Полное исследование функции онлайн подробно. Исследовать методами дифференциального исчисления функцию \(y=\frac{x3}{1-x}\), построить ее график

Исследуем функцию \(y= \frac{x^3}{1-x} \) и построим ее график.


1. Область определения.
Областью определения рациональной функции (дробь) будет: знаменатель не равен нулю, т.е. \(1 -x \ne 0 => x \ne 1\). Область определения $$D_f= (-\infty; 1) \cup (1;+\infty)$$


2. Точки разрыва функции и их классификация.
Функция имеет одну точку разрыва x = 1
исследуем точку x= 1. Найдем предел функции справа и слева от точки разрыва, справа $$ \lim_{x \to 1+0} (\frac{x^3}{1-x}) = -\infty $$ и слева от точки $$ \lim_{x \to 1-0}(\frac{x^3}{1-x}) = +\infty $$ Это точка разрыва второго рода т.к. односторонние пределы равны \(\infty\).


Прямая \(x = 1\) является вертикальной асимптотой.


3. Четность функции.
Проверяем на четность \(f(-x) = \frac{(-x)^3}{1+x} \) функция не является ни четной ни нечетной.


4. Нули функции (точки пересечения с осью Ox). Интервалы знакопостоянства функции .
Нули функции (точка пересечения с осью Ox) : приравняем \(y=0\), получим \(\frac{x^3}{1-x} = 0 => x=0 \). Кривая имеет одну точку пересечения с осью Ox с координатами \((0;0)\).


Интервалы знакопостоянства функции.
На рассматриваемых интервалах \((-\infty; 1) \cup (1;+\infty)\) кривая имеет одну точку пересечения с осью Ox , поэтому будем рассматривать на трех интервалах области определения.


Определим знак функции на интервалах области определения:
интервал \((-\infty; 0) \) найдем значение функции в любой точке \(f(-4) = \frac{x^3}{1-x} < 0 \), на этом интервале функция отрицательная \(f(x) < 0 \), т.е. находится ниже оси Ox
интервал \((0; 1) \) найдем значение функции в любой точке \(f(0.5) = \frac{x^3}{1-x} > 0 \), на этом интервале функция положительная \(f(x) > 0 \), т.е. находится выше оси Ox.
интервал \((1;+\infty) \) найдем значение функции в любой точке \(f(4) = \frac{x^3}{1-x} < 0 \), на этом интервале функция отрицательная \(f(x) < 0 \), т.е. находится ниже оси Ox


5. Точки пересечения с осью Oy : приравняем \(x=0 \), получаем \(f(0) = \frac{x^3}{1-x} = 0\). Координаты точки пересечения с осью Oy \((0; 0)\)


6. Интервалы монотонности. Экстремумы функции.
Найдем критические (стационарные) точки, для этого найдем первую производную и приравняем ее к нулю $$ y" = (\frac{x^3}{1-x})" = \frac{3x^2(1-x) +x^3}{ (1-x)^2} = \frac{x^2(3-2x)}{ (1-x)^2} $$ приравняем к 0 $$ \frac{x^2(3-2x)}{ (1-x)^2} = 0 => x_1 = 0 \quad x_2= \frac{3}{2}$$ Найдем значение функции в этой точке \(f(0) = 0\) и \(f(\frac{3}{2}) = -6.75\). Получили две критические точки с координатами \((0;0)\) и \((1.5;-6.75)\)


Интервалы монотонности.
Функция имеет две критические точки (точек возможного экстремума), поэтому монотонность будем рассматривать на четырех интервалах:
интервал \((-\infty; 0) \) найдем значение первой производной в любой точке интервала \(f(-4) = \frac{x^2(3-2x)}{ (1-x)^2} >
интервал \((0;1)\) найдем значение первой производной в любой точке интервала \(f(0.5) = \frac{x^2(3-2x)}{ (1-x)^2} > 0\), на этом интервале функция возрастает.
интервал \((1;1.5)\) найдем значение первой производной в любой точке интервала \(f(1.2) = \frac{x^2(3-2x)}{ (1-x)^2} > 0\), на этом интервале функция возрастает.
интервал \((1.5; +\infty)\) найдем значение первой производной в любой точке интервала \(f(4) = \frac{x^2(3-2x)}{ (1-x)^2} < 0\), на этом интервале функция убывает.


Экстремумы функции.


При исследовании функции получили на интервале области определения две критические (стационарные) точки. Определим, являются ли они экстремумами. Рассмотрим изменение знака производной при переходе через критические точки:


точка \(x = 0\) производная меняет знак с \(\quad +\quad 0 \quad + \quad\) - точка экстремумом не является.
точка \(x = 1.5\) производная меняет знак с \(\quad +\quad 0 \quad - \quad\) - точка является точкой максимума.


7. Интервалы выпуклости и вогнутости. Точки перегиба.


Для нахождения интервалов выпуклости и вогнутости найдем вторую производную функции и приравняем ее к нулю $$y"" = (\frac{x^2(3-2x)}{ (1-x)^2})"= \frac{2x(x^2-3x+3)}{(1-x)^3} $$Приравняем к нулю $$ \frac{2x(x^2-3x+3)}{(1-x)^3}= 0 => 2x(x^2-3x+3) =0 => x=0$$ Функция имеет одну критическую точку второго рода с координатами \((0;0)\).
Определим выпуклость на интервалах области определения с учетом критической точки второго рода (точки возможного перегиба).


интервал \((-\infty; 0)\) найдем значение второй производной в любой точке \(f""(-4) = \frac{2x(x^2-3x+3)}{(1-x)^3} < 0 \), на этом интервале вторая производная функции отрицательная \(f""(x) < 0 \) - функция выпуклая вверх (вогнутая).
интервал \((0; 1)\) найдем значение второй производной в любой точке \(f""(0.5) = \frac{2x(x^2-3x+3)}{(1-x)^3} > 0 \), на этом интервале вторая производная функции положительная \(f""(x) > 0 \) функция выпуклая вниз (выпуклая).
интервал \((1; \infty)\) найдем значение второй производной в любой точке \(f""(4) = \frac{2x(x^2-3x+3)}{(1-x)^3} < 0 \), на этом интервале вторая производная функции отрицательная \(f""(x) < 0 \) - функция выпуклая вверх (вогнутая).


Точки перегиба.


Рассмотрим изменение знака второй производной при переходе через критическую точку второго рода:
В точке \(x =0\) вторая производная меняет знак с \(\quad - \quad 0 \quad + \quad\), график функции меняет выпуклость, т.е. это точка перегиба с координатами \((0;0)\).


8. Асимптоты.


Вертикальная асимптота . График функции имеет одну вертикальную асимптоту \(x =1\) (см. п.2).
Наклонная асимптота.
Для того, чтобы график функции \(у= \frac{x^3}{1-x} \) при \(x \to \infty\) имел наклонную асимптота \(y = kx+b\), необходимо и достаточно, чтобы существовали два предела $$\lim_{x \to +\infty}=\frac{f(x)}{x} =k $$находим его $$ \lim_{x \to \infty} (\frac{x^3}{x(1-x)}) = \infty => k= \infty $$ и второй предел $$ \lim_{x \to +\infty}(f(x) - kx) = b$$, т.к. \(k = \infty\) - наклонной асимптоты нет.


Горизонтальная асимптота: для того, чтобы существовала горизонтальная асимптота, необходимо, чтобы существовал предел $$\lim_{x \to \infty}f(x) = b$$ найдем его $$ \lim_{x \to +\infty}(\frac{x^3}{1-x})= -\infty$$$$ \lim_{x \to -\infty}(\frac{x^3}{1-x})= -\infty$$
Горизонтальной асимптоты нет.


9. График функции.

Опорными точками при исследовании функций и построения их графиков служат характерные точки – точки разрыва, экстремума, перегиба, пересечения с осями координат. С помощью дифференциального исчисления можно установить характерные особенности изменения функций: возрастание и убывание, максимумы и минимумы, направление выпуклости и вогнутости графика, наличие асимптот.

Эскиз графика функции можно (и нужно) набрасывать уже после нахождения асимптот и точек экстремума, а сводную таблицу исследования функции удобно заполнять по ходу исследования.

Обычно используют следующую схему исследования функции.

1. Находят область определения, интервалы непрерывности и точки разрыва функции .

2. Исследуют функцию на чётность или нечётность (осевая или центральная симметрия графика.

3. Находят асимптоты (вертикальные, горизонтальные или наклонные).

4. Находят и исследуют промежутки возрастания и убывания функции, точки её экстремума.

5. Находят интервалы выпуклости и вогнутости кривой, точки её перегиба .

6. Находят точки пересечения кривой с осями координат, если они существуют.

7. Составляют сводную таблицу исследования.

8. Строят график, учитывая исследование функции, проведённое по вышеописанным пунктам.

Пример. Исследовать функцию

и построить её график.

7. Составим сводную таблицу исследования функции, куда внесём все характерные точки и интервалы между ними. Учитывая чётность функции, получаем следующую таблицу:

Особенности графика

[-1, 0[

Возрастает

Выпуклый

(0; 1) – точка максимума

]0, 1[

Убывает

Выпуклый

Точка перегиба, образует с осью Ox тупой угол

В данной статье рассмотрим схему исследования функции, а также приведем примеры исследования на экстремумы, монотонность, асимптоты данной функции.

Схема

  1. Область существования (ОДЗ) функции.
  2. Пересечение функции (если имеется) с осями координат, знаки функции, четность, периодичность.
  3. Точки разрыва (их род). Непрерывность. Асимптоты вертикальные.
  4. Монотонность и точки экстремума.
  5. Точки перегиба. Выпуклость.
  6. Исследование функции на бесконечности, на асимптоты: горизонтальные и наклонные.
  7. Построение графика.

Исследование на монотонность

Теорема. Ежели функция g непрерывна на , дифференцированная на (а; b) и g’(x) ≥ 0 (g’(x)≤0) , xє(а; b) , то g возрастающая (убывающая) на .

Пример:

y = 1: 3x 3 - 6: 2x 2 + 5x.

ОДЗ: хєR

y’ = x 2 + 6x + 5.

Найдем промежутки постоянных знаков y’ . Поскольку y’ - элементарная функция, то она может менять знаки только в точках, где она превращается в ноль или не существует. Ее ОДЗ: хєR .

Найдем точки, производная в которых равняется 0 (нулю):

y’ = 0;

x = -1; -5.

Итак, y растущая на (-∞; -5] и на [-1; +∞), y нисходящая на .

Исследование на экстремумы

Т. x 0 именуют точкой максимума (max) на множестве А функции g тогда, когда принимается в этой точке функцией значение наибольшее g(x 0) ≥ g(x), xєА .

Т. x 0 именуют точкой минимума (min) функции g на множестве А тогда, когда принимается в этой точке функцией значение наименьшее g(x 0) ≤ g(x), xєА.

На множестве А точки максимума (max) и минимума (min) именуются точками экстремума g . Такие экстремумы еще называют абсолютными экстремумами на множестве .

Если x 0 - экстремума точка функции g в некотором своем округе, то x 0 именуется точкой локального или местного экстремума (max или min) функции g.

Теорема (условие необходимое). Если x 0 - точка экстремума (локального) функции g , то производная не существует или равна в этой т. 0 (нулю).

Определение. Критическими именуют точки с несуществующей или равной 0 (нулю) производной. Именно данные точки подозрительны на экстремум.

Теорема (условие достаточное № 1). Если функция g непрерывна в некотором округе т. x 0 и знак меняет чрез эту точку при переходе производная, то данная точка есть т. экстремума g .

Теорема (условие достаточное № 2). Пускай функция в некотором округе точки дифференцируема дважды и g’ = 0, а g’’ > 0 (g’’ < 0) , тогда эта точка есть точкой максимума (max) или минимума (min) функции.

Исследование на выпуклость

Функцию называют выпуклой вниз (или вогнутой) на интервале (а, b) тогда, когда график функции располагается не выше секущей на промежутке для любых x с (а, b) , которая проходит чрез эти точки.

Функция будет выпуклой строго вниз на (а, b) , если - график лежит ниже секущей на промежутке.

Функцию называют выпуклой вверх (выпуклой) на промежутке (а, b) , если для любых точек с (а, b) график функции на промежутке лежит не ниже секущей, проходящей через абсциссы в этих точках .

Функция будет строго выпуклой вверх на (а, b ), если - график на промежутке лежит выше секущей.

Если функция в некотором округе точки непрерывна и через т. x 0 при переходе функция изменяет выпуклость то эта точка именуется точкой перегиба функции.

Исследование на асимптоты

Определение. Прямую называют асимптотой g(x) , если при бесконечном удалении от начала координат к ней приближается точка графика функции: d(M,l).

Асимптоты могут быть вертикальные, горизонтальные и наклонные.

Вертикальная прямая с уравнением x = x 0 будет асимптотой вертикальной графика функции g , если в т. x 0 бесконечный разрыв, то есть хотя бы одна левая или правая граница в этой точке - бесконечность.

Исследование функции на отрезке на значение наименьшее и наибольшее

Если функция непрерывна на , то по теореме Вейерштрасса существует значение наибольшее и значение наименьшее на этом отрезке, то есть существуют точки, которые принадлежат такие, что g(x 1) ≤ g(x) < g(x 2), x 2 є . Из теорем про монотонность и экстремумы получаем следующую схему исследования функции на отрезке на наименьшее и наибольшее значение.

План

  1. Найти производную g’(x) .
  2. Искать значение функции g в этих точках и на концах отрезка.
  3. Найденные значения сравнить и выбрать наименьшее и наибольшее.

Замечание. Если нужно произвести исследование функции на конечном интервале (а, b) , или на бесконечном (-∞; b); (-∞; +∞) на max и min значение, то в плане вместо значений функции на концах промежутка ищут соответствующие односторонние границы: вместо f(a) ищут f(a+) = limf(x) , вместо f(b) ищут f(-b) . Так можно найти ОДЗ функции на промежутке, потому что абсолютные экстремумы не обязательно существуют в данном случае.

Применение производной к решению прикладных задач на экстремум некоторых величин

  1. Выражают данную величину через другие величины из условия задачи так, чтобы она была функцией только от одной переменной (если это возможно).
  2. Определяют промежуток изменения этой переменной.
  3. Проводят исследование функции на промежутке на max и min значения.

Задача. Нужно построить площадку прямоугольной формы, использовав а метров сетки, у стены так, чтобы с одной стороны она прилегала к стене, а с остальных трех была ограждена сеткой. При каком соотношении сторон площадь такой площадки будет наибольшей?

S = xy - функция 2 переменных.

S = x(a - 2x) - функция 1-й переменной; x є .

S = ax - 2x 2 ; S" = a - 4x = 0, xєR, x = a: 4.

S(a: 4) = a 2: 8 - наибольшее значение;

S(0) =0.

Найдем другую сторону прямоугольника: у = a: 2.

Соотношение сторон: y: x = 2.

Ответ. Наибольшая площадь будет равна a 2 /8 , если сторона, которая параллельна стене, в 2 раза больше другой стороны.

Исследование функции. Примеры

Пример 1

Имеется y=x 3: (1-x) 2 . Произвести исследование.

  1. ОДЗ: хє(-∞; 1) U (1; ∞).
  2. Общего вида функция (ни четная, ни нечетная), относительно точки 0 (нуль) не симметрична.
  3. Знаки функции. Функция элементарная, поэтому может менять знак только в точках, где она равна 0 (нулю), или не существует.
  4. Функция элементарная, поэтому непрерывная на ОДЗ: (-∞; 1) U (1; ∞).

Разрыв: х = 1;

limx 3: (1- x) 2 = ∞ - Разрыв 2-го рода (бесконечный), поэтому есть вертикальная асимптота в точке 1;

х = 1 - уравнение асимптоты вертикальной.

5. y’ = x 2 (3 - x) : (1 - x) 3 ;

ОДЗ (y’): x ≠ 1;

х = 1 - точка критическая.

y’ = 0;

0; 3 - точки критические.

6. y’’ = 6x: (1 - x) 4 ;

Критические т.: 1, 0;

x = 0 - т. перегиба, y(0) = 0.

7. limx 3: (1 - 2x + x 2) = ∞ - нет горизонтальной асимптоты, но может быть наклонная.

k = 1 - число;

b = 2 - число.

Следовательно, есть асимптота наклонная y = x + 2 на + ∞ и на - ∞.

Пример 2

Дано y = (x 2 + 1) : (x - 1). Произвести и сследование. Построить график.

1. Область существования - вся числовая прямая, кроме т. x = 1 .

2. y пересекает OY (если это возможно) в т. (0;g(0)) . Находим y(0) = -1 - т. пересечения OY .

Точки пересечения графика с OX находим, решив уравнение y = 0 . Уравнение корней действительных не имеет, поэтому эта функция не пересекает OX .

3. Функция непериодическая. Рассмотрим выражение

g(-x) ≠ g(x), и g(-x) ≠ -g(x) . Это означает, что это общего вида функция (ни четная, ни нечетная).

4. Т. x = 1 разрыв имеет второго рода. Во всех остальных точках функция непрерывна.

5. Исследование функции на экстремум:

(x 2 - 2x - 1) : (x - 1) 2 = y"

и решим уравнение y" = 0.

Итак, 1 - √2, 1 + √2, 1 - точки критические или точки возможного экстремума. Эти точки разбивают числовую прямую на четыре интервала.

На каждом интервале производная имеет определенный знак, который можно установить методом интервалов или вычисления значений производной в отдельных точках. На интервалах (-∞; 1 - √2 ) U (1 + √2 ; ∞) , положительная производная, значит, функция растет; если (1 - √2 ; 1) U (1; 1 + √2 ) , то функция убывает, потому что на этих интервалах производная отрицательная. Через т. x 1 при переходе (движение следует слева направо) изменяет производная знак с "+" на "-", поэтому, в этой точке есть локальный максимум, найдем

y max = 2 - 2√2 .

При переходе через x 2 изменяет производная знак с "-" на "+", поэтому, в этой точке есть локальный минимум, причем

y mix = 2 + 2√2.

Т. x = 1 не т. экстремума.

6. 4: (x - 1) 3 = y"".

На (-∞; 1 ) 0 > y"" , следственно, на этом интервале кривая выпуклая; если xє(1 ; ∞) - кривая вогнута. В точке 1 не определена функция, поэтому эта точка не точка перегиба.

7. Из результатов пункта 4 следует, что x = 1 - асимптота вертикальная кривой.

Горизонтальные асимптоты отсутствуют.

x + 1 = y - асимптота наклонная данной кривой. Других асимптот нет.

8. Учитывая проведенные исследования, строим график (см. рисунок выше).

Для полного исследования функции и построения её графика рекомендуется использовать следующую схему:

1) найти область определения функции;

2) найти точки разрыва функции и вертикальные асимптоты (если они существуют);

3) исследовать поведение функции в бесконечности, найти горизонтальные и наклонные асимптоты;

4) исследовать функцию на чётность (нечётность) и на периодичность (для тригонометрических функций);

5) найти экстремумы и интервалы монотонности функции;

6) определить интервалы выпуклости и точки перегиба;

7) найти точки пересечения с осями координат, если возможно и некоторые дополнительные точки, уточняющие график.

Исследование функции проводится одновременно с построением её графика.

Пример 9 Исследовать функцию и построить график.

1. Область определения: ;

2. Функция терпит разрывв точках
,
;

Исследуем функцию на наличие вертикальных асимптот.

;
,
─ вертикальная асимптота.

;
,
─ вертикальная асимптота.

3. Исследуем функцию на наличие наклонных и горизонтальных асимптот.

Прямая
─ наклонная асимптота, если
,
.

,
.

Прямая
─ горизонтальная асимптота.

4. Функция является четной т.к.
. Чётность функции указывает на симметричность графика относительно оси ординат.

5. Найдём интервалы монотонности и экстремумы функции.

Найдём критические точки, т.е. точки в которых производная равна 0 или не существует:
;
. Имеем три точки
;

. Эти точки разбивают всю действительную ось на четыре промежутка. Определим знакина каждом из них.

На интервалах (-∞; -1) и (-1; 0) функция возрастает, на интервалах (0; 1) и (1 ; +∞) ─ убывает. При переходе через точку
производная меняет знак с плюса на минус, следовательно, в этой точке функция имеет максимум
.

6. Найдём интервалы выпуклости, точки перегиба.

Найдём точки, в которых равна 0, или не существует.

не имеет действительных корней.
,
,

Точки
и
разбивают действительную ось на три интервала. Определим знак на каждом промежутке.

Таким образом, кривая на интервалах
и
выпуклая вниз, на интервале (-1;1) выпуклая вверх; точек перегиба нет, т. к. функция в точках
и
не определена.

7. Найдем точки пересечения с осями.

С осью
график функции пересекается в точке (0; -1), а с осью
график не пересекается, т.к. числитель данной функции не имеет действительных корней.

График заданной функции изображён на рисунке 1.

Рисунок 1 ─ График функции

Применение понятия производной в экономике. Эластичность функции

Для исследования экономических процессов и решения других прикладных задач часто используется понятие эластичности функции.

Определение. Эластичностью функции
называется предел отношения относительного приращения функциик относительному приращению переменнойпри
, . (VII)

Эластичность функции показывает приближённо, на сколько процентов изменится функция
при изменении независимой переменнойна 1%.

Эластичность функции применяется при анализе спроса и потребления. Если эластичность спроса (по абсолютной величине)
, то спрос считают эластичным, если
─ нейтральным, если
─ неэластичным относительно цены (или дохода).

Пример 10 Рассчитать эластичность функции
и найти значение показателя эластичности для = 3.

Решение: по формуле (VII) эластичность функции:

Пусть х=3, тогда
.Это означает, что если независимая переменная возрастёт на 1%, то значение зависимой переменной увеличится на 1,42 %.

Пример 11 Пусть функция спроса относительно ценыимеет вид
, где─ постоянный коэффициент. Найти значение показателя эластичности функции спроса при цене х = 3 ден. ед.

Решение: рассчитаем эластичность функции спроса по формуле (VII)

Полагая
ден.ед., получим
. Это означает, что при цене
ден.ед. повышение цены на 1% вызовет снижение спроса на 6%, т.е. спрос эластичен.

Инструкция

Найдите область определения функции. Например, функция sin(x) определена на всем интервале от -∞ до +∞, а функция 1/x - от -∞ до +∞ за исключением точки x = 0.

Определите области непрерывности и точки разрыва. Обычно функция непрерывна в той же самой области, где она определена. Чтобы обнаружить разрывы, нужно вычислить при приближении аргумента к изолированным точкам внутри области определения. Например, функция 1/x стремится к бесконечности, когда x→0+, и к минус бесконечности, когда x→0-. Это значит, что в точке x = 0 она имеет разрыв второго рода.
Если пределы в точке разрыва конечны, но не равны, то это разрыв первого рода. Если же они равны, то функция считается непрерывной, хотя в изолированной точке она и не определена.

Найдите вертикальные асимптоты, если они есть. Здесь вам помогут вычисления предыдущего шага, поскольку вертикальная асимптота практически всегда находится в точке разрыва второго рода. Однако иногда из области определения исключены не отдельные точки, а целые интервалы точек, и тогда вертикальные асимптоты могут располагаться на краях этих интервалов.

Проверьте, обладает ли функция особыми свойствами: четностью, нечетностью и периодичностью.
Функция будет четной, если для любого x в области определения f(x) = f(-x). Например, cos(x) и x^2 - четные функции.

Периодичность - свойство, говорящее о том, что есть некое число T, называемое периодом, что для любого x f(x) = f(x + T). Например, все основные тригонометрические функции (синус, косинус, тангенс) - периодические.

Найдите точки . Для этого вычислите производную от заданной функции и найдите те значения x, где она обращается в ноль. Например, функция f(x) = x^3 + 9x^2 -15 имеет производную g(x) = 3x^2 + 18x, которая обращается в ноль при x = 0 и x = -6.

Чтобы определить, какие точки экстремума являются максимумами, а какие минимумами, отследите изменение знаков производной в найденных нулях. g(x) меняет знак с плюса в точке x = -6, а в точке x = 0 обратно с минуса на плюс. Следовательно, функция f(x) в первой точке имеет , а во второй - минимум.

Таким образом, вы нашли и области монотонности: f(x) монотонно возрастает на промежутке -∞;-6, монотонно убывает на -6;0 и снова возрастает на 0;+∞.

Найдите вторую производную. Ее корни покажут, где график заданной функции будет выпуклым, а где - вогнутым. Например, второй производной от функции f(x) будет h(x) = 6x + 18. Она обращается в ноль при x = -3, меняя при этом знак с минуса на плюс. Следовательно, график f(x) до этой точки будет выпуклым, после нее - вогнутым, а сама эта точка будет точкой перегиба.

У функции могут быть и другие асимптоты, кроме вертикальных, но только в том случае, если в ее область определения входит . Чтобы их найти, вычислите предел f(x), когда x→∞ или x→-∞. Если он конечен, то вы нашли горизонтальную асимптоту.

Наклонная асимптота - прямая вида kx + b. Чтобы найти k, вычислите предел f(x)/x при x→∞. Чтобы найти b - предел (f(x) – kx) при том же x→∞.

Постройте график функции по вычисленным данным. Обозначьте асимптоты, если они есть. Отметьте точки экстремума и значения функции в них. Для большей точности графика вычислите значения функции еще в нескольких промежуточных точках. Исследование завершено.