже капроновая нить, диаметром 0,1 миллиметра выдерживает 0,55 килограммов.

За рубежом синтетическое волокно типа капрон именуется перлон и нейлон. Капрон вырабатывается нескольких сортов; хрустально-прозрачный капрон более прочен, чем непрозрачный с мутно-желтоватым или молочным оттенком.

Наряду с высокой прочностью капроновые волокна характеризуются устойчивостью к истиранию, действию многократной деформации (изгибов).

Капроновые волокна не впитывают влагу, поэтому не теряют прочности во влажном состоянии. Но у капронового волокна есть и недостатки. Оно малоустойчиво к действию кислот макромолекулы капрона подвергаются гидролизу по месту амидных связей. Сравнительно невелика и теплостойкость капрона. при нагревании его прочность снижается, при 2150С происходит плавление.

Изделия из капрона, и в сочетании с капроном, стали уже обычными в нашем быту. Из капроновых нитей шьют одежду, которая стоит намного дешевле, чем одежда из натуральных природных материалов. Из капрона делают рыболовные сети, леску, фильтровальные материалы, кордную ткань. Из кордной ткани делают каркасы авто- и авиапокрышек. Шины с кордом из капрона более износоустойчивы, чем шины с вискозным и х/б кордом. Капроновая смола используется для получения пластмасс, из которых изготавливают различные деталь машин, шестерни, вкладыши для подшипников и т.д. Российская промышленность вырабатывает искусственное волокно еще более прочное, чем капрон, например сверхпрочный ацетатный шелк, который своей прочностью превосходит стальную проволоку. Этот шелк на один квадратный миллиметр выдерживает 126 кг, а стальная проволока - 110 кг.

Лавсан

Лавсан (полиэтилентерефталат) представитель полиэфиров. Это продукт поликонденсации двухатомного спирта этиленгликоля HO-CH2CH2-OH и двухосновной кислоты - терефталевой (1,4-бензолдикарбоновой) кислоты HOOC-C6H4-COOH (обычно используется не сама терефталевая кислота, а ее диметиловый эфир). Полимер относится к линейным полиэфирам и получается в виде смолы. Наличие регулярно расположенных по цепи макромолекулы полярных групп О-СО- приводит к усилению межмолекулярных взаимодействий, придавая полимеру жесткость. Макромолекулы в нем расположены беспорядочно, в в

Синтетические волокна - это химические волокна, формиру­емые из синтетических полимеров, получаемых за счет реакций полимеризации или поликонденсации из низкомолекулярных со­единений (мономеров).

Синтетические волокна по сравнению с искусственными обла­дают высокой износостойкостью, малыми сминаемостью и усадкой, -. но характеризуются невысокими гигиеническими свойствами.

Новым перспективным направлением развития синтетических волокон является разработка технологии производства сверхтонких


волокон (микроволокон). Именно с ними текстильщики связыва­ют возможность изготовления комфортных тканей и трикотажа. Применение микроволокон позволяет получить материалы с улуч­шенными гигиеническими свойствами, ткани, отличающиеся мяг­костью, эластичностью, драпируемостью, непромокаемостью, хо­рошими гигиеническими свойствами.

Полиэфирные волокна (полиэтилентерефталат - ПЭТФ, лавсан, полиэстер) - синтетические волокна, формируемые из сложных гетероцепных полимеров. Полиэтилентерефталатные во­локна формуются из расплава сложного полиэфира терефталевой кислоты и эти лен гликоля.

В общемировом производстве синтетических волокон эти во­локна занимают первое место. Лавсановое волокно характеризу­ется несминаемостью, превосходящей по этому показателю все текстильные волокна, в т. ч. и шерсть. Так, изделия из лавсановых волокон в 2-3 раза меньше сминаются, чем шерстяные. В мате­риалы на основе целлюлозы для уменьшения их сминаемости в смеску добавляют 45-55% лавсановых волокон.

Лавсановое волокно обладает очень хорошей стойкостью к све­ту и атмосферным воздействиям, уступая по этому показателю только нитроновому волокну. По этой причине его целесообразно использовать в гардинно-тюлевых, тентовых, палаточных изделиях. Лавсановое волокно - одно из термостойких волокон. Оно термо­пластично, благодаря чему изделия хорошо сохраняют эффекты плиссе и гофре. По стойкости к истиранию и изгибам лавсановое волокно несколько уступает капроновому. Волокно обладает вы­сокой прочностью, разрывная нагрузка волокна - 49-50 сН/текс, нити - 29-39 сН/текс, и хорошей деформативной способностью (относительное разрывное удлинение составляет соответственно 35^0 и 17-35%). Волокно стойко к разбавленным кислотам, ще­лочам, но разрушается при воздействии концентрированной сер­ной кислотой и горячей щелочью. Горит лавсан желтым коптящим пламенем, образуя на конце черный нерастирающийся шарик.

Однако лавсановое волокно обладает низкой гигроскопично­стью (до 1%), плохой окрашиваемостью, повышенной жесткостью,



Текстильные товары

электризуемостъю и пиллингуемостью. Причем пилли длительно сохраняются на поверхности изделий.

Полиамидные волокна (капрон, дедерон, нейлон) - вид син­тетических волокон, формуемых из расплава полиамидов - ге-тероцепных, полимеров, содержащих в основной цепи амидные группы (- СО - МН 2) и получаемых методами полимеризации (например, из е-капролактама) или поликонденсации дикарбоновых кислот (или их эфиры) и диаминов. Наибольшее распространение получили капроновые волокна, формуемые из поли-е-капроамида, являющегося продуктом полимеризации е-капроамида.

К положительным свойствам капронового волокна относят: высокие прочностные и деформационные свойства: разрывная нагрузка волокна - 32-35 сН/текс, нити - 36-44 сН/текс и удлине­ние при разрыве соответственно 60-70 и 20-45%, а также самую большую из текстильных волокон устойчивость к истиранию и из­гибам. Эти ценные свойства капронового волокна используют при введении его в смеску с другими волокнами для получения более износостойких материалов.

Так, введение 5-10% капронового волокна в шерстяную ткань в 1,5-2 раза повышает ее стойкость к истиранию. Капроновое во­локно также обладает малой сминаемостью и усадкой, устойчи­востью к действию микроорганизмов.

При температуре 170 °С капрон размягчается, а при 210 °С пла­вится. При внесении в пламя капрон плавится, загорается с трудом, горит голубоватым пламенем. Если расплавленная масса начинает капать, горение прекращается, на конце образуется оплавленный бурый шарик, ощущается запах сургуча.

Однако капроновое волокно сравнительно мало гигроскопич­но (3,5-4%), поэтому гигиенические свойства изделий из таких волокон невысокие. Кроме этого, капроновое волокно облада­ет достаточной жесткостью, сильно электризуется, неустойчиво к действию света, щелочей, минеральных кислот, имеет низкую термостойкость. На поверхности изделий, выработанных из капроновых волокон, образуются пилли, которые из-за высокой прочности волокон сохраняются в изделии и в процессе носки не исчезают.


Полиакрилонитрилъные волокна (ПАН, акрил, нитрон, ор-лон, куртель) - синтетические волокна, получаемые из полиак-рилонитрила или сополимеров, содержащих более 85% акрилнит-рила. Пол и акрил нитрил получают радикальной полимеризацией акрилонитрила. Волокна из сополимеров, содержащих 40-85% акрилонитрила, принято называть модакриловыми.

Нитрон - наиболее мягкое, шелковистое и "теплое" синтети­ческое волокно. По теплозащитным свойствам превосходит шерсть, но по стойкости к истиранию уступает даже хлопку. Прочность нитрона вдвое ниже прочности капрона, гигроскопичность очень низкая (1,5%). Нитрон отличается кис л ото стойкостью, устойчив к действию всех органических растворителей, микроорганизмов, но разрушается щелочами.

Обладает малой сминаемостью и усадкой. По светостойкости превосходит все текстильные волокна. При температуре 200-250 °С нитрон размягчается. Горит нитрон желтым коптящим пламенем со вспышками, образуя на конце твердый шарик.

Волокно хрупкое, плохо окрашивается, сильно электризуется и пиллингуется, но пилли из-за их невысоких прочностных свойств в процессе носки исчезают.

Для устранения недостатков - низкой гигроскопичности и пло­хой окрашиваемости создана широкая гамма модифицированных ПАН волокон - модакриловых волокон.

Поливипилхлоридные волокна. Вырабатывают из поливинил-хлорида - волокно ПВХ и из перхлорвинила - хлорин. Волокна отличаются высокой химической стойкостью, малой теплопровод­ностью, очень низкой гигроскопичностью (0,1-0,15%), способно­стью накапливать при трении о кожу человека электростатичес­кие заряды, имеющие лечебный эффект при болезнях суставов. Недостатками являются низкая теплостойкость (изделия можно использовать при температуре не выше 70 °С) и неустойчивость к действию света и светопогоды.

Поливинилспиртовые волокна (винол) получают из поливи­нилового спирта. Винол имеет среднюю гигроскопичность (5%), степень набухания в воде - 150-200%, обладает высокой устой-



Текстильные товары

чивостью к истиранию, уступая только полиамидным волокнам, хорошо окрашивается.

Полиолефиновые волокна получают из расплавов полиэти­лена и полипропилена. Это самые легкие текстильные волокна, изделия из них не тонут в воде. Они устойчивы к истиранию, дей­ствию химических реагентов, отличаются высокой прочностью на разрыв. Недостатками являются малая светостойкость и низкая теплостойкость.

Полиуретановые волокна (спандекс, лайкра, эластин) от­носятся к эластомерам, т. к. обладают исключительно высокой эластичностью (растяжимость до 800%). Обладают легкостью, мягкостью, устойчивостью к действию света, стирке, поту. К недо­статкам относятся низкая гигроскопичность (1-1,5%), невысокая прочность, низкая теплостойкость.

В табл. 2.1 приведены условные обозначения видов текстиль­ных волокон.

Таблица 2.1 Условные обозначения видов текстильных волокон

Условное обозначе­ние Расшифровка
Россия Великобритании Германия
Шерсть Шоо! №оо!е
ШР Альпака А1раса А1рака
\УЬ Лама Еате Ьате
\УК Верблюжья шерсть Сате! Кате!
Ш8 Кашемир СазЬтеге КазсЬггпге
Мохер МоЬа1г Мопа1г
т Ангора Ап§ога Ап§ога
\УС Вигунья Уюипа УИшгуа
то Гуанако Оиапасо СиапаЬэ
Шелк 81Ш Зен|е
СО Хлопок Сойоп Ваит\уоо1е
Лен Ьтеп Ьтапе
Ш Джут Ме 1и1е

Окончание табл. 2.1

Синтетические волокна начали производиться промышленным способом в 1938 году. На данный момент их существует уже несколько десятков видов. Для всех них общим является то, что исходным веществом служат низкомолекулярные соединения, превращающиеся в полимеры посредством химического синтеза. Растворением или плавлением полученных полимеров осуществляется приготовление формовочного или прядильного раствора. Их формуют из раствора или расплава, а их уже потом подвергают отделке.

Разновидности

В зависимости от особенностей, которыми характеризуется строение макромолекул, синтетические волокна принято подразделять на гетероцепные и карбоцепные. К первым относят те, что получены из полимеров, в чьих макромолекулах, помимо углерода, присутствуют и иные элементы - азот, сера, кислород и другие. Сюда относят полиэфирные, полиуретановые, полиамидные и полимочевинные. Карбоцепные синтетические волокна характеризуются тем, что основная цепь у них выстроена из атомов углерода. К этой группе относят поливинилхлоридные, полиакрилнитрильные, полиолефиновые, поливинилспиртовые и фторосодержащие.

Полимеры, служащие основой для получения гетероцепных волокон, получаются посредством поликонденсации, а продукт формуется из расплавов. Карбоцепные получаются посредством цепной полимеризации, а формирование происходит обычно из растворов, в редких случаях из расплавов. Можно рассмотреть какое-то одно синтетическое полиамидное волокно, которое получило название сиблон.

Создание и применение

Такое слово, как сиблон, для многих оказывается совершенно незнакомым, однако раньше на ярлычках одежды можно было видеть аббревиатуру ВВМ, под которой скрывалось вискозное высокомодульное волокно. Тогда производителям казалось, что такое название будет выглядеть симпатичнее, чем сиблон, которое могло ассоциироваться с нейлоном и капроном. Производство синтетических волокон этого типа осуществляется из елки, как бы сказочно это не выглядело.

Особенности

Появился сиблон в начале 70-х годов прошлого века. Он представляет собой усовершенствованную вискозу. На первом этапе осуществляется получение из древесины целлюлозы, ее выделяют в чистом виде. Самое большое ее количество содержится в хлопке - около 98%, но из волокон хлопчатника и без этого получаются отличные нити. Поэтому для выработки целлюлозы чаще используется древесина, в частности хвойная, где ее содержится 40-50%, а остальное - это ненужные компоненты. От них требуется избавляться в синтетических волокон.

Процесс создания

Синтетически волокна производятся поэтапно. На первом этапе осуществляется процесс варки, во время которой из древесной стружки все лишние вещества перемещаются в раствор, а также производится разбивка длинных полимерных цепочек на отдельные фрагменты. Естественно, тут не обходится только горячей водой, производятся добавки различных реагентов: натронов и прочих. Только варка с добавлением сульфатов позволяет получить целлюлозу, которая пригодна для производства сиблона, так как в ней остается меньше примесей.

Когда целлюлоза уже выварена, ее отправляют на отбеливание, сушку и прессовку, а потом перемещают туда, где в ней есть необходимость - это производство бумаги, целлофана, картона и волокон, то есть Что же с ней дальше происходит?

Последующая обработка

Если требуется получить синтетические и то сначала нужно приготовить прядильный раствор. Целлюлоза представляет собой твердое вещество, которое непросто растворить. Поэтому обычно ее превращают в растворимый в воде эфир дитиоугольной кислоты. Процесс превращения в это вещество является довольно длительным. Сначала производится обработка целлюлозы горячей щелочью с последующим отжимом, в раствор при этом переходят ненужные элементы. После отжима масса измельчается, а потом помещается в специальные камеры, где начинается предсозревание - происходит укорочение молекул целлюлозы почти вдвое за счет окислительной деструкции. Далее происходит реакция щелочной целлюлозы с сероуглеродом, что позволяет получить ксантогенат. Это масса оранжевого цвета, похожая на тесто, эфир дитиоугольной кислоты и исходного вещества. Этот раствор за его вязкость получил название "вискоза".

Далее происходит фильтрование для удаления последних примесей. Выпускается растворенный воздух посредством «вскипания» эфира в вакууме. Все эти операции приводят к тому, что ксантогенат становится похож на молодой мед - желтый и тягучий. На этом прядильный раствор полностью готов.

Получение волокон

Раствор продавливается через фильеры. волокна не просто прядутся традиционным способом. Эту операцию сложно сравнить с простой текстильной, правильнее будет сказать, что это химической процесс, позволяющий миллионам струек жидкой вискозы стать твердыми волокнами. На территории России из целлюлозы получается вискоза и сиблон. Второй тип волокна в полтора раза прочнее первого, характеризуется большей устойчивостью к щелочам, ткани из него отличаются гигроскопичностью, меньшей степенью усадки и сминания. А различия в процессах производства вискозы и сиблона появляются в тот момент, когда в осадительной ванной после фильер оказываются только что "народившиеся" синтетические волокна.

Химия в помощь

Для получения вискозы в ванну наливается серная кислота. Она предназначена для разложения эфира, благодаря чему получаются чисто целлюлозные волокна. При необходимости получения сиблона в ванну добавляют частично оказывающий препятствие гидролизу эфира, поэтому в нитях будет содержаться остаточный ксантогенат. И что же это дает? Далее волокна подвергаются растягиванию и формовке. Когда в полимерных волокнах имеются остатки ксантогената, получается вытянуть полимерные целлюлозные цепочки вдоль оси волокна, а не расположить их хаотично, что характерно для обычной вискозы. После вытяжки жгут из волокон разрезают на шпательки длиной 2-10 миллиметров. После еще нескольких процедур осуществляется прессовка волокон в кипы. Тонны древесины достаточно для получения 500 килограмм целлюлозы, из которой будет выпущено 400 килограмм волокна сиблона. Прядение целлюлозы осуществляется примерно двое суток.

Что дальше делают с сиблоном?

В восьмидесятых годах эти синтетические волокна использовались в качестве добавок к хлопку, чтобы нити прялись лучше и не рвались. Из сиблона делали подложки под искусственную кожу, а также использовали его при производстве изделий из асбеста. Тогда технологи не были заинтересованы в создании чего-то нового, требовалось как можно больше волокна для реализации задуманного.

А на Западе в те времена высокомодульные вискозные волокна использовались для производства тканей, которые отличались дешевизной и прочностью в сравнении с хлопчатобумажными, но при этом хорошо впитывали влагу и дышали. Сейчас у России не осталось собственных хлопковых регионов, поэтому на сиблон возлагаются большие надежды. Только спрос на него пока не особо велик, так как ткани и одежду отечественного производства сейчас почти никто не покупает.

Полимерные волокна

Их принято подразделять на природные, синтетические и искусственные. Природные представляют собой те волокна, образование которых осуществляется в натуральных условиях. Их принято классифицировать по происхождению, которое определяет их химический состав, на животные и растительные. Первые состоят из белка, а именно каротина. Это шелк и шерсть. Вторые состоят из целлюлозы, лигнина и гемицеллюлозы.

Искусственные синтетические волокна получаются посредством химической переработки полимеров, существующих в природе. К ним принято относить ацетатные, вискозные, альгинатные и белковые волокна. В качестве сырья для их получения служат сульфатная или сульфитная древесная целлюлоза. Выпуск искусственных волокон производится в виде текстильных и кордных нитей, а также в виде штапельного волокна, которое перерабатывается вместе с иными волокнами в процессе производства разных тканей.

Синтетическое полиамидное волокно получается из полимеров, выведенных искусственно. В качестве исходного сырья в таком процессу используются полимерные волокна, сформированные из гибких макромолекул слаборазветвленной или линейной структуры, обладающие значительной массой - более 15 000 атомных единиц массы, а также очень узким молекулярно-массовым распределением. В зависимости от типа синтетические волокна способны обладать высокой степенью прочности, значительной величиной по отношению к удлинению, эластичностью, устойчивостью к множественным нагрузкам, малыми остаточными деформации и быстрым восстановлением после снятия нагрузки. Именно поэтому помимо использования в текстиле им нашли применение в качестве армирующих элементов во время изготовления композитов, и все это позволили сделать особые свойства синтетических волокон.

Заключение

В последние несколько лет можно наблюдать очень устойчивый рост количества достижений в сфере разработки новых полимерных волокон, в частности, пара-арамидных, полиэтиленовых, термостойких, комбинированных, структура которых - ядро-оболочка, гетероциклических полимеров, в которые включены различные частицы, к примеру, серебро или иные металлы. Теперь материал нейлон - это уже не верх инженерной мысли, так как сейчас существует огромное количество новых волокон.

К синтетическим волокнам относятся полиамидные, полиэфирные, полиакрилонитрильные, поливинилхлоридные, поливинилспиртовые, полипропиленовые и др.

Полиамидные волокна (капрон, анид,энант). Волокна имеют цилиндрическую форму, поперечное сечение их зависит от формы отверстия фильеры, через которое продавливаются полимеры (рис. 9, а ).

Полиамидные волокна отличаются высокой прочностью при растяжении (40-70сН/текс), стойки к истиранию, многократному изгибу, обладают высокой химической стойкостью, морозоустойчивостью, устойчивостью к действию микроорганизмов. Основными их недостатками являются низкая гигроскопичность (3,5-5 %)и светостойкость, высокая электризуемость и малая термостойкость; при нагревании до 160°С их прочность снижается почти на 50 %.В результате быстрого "старения" они на свету желтеют, становятся ломкими и жесткими. Горят волокна голубоватым пламенем, образуя на конце бурый твердый шарик.

Полиамидные волокна и нити широко используются при выработке чулочно-носочных и трикотажных изделий, швейных ниток, галантерейных изделий (тесьмы, ленты), кружев, канатов, рыболовных сетей, конвейерных лент, корда, тканей технического назначения, а также при выработке тканей бытового назначения в смеси с другими волокнами и нитями. Добавление 10–20 % полиамидных штапельных волокон к натуральным резко увеличивает износостойкость изделий.

Полиэфирные волокна (лавсан, терилен, дакрон). В поперечном сечении лавсан имеет форму круга (рис. 9, б ).Прочность на разрыв у лавсана несколько ниже, чем у полиамидных волокон (40-50сН/текс), разрывное удлинение –в пределах20-25 %,в мокром состоянии прочность не теряется. В отличие от капрона лавсан разрушается при действии на него кислот и щелочей, гигроскопичность его ниже, чем капрона (0,4 %). При внесении в пламя лавсан плавится, медленно горит желтым коптящим пламенем. Волокно является термостойким, обладает низкой теплопроводностью и большой упругостью, что позволяет получать из него изделия, хорошо сохраняющие форму; имеют малую усадку. Недостатками волокна являются его повышенная жесткость, способность к образованию пиллинга на поверхности изделий и сильная электризуемость.

Лавсан широко применяется при выработке тканей бытового назначения в смеси с шерстью, хлопком, льном и вискозным волокном, что придает изделиям повышенную стойкость к истиранию, упругость

Рис. 9. Продольный вид и поперечный срез синтетических волокон:

а) капронового; б) лавсанового; в) нитронового; г) хлоринового

и несминаемость. Он также с успехом применяется при производстве нетканых полотен, швейных ниток, гардинно-тюлевых изделий, технических тканей и корда. Комплексные лавсановые нити подвергают текстурированию, в результате чего они лучше поглощают влагу и сохраняют тепло.

Полиакрилонитрильные волокна (нитрон, орлон). По внешнему виду нитрон напоминает шерсть. Поверхность его гладкая (рис. 9,в ) с неправильной формой поперечного сечения с изрезанными краями (гантелеобразная и близкая к ней).

Нитрон отличается высокой прочностью (32-39сН/текс), которая в мокром состоянии не меняется, и упругостью. Изделия из него после стирки довольно хорошо сохраняют форму. Нитрон не повреждается молью и микроорганизмами, обладает высокой стойкостью к ядерным излучениям. По стойкости к истиранию нитрон уступает полиамидным и полиэфирным волокнам. Кроме того, он характеризуется низкой гигроскопичностью (1,5 %),что ограничивает его использование при выработке бельевых тканей, сильной электризуемостыо. Волокно нитрон обладает также наилучшей светостойкостью, низкой теплопроводностью, то есть хорошими теплозащитными свойствами и поэтому часто используются в смесках с шерстью и в чистом виде для костюмно-пальтовых материалов.

Нитрон горит вспышками, выделяя дымок черной копоти. После окончания горения образуется темный, легко раздавливаемый комочек. Используется нитрон при производстве верхнего трикотажа, плательных тканей, а также меха на трикотажной и тканевой основе, ковровых изделий, одеял и тканей технического назначения.

Поливинилхлоридные волокна (хлорин) (рис. 9,г ).По сравнению с дру­гими синтетическими волокнами и хлопком оно менее прочное (12-14 сН/текс), менее упругое, менее стойкое к истиранию, отличается низкой гигроскопичностью (0,1 %),невысокой стойкостью к действию светопогоды, низкой термостойкостью (70°С). Для него характерна высокая хемостойкость, негорючесть, невоспламеняемость.

Хлорин при поднесении к пламени обугливается, но не горит, выделяя при этом запах хлора.

Хлорин имеет способность накапливать электростатические заряды, поэтому его используют для изготовления лечебного белья. Хлорин применяют также при изготовлении тканей для спецодежды, так как он устойчив к действию воды и микроорганизмов.

Волокно ПВХ, также как и хлорин, относится к поливинилхло-ридным волокнам, однако в отличие от хлорина оно наиболее прочное (26-36сН/текс), более упругое и светостойкое. Его используют при выработке трикотажных и гардинно-тюлевых изделий, одеял, декоративных тканей, ватина, ковров, пледов, паласов и других изделий.

Поливинилспиртовые волокна и нити. Формование нитей производят из раствора мокрым способом. Причем в зависимости от условий формования и последующего ацетилирования получают нити с разной степенью прочности и водостойкости: от водорастворимых до гидрофобных.

Нерастворимые поливинилспиртовые волокна, производимые в нашей стране, носят название винол. Они обладают многими положительными свойствами: прочностью, высокой устойчивостью к истиранию, светопогоде, химическим реагентам, многократным деформациям. Винол достаточно эластичен, характеризуется высокой теплостойкостью. Температура размягчения и начала разложения волокон 220°С. Винол горит желтоватым пламенем; после того как горение прекратится, образуется твердый комочек светло-бурого цвета.

Отличительная особенность поливинилспиртовых волокон, выделяющая их из всех синтетических волокон, –высокая гигроскопичность, обусловленная наличием в макромолекулах полимера большого количества гидроксильных групп. По показателям гигроскопичности поливинилспиртовые волокна приближаются к хлопковым, что дает возможность использовать его при выработке материалов для белья и изделий костюмно-платьевого ассортимента. Эти волокна хорошо окрашиваются красителями для целлюлозных волокон. Применяются они в смеси с хлопком, шерстью для производства тканей, трикотажа, ковров и т.д.

Водорастворимая разновидность поливинилспиртовых волокон используется в текстильной промышленности в качестве вспомогательного (удаляемого) волокна при производстве ажурных изделий, тонких тканей, материалов пористых волокнистых структур, а также при изготовлении гипюра (взамен натурального шелка). Поливинилспиртовые нити применяются в медицине для временного скрепления хирургических швов.

Наличие гидроксильных групп позволяет проводить химическую модификацию указанных волокон, особенно методом синтеза привитых сополимеров, благодаря чему можно создавать волокна и нити со специфическими свойствами: огнестойкие, бактерицидные, ионообменные и др.

Полиолефиновые волокна и нити. Из группы полиолефинов для производства волокон используют полипропилен [–СН 2 –СНСН 3 –] n и полиэтилен [–СН 2 –СН 2 –] n среднего и низкого давления.

Полиолефиновые волокна можно формовать из расплавов или растворов полимера с последующим вытягиванием и термофиксацией.

Полипропиленовые и полиэтиленовые нити обладают достаточно высокими значениями прочности и удлинения при растяжении. Полиолефиновые волокна и нити характеризуются высокой устойчивостью к действию кислот, щелочей, не уступают по показателям хемостойкости хлорину. Устойчивость их к истиранию ниже, чем полиамидных нитей, особенно полипропиленовых.

Теплостойкость полиолефиновых нитей небольшая. При температуре 80°С полиэтиленовая нить теряет около 80 %первоначальной прочности. Гигроскопичность нитей почти равна нулю, поэтому окрашивание их возможно только с введением пигмента в полимер перед формованием. С низкой гигроскопичностью связана и значительная электризуемость этих нитей. Плотность полиэтиленовых и полипропиленовых нитей очень низкая, поэтому изделия из них не тонут в воде.

Полиолефиновые волокна используют главным образом для технических целей, а также в смеси с гидрофильными волокнами (хлопковыми, шерстяными, вискозными и др.) в производстве материалов для верхней одежды, обуви, декоративных тканей.

Полиуретановые нити. В настоящее время имеется достаточно большой ассортимент материалов с использованием полиуретановых (эластановых) нитей (спандекс, ликра и т.п.). Нити имеют цилиндрическую форму с круглым поперечным сечением, аморфные. Особенностью всех полиуретановых нитей является их высокая эластичность: разрывное удлинение их составляет 800 %, доля упругой и эластической деформаций 92-98 %. Поэтому материалы с содержанием полиутератновых нитей обладают хорошими упругими свойствами и мало мнутся. Именно эта особенность и определила область их использования. Спандекс применяют в основном при изготовлении эластичных изделий. С использованием этих нитей вырабатывают ткани и трикотажные полотна бытового назначения, для спортивной одежды, а также чулочно-носочные изделия. Полиуретановые нити обладают недостаточной прочностью (6–7 сН/текс) и теплостойкостью. При воздействии температур более 100С нити теряют эластические свойства. Поэтому их вырабатывают в основном защищающей их оплеткой. Полиуретановые нити обладают также очень низкой гигроскопичностью (0,8–0,9 %), что также ограничивает их использование в чистом виде.

Для направленного изменения свойств химических волокон проводят их химическую модификацию различными способами. В целях расширения применения химических волокон и нитей в различных областях техники созданы высокопрочные, высокомодульные (малорастяжимые), термостойкие, негорючие, светостойкие и другие виды волокон со специальными свойствами. Так, введением в цепную молекулу полиамида ароматических звеньев (бензольных колец) получены высокопрочные и термостойкие волокна типа фенилон, внивлон (или СВМ – сверхвысокомодульное), оксалон, аримид Т, кевлар и др. Специальной обработкой полиакрилонитрильных и вискозных волокон получены высокопрочные, хемостойкие, термостойкие углеродные . Они обладают уникальными свойствами. В условиях длительного нагрева (при температуре 400С и более) сохраняют свои механические свойства, негорючие. Используются в различных областях техники (космонавтике, авиационном и химическом машиностроении и др.)

Более подробные сведения о получении и строении химическихволокон приведены в учебнике .