Изоляция трубопроводов. Тепловая изоляция оборудования и трубопроводов

Тепловая изоляция трубопроводов тепловых сетей считается обязательной. Это относится также к водоснабжению и канализации. Ведь вещества или жидкости, проходящие по трубам, в холодное время года иногда замерзают или постепенно терять переносимую ими энергию. Не допустить этого помогают разные методы. О некоторых из них расскажет данная статья.

Пути решения проблемы

Защищать сети от перепадов внешней температуры и других воздействий можно следующим образом:

  1. Сделать обогрев с помощью нагревательных кабелей. Приспособления крепятся поверху бытовых трубопроводов, либо заводятся вовнутрь коллектора. Работают такие приборы от электросети.

Обратите внимание! В случае необходимости постоянного обогрева применяются саморегулирующие провода, которые отключаются и включаются автоматически, не допуская перегрева конструкций.

  1. Прокладывать коммуникации ниже уровня промерзания грунта. В результате они минимально контактируют с источниками холода.
  2. Использовать закрытые подземные лотки. Воздушное пространство здесь относительно изолированно, поэтому воздух вокруг трубопроводов остывает медленно и не дает замерзнуть их содержимому.
  3. Создать теплоизоляционный контур из пористых материалов. Такой метод защиты применяется чаще всего. При таком утеплении создается буферная зона, которая препятствует потере тепла горячих жидкостей и защищает их от замерзания.

Обогрев трубы греющим кабелем

В данной статье пойдет речь именно о последнем способе защиты коммуникаций.

Нормативная регуляция

Тепловая изоляция оборудования и трубопроводов основывается на СНиПе 2.04.14-88. В нем содержится информация о материалах и методах их использования, и излагаются требования к защитным контурам.

  • Независимо от температуры носителя, необходимо утеплять любую систему.
  • Для создания теплоизоляционного слоя одинаково применяются готовые и сборные конструкции.
  • Металлические части сетей должны защищаться от коррозии.
  • Желательно использовать многослойную конструкцию контура. В ее состав входит утеплитель, пароизоляция и защитный слой из плотного полимера, нетканого полотна или металла. Иногда монтируется армирующий контур, который не дает сминаться пористым материалам и предотвращает деформацию труб.

В документе содержатся формулы, по которым рассчитывается толщина каждого слоя многослойной конструкции.

На заметку! Большинство требований к тепловой изоляции трубопроводов касается магистральных сетей большой мощности. Однако при устройстве бытовых систем водоснабжения и канализации собственными силами, стоит ознакомиться с документом и учесть его рекомендации при проектировании и монтаже.

Согласно СНиП теплоизоляция является обязательной

Анализ утепляющих материалов

Полимерные утеплители

При выборе материалов для защиты трубопроводов от потери тепла, в первую очередь обращаются к вспененным полимерам. При их ассортименте можно выбрать утеплитель, который поможет решить поставленную задачу.

Во главе списка содержатся следующие составы для изоляции:

  • Пенополиэтилен. Материал характеризуется небольшой плотностью, пористостью и незначительной механической прочностью. Из него изготавливают цилиндры с разрезом, монтировать которые могут даже непрофессионалы. Недостатком трубной изоляции считается быстрый износ и слабая термостойкость.

Обратите внимание! Диаметр цилиндров должен соответствовать диаметру коллектора. В этом случае после монтажа кожухов они не могут сняться самопроизвольно.

  • Пенополистирол. Утеплитель отличается малой эластичностью и значительной прочностью. Производится в виде сегментов, напоминающих «скорлупу». Детали соединяются с помощью замков с шипами и пазами, в результате чего ликвидируются «мостики холода» и можно обойтись без дополнительного крепежа.
  • Пенополиуретан. Применяется для предустановленной теплоизоляции, хотя может использоваться и в быту. Выпускается в виде пены или «скорлупы», состоящей из двух или четырех сегментов. Способом напыления обеспечивается надежная герметичная теплоизоляция коммуникаций, отличающихся сложной конфигурацией.

Важно! Чтобы защитить пенополиуретановую пену от разрушения ультрафиолетом, ее покрывают краской или нетканым полотном с хорошей проницаемостью.

Трубчатая полиэтиленовая изоляция

Волокнистые материалы

Утеплители на основе минеральной ваты или ее производных популярны не менее (а иногда и более) полимерных материалов.

Изоляция из волокнистых утеплителей отличается такими достоинствами:

  • малым коэффициентом теплопроводности;
  • устойчивостью к действию кислот, масел, щелочей и других внешних факторов (нагреву, охлаждению);
  • способностью поддерживать заданную форму без помощи дополнительного каркаса;
  • умеренной стоимостью.

Обратите внимание! При устройстве тепловой изоляции оборудования и трубопроводов с помощью таких материалов следите, чтобы волокно не сжималось, и не подвергалось воздействию влаги.

Цилиндры из минеральной ваты, покрытые фольгой

Кожухи из полимерных и минераловатных утеплителей иногда покрывают стальной или алюминиевой фольгой. Такой тепловой экран снижает рассеивание тепла и отражает инфракрасное излучение.

Многослойные конструкции

Утепление по методу «труба в трубе» делается с помощью уже смонтированного теплозащитного кожуха. Задача монтажника в этом случае – правильно соединить детали в единую конструкцию. В конечном результате она выглядит таким образом:

  • Основа в виде металлической или полимерной трубы. Считается несущим элементом всего устройства.
  • Теплоизоляционный слой из вспененного полиуретана (ППУ). Он наносится по заливной технологии, когда специальная опалубка заполняется расплавленной массой.
  • Защитный кожух. Делается из труб из оцинкованной стали или полиэтилена. Первые предназначаются для прокладывания сетей на открытом пространстве, а вторая – в грунте по бесканальной технологии.
  • Помимо этого, в пенополиуретановый утеплитель часто закладываются медные проводники, предназначенные для дистанционного контроля над состоянием трубопровода, в том числе, и за целостностью теплоизоляции.

Трубы, которые поступают на место монтажа в уже собранном виде, соединяются методом сварки. Для сборки теплозащитных контуров используются специальные термоусадочные манжеты или накладные муфты из минеральной ваты, покрытые слоем фольги.

Многослойная конструкция с внешним покрытием из оцинкованной стали

Устройство теплоизоляции собственными силами

Технология устройства тепловой изоляции оборудования и трубопроводов зависит от того, прокладывается ли коллектор снаружи или монтируется в земле.

Утепление подземных сетей

Работы по монтажу и теплозащите заглубленных бытовых сетей проводятся в таком порядке:

  1. Уложите на дно траншеи канализационные лотки.
  2. Проложите трубы и сделайте тщательную герметизацию соединений.
  3. Наденьте на них теплоизоляционные кожухи и оберните конструкцию паронепроницаемой стеклотканью. Для фиксации используйте специальные полимерные хомуты.
  4. Закройте лоток крышкой и засыпьте его грунтом. Уложите в зазор между лотком и траншеей песчано-глиняную смесь и тщательно ее утрамбуйте.
  5. При отсутствии лотка трубы укладываются на уплотненный грунт, подсыпанный песчано-гравийной смесью.

Утепление труб с укладкой в лоток

Теплозащита наружного трубопровода

По СНиПу тепловая изоляция трубопроводов, расположенных на поверхности земли, осуществляется таким образом:

  1. Очистите все детали от ржавчины.
  2. Обработайте трубы антикоррозийным составом.
  3. Произведите монтаж полимерной «скорлупы» или оберните трубу рулонным утеплителем из минваты.

На заметку! Можно покрыть конструкцию слоем полиуретановой пены или нанести несколько слоев теплоизоляционной краски.

  1. Оберните трубу, как в предыдущем варианте. Кроме стеклоткани применяется также фольгированная пленка с полимерным армированием.
  2. Закрепите конструкцию с помощью стальных или пластиковых хомутов.

Выполнение требований к тепловой изоляции трубопроводов – залог того, что вы сделаете ее правильно. Это означает, что температура горячей воды сохранится по пути следования от котельной до дома, а холодная – не замерзнет даже в сильные морозы.

Видео-инструктаж: процесс утепления трубопровода

Если придерживаться стандартной схемы выполнения монтажных работ и применять подходящие материалы, ваш водопровод и канализация будут функционировать бесперебойно. Удачи!

Для трубопроводов, расположенных на открытом воздухе и наружных тепловых сетей теплоизоляция должна выполняться в обязательном порядке. Как показывает практика, гораздо рациональнее вовремя утеплить трубы, чем впоследствии, из-за пренебрежения теплоизоляцией, тратить немалые суммы денег для ремонта либо полной замены трубопровода, поврежденного из-за замерзания в трубах воды.

В данной статье рассмотрена тепло и звукоизоляция трубопроводов тепловых сетей, расположенных на улице. Вы узнаете, зачем она необходима и каким требованиям должны соответствовать используемые утеплители. Мы рассмотрим лучшие материалы для теплоизоляции – минеральную вату и вспененный полиэтилен.

Cодержание статьи

Зачем нужно утеплять трубы?

Качественная теплоизоляция необходима не только для трубопроводов тепловых сетей, но и для всех водопроводных труб, расположенных в неотапливаемых помещениях либо на улице, подвергающихся воздействию минусовых температур.

Не утепленные трубы подвергаются риску замерзания циркулирующего теплоносителя, что может стать причиной деформации трубопровода. Вода, при превращении в лед, увеличивается в объеме (расширение обуславливается разной удельной плотностью воды в жидком и твердом состоянии) и разрывает трубы изнутри . Общеизвестный факт, что львиная доля поломок коммунальных сетей теплоснабжения происходит именно в зимний период.

Используемые на сегодняшний день материалы для изготовления труб – чугун, металл, пластик (ПВХ, ПНД, ПП) имеют достаточно высокий коэффициент теплопроводности, что способствует их быстрому охлаждению.

Изоляция труб тепловых сетей также позволяет устранить потери теплоносителем температуры на пути в радиаторы – вода сохраняет одинаковую температуру на всех стадиях циркуляции, что позитивным образом сказывается на КПД отопительной системы в целом.

Характерной проблемой для металлических труб является шум циркулирующего потока, возникающий из-за неровностей на внутренних стенках трубопровода (в полимерных трубах при правильном проектировании сетей теплоснабжения шум отсутствует). Используемые для утепления материалы также выступают как звукоизоляция, они значительно снижают шум потока воды, повышая тем самым комфорт использования отопительной системы.

Требования к утеплителям для труб

Выбирая утеплитель для трубопроводов тепловых сетей необходимо обращать внимание на следующие характеристики материала:

  • коэффициент теплопроводности – чем он ниже, тем лучше материал сохраняет тепло, и тем меньший по толщине слой утеплителя вы можете использовать;
  • коэффициент влагопоглощения – от гидрофобности материала непосредственно зависит его долговечность. Изоляция, пропитанная влагой гниет и разлагается, тогда как утеплители, не впитывающие воду, служат максимально долго;
  • класс горючести – особенно важно для труб теплоснабжения, расположенных внутри жилых и промышленных помещений;
  • устойчивость к ультрафиолету – материалы, используемые для изоляции тепловых сетей на улице, не должны разрушаться под воздействием солнечных лучей.

Сама технология изоляции предельно проста в исполнении – утеплитель для труб отопления реализуется в гильзах длиной 1-2 метра, которые одеваются на трубу и фиксируются посредством либо скоб. Если труба размещена на улице, поверх изоляции одевается кожух из пластика либо листового метала, который защищает конструкцию от механических повреждений.

Обзор утеплителей для труб (видео)

Выбор теплоизоляции для труб тепловых сетей

Озвученным выше требованиям в полной мере отвечают лишь два теплоизоляционных материала – минеральная вата и вспененный полиэтилен. Рассмотрим каждый из них подробнее.

Трубная теплоизоляция из вспененного полиэтилена

Типовая форма выпуска полиэтиленовой изоляции – гильзы длиной 2 метра с толщиной стенок 6, 9, 13 и 20 см. Диаметр гильз варьируется в пределах 12-200 мм, и без дополнительного покрытия.

Полиэтиленовая теплоизоляция производится методом экструзии – этиленовое сырье загружается в бункер, где под воздействием высоких температур и катализатора (азодикарбонамида) этилен плавится, далее в бункере повышается давление, что приводит к вспениванию материала, после чего тот пропускается через экструдер, предающий сырью требуемую форму.

Вспененный полиэтилен обладает структурой из множества мелких закрытых ячеек, за счет которой материал имеет хорошие гидрофобные характеристики (влагопоглощение составляет 1.5% от объема при полном погружении в воду на 24 часа, 1.9% – при погружении на 28 суток) и практически нулевую паропроницаемость (0.001 мг/мчПа).

Полиэтилен нередко используется как отдельная звукоизоляция – материал способен снижать шум на 23-27 дБ. Такая звукоизоляция делает шум от циркуляции воды в сетях теплоснабжения полностью неслышимым. Плотность полиэтиленовой изоляции составляет 30-35 кг/м 3 . Материалу свойственна высокая эластичность, которую он не теряет даже при минусовых температурах (до -80 0).

Изоляция из вспененного полиэтилена имеет низкий коэффициент теплопроводности – 0.035 Вт/мк . Температурный режим эксплуатации от -50 до +90 0 , при повышении температуры выше нормы изоляция начинает деформироваться. Материал классифицируется по классу Г2 – умеренно горючий. Температура возгорания полиэтилена -306 0 , при горении полиэтилен не выделяет вредных для человека веществ, он распадается на воду и углекислый газ.

Трубная теплоизоляция из минеральной ваты

– один из лучший утеплителей на рынке теплоизоляционных материалов. Утепление труб отопления минватой подходит как для размещенных на улице трубопроводов, так и для сетей внутри здания. Стандартная длина минераловатных гильз составляет 1 м, диаметр – от 18 до 273 мм, также выпускается фольгированная изоляция.

Среди преимуществ минеральной ваты полная негорючесть (согласно ГОСТ №30244 материал классифицируется по группе НГ), эластичность и простота монтажа – при необходимости цилиндры легко режутся обычным канцелярским ножом.

Производство теплоизоляции из минеральной ваты выполняется в соответствии с положениями ГОСТ №23208 “Цилиндры и полуцилиндры из минваты”, согласно которому изоляция должна иметь следующие технические характеристики:

  • номинальная плотность – 100 кг/м³;
  • коэффициент теплопроводности – 0.034 вт/мК ;
  • водопоглощение по объему (за 24 часа) – 1.5%;
  • коэффициент паропроницаемости – 0.3 мг/мчПа;
  • прочность на сжатие (10% деформации) – 20 кПа.

хорошая звукоизоляция, материал толщиной в 50 мм способен снижать шум на 43-54 дБ. Эффективность поглощения шума достигается за счет множества тончайших нитей, хаотично расположенных в структуре материала, проходя которые волны шума отражаются и постепенно затухают.

Использование предизолированных труб

В промышленных условиях для монтажа размещенных на улице коммуникаций тепло и водоснабжения нередко применяются . Такие конструкции имеют “ ” структуру, состоящую из следующих слоев:

  • стальная труба из черного металла либо нержавейки. Используются напорные трубы, выдерживающие давление до 16 атмосфер;
  • наружная оболочка из оцинкованной листовой стали либо (полиэтилена низкого давления), которая защищает утеплитель от механических повреждений и воздействий окружающей среды;
  • утеплитель – пенополиуретан, которым заполняется пространство между трубой и оболочкой.

Поскольку использование жидкого материала, которым можно заполнить любое пространство, позволяет сделать монолитную оболочку, изготовить которую невозможно при использовании отдельных гильз из минеральной ваты либо пенополиэтилена.

Технические характеристики пенополиуретанового утеплителя следующие:

  • теплопроводность – 0.025 вт/мК ;
  • плотность – от 25 до 300 кг/м 3 (зависит от степени уплотнения при закачке);
  • гидрофобность – от 1 до 3% от объема;
  • класс горючести – Г2 (трудногорючий);
  • звукоизоляция (понижение шума) – 41-43 дб;
  • температурный режим эксплуатации – от -50 до +130 градусов.

Предизолированные трубы выпускаются в диапазоне диаметров от 57 до 1200 мм с толщиной утеплителя от 5 до 15 см.

Важное значение в устройстве тепло­провода имеет тепловая изоляция. От каче­ства изоляционной конструкции теплопро­вода зависят не только тепловые потери, но, что не менее важно, его долговечность. При соответствующем качестве материалов и технологии изготовления тепловая изоляция может одновременно выполнять роль антикоррозионной защиты наружной поверхности стального трубопровода. К таким материалам, в частности, относятся полиуретан и производные на его основе – полимербетон и бион.

Тепловая изоля­ция устраивается на трубопроводах, арматуре, фланцевых соедине­ниях, компенсаторах и опорах для следующих целей:

уменьшения потерь тепла при его транспортировании, что снижает установленную мощность источника тепла и расход топлива;

уменьшения падения температуры теплоносителя, подаваемого к потребителям, что снижает требуемый расход теплоносителя и по­вышает качество теплоснабжения;

понижения температуры на поверхности теплопровода и воз­духа в местах обслуживания (камерах, каналах), что устраняет-опасность ожогов и облегчает обслуживание теплопроводов.

Основные требования к теплоизоляционным конструкциям заключаются в следующем:

1) низкая теплопроводность как в сухом состоянии, так и в состоянии естественной влажности;

2) малое водопоглощение и небольшая высота капиллярного подъема жидкой влаги;

3) малая коррозионная активность;

4) высокое электрическое сопротивление;

5) щелочная реакция среды (рН > 8,5);

6) достаточная механическая прочность!

Не допускается использовать материалы, подверженные горению и гниению, а также содержащие вещества, способные выделять кислоты, крепкие щелочи, вредные газы и серу.

Наиболее тяжелые условия для работы теплопроводов возникают при подземной канальной и особенно бесканальной прокладке вслед­ствие увлажнения тепловой изоляции грунтовыми и поверхностными водами и наличия в грунте блуждающих токов. В связи с этим к важ­нейшим требованиям к теплоизоляционным материалам относятся малое водопоглощение, высокое электросопротивление, а при беска­нальной прокладке высокая механическая прочность.



В качестве тепловой изоляции в тепловых сетях в настоящее вре­мя применяют в основном изделия из неорганических материалов (минеральной и стеклянной ваты), известково-кремнеземистые, совелитовые, вулканитовые, а также составы, изготовляемые "из ас­беста, бетона, асфальта, битума, цемента, песка или других компо­нентов для бесканальной прокладки: битумоперлит, асфальтоизол, армопенобетон, асфальтокерамзитобетон и др.

В зависимости от вида используемых изделий тепловую изоляцию подразделяют на оберточную (маты, полосы, шнуры, жгуты), штуч­ную (плиты, блоки, кирпичи, цилиндры, полуцилиндры, сегменты, скорлупы), заливочную (монолитную и литую), мастичную и засып­ную.

Оберточные и штучные изделия применяют для всех элементов тепловых сетей и могут быть как съемными - Для оборудования, требующего обслуживания (сальниковые компенсаторы, фланцевые соединения), так и несъемными. Крепят их при помощи бандажей, проволоки, винтов и т. п., выполненных из оцинкованных, кадмиро-ванных или коррозионно-стойких материалов, и покровного слоя. Заливочную и засыпную изоляцию применяют обычно для элементов тепловых сетей, не требующих обслуживания. Мастичную изоляцию допускается использовать для запорной и дренажной арматуры и сальниковых компенсаторов при условии выполнения съемных кон­струкций для патрубков сальниковых компенсаторов и сальников уплотнений арматуры.

Теплоизоляционные конструкции стальных трубопроводов при надземной и подземной канальной прокладке, а также при беска­нальной прокладке в монолитной оболочке состоят обычно из трех основных слоев: противокоррозионного, теплоизоляционного и покровного. Противокоррозионный слой накладывается на наружную; поверхность стальной трубы и выполняется из обмазочных и оберточ­ных материалов в несколько слоев (изола или бризола на изольной мастике, эпоксидных или органосиликатных эмалей и красок, стекло-эмали и др.). Поверх него укладывается основной теплоизоляцион­ный слой из оберточных, штучных или монолитных изделий. За ним идет покровный слой, защищающий теплоизоляционный слой от воз­действия влаги и воздуха и от механических повреждений. Выпол­няется он при подземной прокладке из двух-трех слоев изола или бризола на изольной мастике, асбестоцементной штукатурки по ме­таллической сетке, лакостеклоткани с различными пропитками, фоль­гоизола, а при надземной прокладке - из листов оцинкованной ста­ли, алюминия, сплавов алюминия, стеклоцемента, стеклорубероида, стеклопластика и т. п.

Канальные теплопроводы. В каналах с воздушным зазором изоля­ционный слой может выполняться в виде подвесной или монолитной конструкции. На рис. 8.25. показан пример выполнения подвесной изоляционной конструкции. Она состоит из трех основных элементов:

а) антикоррозийного защитного слоя 2 в виде наложенных в заводских условиях на стальной трубопровод 1 нескольких слоев эмали или изола, имеющих достаточную механическую прочность и обладающих высоким электросопротивлением и необхо­димой температуростойкостью;

б) теплоизоляционного слоя 3, выпол­ненного из материала с низким коэффици­ентом теплопроводности, например мине­ральной ваты или пеностекла, в виде мягких матов или твердых блоков, укладываемых поверх защитного антикоррозионного слоя;

в) защитного механического покрытия 4 в виде металлической сетки, выполняю­щей роль несущей конструкции для тепло­изоляционного слоя.

Для увеличения долговечности теплопровода несущая конструкция подвесной изоляции (вязальная проволока или металлическая сетка) покрывается сверху оболочкой из некорродирующих материалов или асбоцементной штукатуркой.

Рис. 8.25. Теплопровод в непроходном канале с воздушным зазором

1 – трубопровод; 2 – антикоррозионное покрытие; 3 – теплоизоляционный слой; 4 – защитное механическое покрытие

Бесканальные теплопроводы . Они находят оправданное применение в том случае, когда по надежности и долговечности не уступают теплопроводам в непроходных каналах и даже превосходят их, являясь более экономичными по сравнению с последними по начальной стоимости и трудозатратам на сооружение и эксплуатацию.

Требования к изоляционным конструкциям бесканальных теплопроводов такие же, как и к изоляционной конструкции теп­лопроводов в каналах, а именно высокое и устойчивое в эксплуатационных услови­ях тепло–, влаго–, воздухо– и электросопро­тивление.

Бесканальные теплопроводы в монолитных оболочках . Применение бесканальных теплопроводов в монолитных обо­лочках – один из основных путей индустриализации строительства тепловых сетей. В этих теплопроводах на стальной трубопровод наложена в заводских условиях обо­лочка, совмещающая тепло– и гидроизоля­ционные конструкции. Звенья таких эле­ментов теплопровода длиной до 12 м дос­тавляются с завода на место строительства, где выполняется их укладка в подготовленную траншею, стыковая сварка отдельных звеньев между собой и накладка изоляцион­ных слоев на стыковое соединение. Принципиально теплопроводы с монолитной изоляцией могут применяться не только бесканально, но и в каналах.

Современным требованиям к надежности и долговечности достаточно полно удовлетворяют теплопроводы с монолитной теплоизоляцией из ячеистого полимерного материала типа пенополиуретана с замкнутыми порами и интегральной структурой, выполненной методом формования на стальной трубе в полиэтиленовой оболочке (типа «труба в трубе»).

При этом предварительно теплоизолированные трубопроводы выполняются с оболочкой из полиэтилена высокого давления. Пространство между оболочкой и трубой заполняется жестким пенополиуретаном. В пенополиуретане заложены медные проводники для контроля наличия влаги в теплоизоляции трубопровода.

Благодаря хорошей адгезии периферийных слоев изоляции к поверхности контакта, т.е. к наружной поверхности стальной трубы и внутренней поверхности полиэтиленовой оболочки, существенно повышает­ся долговременная прочность изоляцион­ной конструкции, так как при тепловой де­формации стальной трубопровод переме­щается в грунте совместно с изоляционной конструкцией и не возникает торцевых за­зоров между трубой и изоляцией, через ко­торые влага может проникнуть к поверхно­сти стальной трубы.

Средняя теплопроводность пенополиуретановой теплоизоляции составляет в за­висимости от плотности материала 0,03 – 0,05 Вт/(м ∙ К), что примерно втрое ниже теплопроводности большинства широко при­меняемых теплоизоляционных материалов для тепловых сетей (минеральная вата, армопенобетон, битумоперлит и др.).

Благодаря высокому тепло– и электросопротивлению и низким воздухопроницаем мости и влагопоглощению наружной поли­этиленовой оболочки, создающей дополни­тельную гидроизоляционную защиту, теплогидроизоляционная конструкция за­щищает теплопровод не только от тепловых потерь, но, что не менее важно, и от наруж­ной коррозии. Поэтому при применении этой конструкции изоляции отпадает необходимость в специальной антикоррозийной защите поверхности стального трубопровода.

Использование трубопроводов с пенополиуретановой изоляцией позволяет снизить потери тепловой энергии в 3-5 раз по сравнению с существующими видами тепловой изоляции (битумперлит, битумкерамзит, пенобетон и др.) и получить годовую экономию около 700,0 Гкал/год в расчете на 1 км.

Строительство тепловых сетей с пенополдиуретановой теплоизоляцией осуществляется в несколько раз быстрее по сравнению с канальными и стоимость в 1,3-2 раза ниже, а срок службы составляет 30 лет при долговечности обычно применяемых конструкций 5-12 лет.

Битумоперлит, битумокерамзит и другие аналогичные изоляционные материалы на битумном вяжущем обладают сущест­венными технологическими преимущества­ми, позволяющими сравнительно просто индустриализировать изготовление моно­литных оболочек на трубопроводах. Но на­ряду с этим указанная технология изготов­ления оболочек нуждается в улучшении для обеспечения равномерной плотности и гомогенности битумоперлитной массы как по периметру трубы, так и по ее длине.

Кроме того, битумоперлитная изоляция, как и многие другие материалы на битум­ном вяжущем, при длительном прогреве при температуре 150°С теряет водостой­кость из–за потери легких фракций, что приводит к снижению антикоррозионной стойкости этих теплопроводов. Для повы­шения антикоррозионной стойкости битумоперлита в процессе изготовления горячей формовочной массы вводят полимерные добавки в портландцемент, что повышает температуростойкость, влагостойкость, прочность и долговечность конструкции.

Бесканальные теплопроводы в засыпных порошках . Эти теплопроводы находят примене­ние главным образом при трубопроводах малого диаметра – до 300 мм.

Преимущество бесканальных теплопроводов в засыпных порошках по сравнению с теплопро­водами с монолитными оболочками заключается в простоте изготовления изоляционного слоя. Для сооружения таких теплопроводов не требу­ется наличия в районе строительства тепловых сетей завода, на который должны предваритель­но поступать стальные трубы для наложения мо­нолитной изоляционной оболочки. Изоляцион­ный засыпной порошок в соответствующей упа­ковке, например в полиэтиленовых мешках, лег­ко транспортируется на большие расстояния железнодорожным или автотранспортом.

В качестве таких порошков применяют самоспекающийся пенобетон, перлитобетон, асфальт или асфальтобетон.

Как известно, в двухтрубных тепловых сетях температурные режимы, а следовательно, и температурные деформации подающего и обратного трубопроводов неоди­наковы. В этих условиях адгезия слоя теплоизоляции к наружной поверхности стальных трубопроводов недопустима. Для за­щиты наружной поверхности стальных трубо­проводов от адгезии с изоляционным массивом они покрываются снаружи слоем антикоррозионного мастичного материала, например асфальтовой мастикой, до заливки жидким пеноцементным раствором.

Литые конструкции теплоизоляции бесканальных трубопроводов. Из литых конструкций бесканальных теплопроводов некоторое применение получили теплопроводы в пенобетонном массиве в качестве материала для сооружения таких теплопроводов может быть использован перлитобетон. Смонтированные в траншеи стальные трубопроводы заливаются жидкой композицией, приготовленной непосредственно на трассе или доставленной в контейнере с производственной базы. После схватывания бетобетонный или перлитобетонный массив засыпается грунтом.

Контрольные вопросы

1. В чем заключаются основные требования к конструкциям современных теплопроводов? Назовите сортамент трубопроводов тепловой сети и типы применяемой арматуры.

2. Сравните подземные теплопроводы в проходных каналах, непроходных и бесканальных. Назовите преимущества и недостатки каждого типа прокладки и основные области их целесообразного применения.

3. Назовите конструкции современных компенсаторов температурных деформаций трубопроводов тепловых сетей. Как производится расчет и подбор П - образных компенсаторов?

4. Охарактеризуйте конструкции опор трубопроводов тепловых сетей. Приведите расчетную формулу для определения результирующего усилия, действующего на неподвижную опору теплопровода.

5. Каковы основные особенности и требования к теплоизоляционным конструкциям теплопроводов?

Тепловые сети наружного пролегания или, как их ещё называют воздушные или надземные, прокладываются в случаях необходимости временного строительства теплотрассы (байбас) или в тех местах, где невозможно проложить тепловую сеть под землёй. К примеру, в сейсмоопасных районах. Такие тепловые сети удобны в эксплуатации, быстро строятся и отличаются от других видов тепловых сетей своей низкой стоимостью.

Тепловая изоляция наружных трубопроводов. Теплоизоляционные материалы.


В качестве материалов для изоляции наружных теплотрасс применяются.

1. Теплоизоляция труб минватой.


Достоинства:

- минеральная вата практически не гигроскопична - при правильно организованной вентиляции в случае намокания тут же отдаёт излишнюю влагу;
- обеспечивает стабильность своих физико-химических свойств на протяжении всего периода эксплуатации;
- обладает достаточно длительным сроком службы

Недостатки:

- во время намокания теряет свои эксплуатационные свойства;
- имеет слабую прочность и уступает по этой характеристике другим теплоизоляционным материалам.

2. Теплоизоляция труб напылением ППУ, использование ППУ-скорлуп.
Достоинства:

- возможность создавать сплошную изоляцию, без стыков;
- является достаточно эластичным материалом;
- обеспечивает возможность быстрого монтажа;
- является биологически нейтральным материалом, не подвержен гниению, устойчив к микроорганизмам и образованию плесени;
- обеспечивает стабильные теплоизоляционные качества в широком диапазоне температур.

Недостатки:

- является достаточно горючим материалом и при горении выделяет в окружающее пространства высокотоксичные вещества;
- для напыления требуется специальное оборудование;
- не «дышит».

В последние годы получил распространение метод теплоизоляции труб скорлупами ППУ, но они также нуждаются в дополнительной защите.



3. Теплоизоляция труб пенобетоном.

Достоинства:

- высокие теплоизоляционные качества, не уступающие ППУ изоляции;
- монолитность, благодаря которой обеспечивается хорошая антикоррозийная защита из-за отсутствия мостиков холода и невозможность расхищения материала;
- высокая технологичность, которая обеспечивает возможность прокладывания теплотрассы в любой местности;
- высокие адгезионные свойства.

Недостатки:

- ограничения по толщине изоляции;
- необходимость защиты высохшей поверхности защитным слоем.


4. Армированный бетон (армобетон).


Достоинства:

- обеспечивается эффективная теплоизоляция;
- отсутствует возможность хищений.

Недостатки:

- высокая стоимость;
- сложность проведения монтажных работ;
- достаточно высокая хрупкость материала.


Очевидно, что каждый вид теплоизоляционного слоя необходимо защищать. Если этого не сделать, то он со временем под воздействием неблагоприятных внешних факторов будет нарушаться. Практика показывает, что неизолированные теплозащитные слои быстро разваливаются, рассыпаются, сгнивают и приходится проводить работы по их замене. Именно поэтому, сегодня, активно применяется защитная изоляция труб наружная.

Гидроизоляция теплоизоляционного слоя. Обзор основных материалов.

Приходится констатировать, что практически все виды такой изоляции обладают большими недостатками:

- стеклоткан ь - крайне недолговечна , через 1 год теплотрассу, заизолированную стеклотканью, буквально не узнать. Ткань превращается в лохмотья, не говоря уже о полном отсутствии гидроизоляции и защиты от осадков;

- рубероид - более долговечен, чем стеклоткань, но чрезмерно пожароопасен , зачастую выгорают целые теплотрассы;

- оцинковка - отличный материал, долговечный и негорючий, но его очень быстро воруют . Если тепловая труба проходит вне черты города или вблизи дачных посёлков - то, как правило, оцинкованные листы исчезают на следующее утро после их установки.




По признанию большинства руководителей теплоснабжающих организаций, им приходится восстанавливать теплотрассы сотнями метров, что, в конечном счете, сказывается, как на качестве предоставляемых коммунальных услуг, так и на расходах, связанных с эксплуатацией тепловых сетей, которые превышают все мыслимые пределы.

Однако выход есть. Защита теплоизоляционного слоя наружных теплотрасс может быть выполнена с помощью термоусаживающийся . Она не горюча, имеет привлекательный внешний вид, не теряет своих защитных свойств под воздействием низких или высоких температур. В этом случае теплотрасса будет максимально эффективной и долговечной.

ИЗОЛЯЦИЯ ТЕПЛОВЫХ СЕТЕЙ

В настоящее время для изоляции тепловых сетей наиболее часто применяются минеральная вата, пенополиуретан (ППУ), пенополиэтилен и другие вспененные полимерные теплоизоляционные материалы и штучные изделия из легких бетонов. Минераловатные утеплители обладают низкой теплопроводностью в сухом состоянии. Но из-за нарушений условий транспортировки, хранения на стройплощадке, монтажа в условиях повышенной влажности, неаккуратного крепления, повреждения парозащитной пленки минеральная вата теряет свои теплозащитные свойства, деформируется, оседает, что приводит к необходимости ремонта и замены теплоизоляционного материала. Кроме того, ни одна из минеральных ват, в то числе базальтовая вата, не годятся для утепления труб с температурой теплоносителя выше 250°С, так как происходит разложение пропитывающего состава. Применяемая изоляция из ППУ, в основном, пригодна при температуре теплоносителя до 150°С. При повреждении гидрозащиты и попадания воды ППУ разлагается. Штучные теплоизоляционные материалы, способные обеспечивать надежную тепловую защиту трубопроводов длительное время и обладающие необходимой термостойкостью, изготавливаются в виде скорлуп из перлитобетона, пеностекла и других неорганических материалов, имеют достаточно высокую стоимость и требуют изготовления в заводских условиях. К более дешевым теплоизоляционным материалам относится неавтоклавный монолитный пенобетон естественного твердения - разновидность легкого ячеистого бетона, получаемого в результате твердения раствора, состоящего из цемента, воды и поверхностно-активного вещества, или просто - пены. Пена обеспечивает необходимое содержание воздуха в растворе и его равномерное распределение по всей массе в виде мелких замкнутых ячеек, что придает материалу теплоизоляционные свойства и влагостойкость. Пенобетон обладает высокой адгезией к металлу и надежно защищает металл от наружной коррозии. Коэффициент линейного расширения пенобетона сопоставим с коэффициентом линейного расширения стальной трубы. Пенобетон можно применять для теплоизоляции трубопроводов, оборудования, газоходов и воздуховодов, расположенных как в зданиях, так и на открытом воздухе в непроходных каналах и при бесканальной прокладке с температурой теплоносителя от минус 150°С до плюс 600°С, в том числе трубопроводов тепловых сетей при новом строительстве и ремонтных работах.

При повреждении гидрозащиты пенобетон может набрать до 22-25% воды, которая впоследствии испаряется. При этом пенобетон, вследствие реакции гидратации, становится прочнее и сохраняет свои теплозащитные свойства.

Технология монолитного неавтоклавного пенобетона предполагает использование мобильных комплексов, позволяющих производить непосредственно на объекте теплоизоляционный пенобетон средней плотностью 150 - 200 кг/м3 с заливкой его в межтрубное пространство с последующим твердением в естественных условиях и формированием на поверхности трубопровода долговечного, термостойкого теплоизоляционного слоя. Установка для производства пенобетона состоит из: низкооборотного, исключающего разбивание пены, смесителя цикличного действия, пеногенератора для производства пены, компрессора и героторного насоса, обеспечивающего плавную подачу пенобетона с минимальным разрушением воздушных пузырьков.

Работу можно производить в зимний период при отрицательных температурах до -15°С. При этом нужно обеспечить положительную температуру пенобетона в течение первых 4-5 часов. Это достигается использованием при замесе горячей воды и утеплением места заливки.

Стоимость утепления труб монолитным пенобетоном значительно меньше, чем утепление минеральной ватой или пенополиуретаном.

Технология производства работ

Участки трубопровода очищаются от ржавчины, пыли, грязи, масляных пятен и остатков изоляции при ремонтных работах (рис. 1).

Рис. 1 Участок трубопровода

Расчетная толщина пенобетонного слоя создается при помощи центраторов (рис. 2) из полимерных материалов (при температуре теплоносителя не выше 120°С) или оцинкованной стали, устанавливаемых на изолируемых трубах из расчета 1 центратор на 1 кожух (оболочку).

Рис. 2 Центратор

На начальных и конечных участках трубопровода устанавливаются центраторы-заглушки (рис. 3). Кроме того, заглушки устанавливаются по длине трубопровода так, чтобы объем ограниченного участка соответствовал объему смесителя.

Рис. 3 Центратор-заглушка

На центраторы с помощью саморезов устанавливается кожух (оболочка) из оцинкованной стали или алюминия таким образом, чтобы заливочное отверстие располагалось вверху, строго по центру трубы (рис. 4). Заливочные отверстия, в дальнейшем, заделываются гидроизолирующим, но паропроницаемым материалом, с целью удаления избытка влаги из пенобетона.

Рис. 4 Металлический кожух (оболочка) с заливочными отверстиями.

Заливка пенобетона производится в 2 этапа. Первоначально заполняется небольшой объем ограниченного заглушками участка для контроля возможного протекания пенобетонной смеси в местах стыков кожуха с неподвижными опорами. Места протекания заделываются монтажной пеной. Контроль заполнения пространства между трубопроводом и металлическим кожухом (оболочкой) осуществляется визуально через заливочные отверстия. Аналогично заполняются вертикальные участки трубопровода (рис. 5).

Рис. 5 Вертикальный участок, подготовленный к заливке пенобетона.

Заливку на действующем трубопроводе необходимо производить при температуре теплоносителя не более 60°С. Если температура выше 60°С, необходимо снизить температуру до указанной на время твердения пенобетона (12-24 часа).

Толщина пенобетонного слоя зависит от температуры теплоносителя, температурной зоны (для наружных трубопроводов) и диаметра изолируемого трубопровода. Учитывая, что единица измерения изоляции трубопровода в нормах и расценках принята 1 м3 изоляции, а в расчетах часто оперируют диаметром трубопровода и его длиной, ниже приводится таблица соотношений 1 м3 изоляции с длиной изолируемого трубопровода. Таблица разработана для изоляции наружных трубопроводов в III температурной зоне пенобетоном плотностью 200 кг/м3 при 4-х температурах теплоносителя.

Диаметр изолируемого трубопровода, мм

Длина трубопровода (м пог.), изолируемого 1 м3 монолитного пенобетона марки D 200 при температуре теплоносителя:

Журнал «Ценообразование и сметное нормирование в строительстве», ноябрь 2009 г. № 11