Как защитить электродвигатель от перегрузок. Применяемые устройства

Наверно все знают, что различные устройства работают на основе электрических двигателей. Но для чего нужна защита электродвигателей осознает лишь малая часть пользователей. Оказывается они могут сломаться в результате различных непредвиденных ситуаций.

Чтобы избежать проблем с высокими затратами на ремонт, неприятных простоев и дополнительных материальных потерь используются качественные защитные устройства. Далее разберемся в их устройстве и возможностях.

Как создается защита для электродвигателя?

Постепенно рассмотрим основные устройства защиты электродвигателей и особенности их эксплуатации. Но сейчас расскажем об трех уровнях защиты:

  • Внешняя версия защиты для предохранения от короткого замыкания. Обычно относится к разным видам либо представлена в виде реле. Они обладают официальным статусом и обязательны к установке согласно нормам безопасности на территории РФ.
  • Внешняя версия защиты электродвигателей от перегрузки помогает предотвратить опасные повреждения либо критические сбои в процессе работы.
  • Встроенный тип защиты спасет в случае заметного перегрева. И это защитит от критических повреждений либо сбоев в процессе эксплуатации. В этом случае обязательны выключатели внешнего типа иногда применяется реле для перезагрузки.


Из-за чего отказывает электродвигатель?

В процессе эксплуатации иногда появляются непредвиденные ситуации, останавливающие работу двигателя. Из-за этого рекомендуется заранее обеспечить надежную защиту электродвигателя.

Можете ознакомиться с фото защиты электродвигателя различного типа чтобы иметь представление о том, как она выглядит.

Рассмотрим случаи отказа электродвигателей в которых с помощью защиты можно избежать серьезных повреждений:

  • Недостаточный уровень электрического снабжения;
  • Высокий уровень подачи напряжения;
  • Быстрое изменение частоты подачи тока;
  • Неправильный монтаж электродвигателя либо хранения его основных элементов;
  • Увеличение температуры и превышение допустимого значения;
  • Недостаточная подача охлаждения;
  • Повышенный уровень температуры окружающей среды;
  • Пониженный уровень атмосферного давления, если эксплуатация двигателя происходит на увеличенной высоте на основе уровня моря;
  • Увеличенная температура рабочей жидкости;
  • Недопустимая вязкость рабочей жидкости;
  • Двигатель часто выключается и включается;
  • Блокирование работы ротора;
  • Неожиданный обрыв фазы.

Чтобы защита электродвигателей от перегрузки справилась с перечисленными проблемами и смогла защитить основные элементы устройства необходимо использовать вариант на основе автоматического отключения.

Часто для этого используется плавкая версия предохранителя, поскольку она отличается простотой и способна выполнить много функций:

Версия на основе плавкого предохранительного выключателя представлена аварийным выключателем и плавким предохранителем, соединенных на основе общего корпуса. Выключатель позволяет размыкать либо замыкать сеть с помощью механического способа, а плавкий предохранитель создает качественную защиту электродвигателя на основе воздействия электрического тока. Однако выключателем пользуются в основном для процесса сервисного обслуживания, когда необходимо остановить передачу тока.

Плавкие версии предохранителей на основе быстрого срабатывания считаются отличными защитниками от коротких замыканий. Но непродолжительные перегрузки могут привести к поломке предохранителей этого вида. Из-за этого рекомендуется использовать их на основе воздействия незначительного переходного напряжения.

Плавкие предохранители на основе задержки срабатывания способны защитить от перегрузки либо различных коротких замыканий. Обычно они способны выдержать 5-краткое увеличение напряжения в течение 10-15 секунд.

Важно: Автоматические версии выключателей отличаются по уровню тока для срабатывания. Из-за этого лучше использовать выключатель способный выдержать максимальный ток в процессе короткого замыкания, появляющегося на основе данной системы.

Тепловое реле

В различных устройствах используется тепловое реле для защиты двигателя от перегрузок под воздействием тока либо перегрева рабочих элементов. Оно создается с помощью металлических пластин, обладающих различным коэффициентом расширения под воздействием тепла. Обычно его предлагают в связке с магнитными пускателями и автоматической защитой.

Автоматическая защита двигателя

Автоматы для защиты электродвигателей помогают обезопасить обмотку от появления короткого замыкания, защищают от нагрузки либо обрыва любой из фаз. Их всегда используют в качестве первого звена защиты в сети питания мотора. Потом используется магнитный пускатель, если необходимо он дополняется тепловым реле.

Каковы критерии выбора, подходящего автомата:

  • Необходимо учитывать величину рабочего тока электродвигателя;
  • Количество, использующихся обмоток;
  • Возможность автомата справляться с током в результате короткого замыкания. Обычные версии работают на уровне до 6 кА, а лучшие до 50 кА. Стоит учитывать и скорость срабатывания у селективных менее 1 секунды, нормальных меньше 0,1 секунды, быстродействующих около 0,005 секунды;
  • Размеры, поскольку большая часть автоматов можно подключать с помощью шины на основе фиксированного типа;
  • Вид расцепления цепи – обычно применяется тепловой либо электромагнитный способ.


Универсальные блоки защиты

Различные универсальные блоки защиты электродвигателей помогают уберечь двигатель с помощью отключения от напряжения либо блокированием возможности запуска.

Они срабатывают в таких случаях:

  • Проблемы с напряжением, характеризующиеся скачками в сети, обрывами фаз, нарушением чередования либо слипания фаз, перекосом фазного или линейного напряжения;
  • Механической перегруженности;
  • Отсутствие крутящего момента для вала ЭД;
  • Опасных эксплуатационной характеристике изоляции корпуса;
  • Если произошло замыкание на землю.

Хотя защита от понижения напряжения, может быть, организована и другими способами мы рассмотрели основные из них. Теперь у вас есть представление о том зачем необходимо защищать электродвигатель, и как это осуществляется с помощью различных способов.

Фото защиты электродвигателя

«- Есть ли у Вас защита двигателя?
— Да, есть. Там сидит специальный человек, следит за двигателем. Когда легкий дымок с двигателя пойдет, его выключает, не дает ему сгореть.»

Это реальный диалог с одним из наших покупателей. Оставим в стороне вопрос о технической культуре и уровне образования, — здесь рассмотрим только технические вопросы как решить эту проблему.

От чего электродвигатель выходит из строя? При прохождении электрического тока через проводник в этом проводнике выделяется тепло. Поэтому электрический двигатель при работе, естественно, нагревается. Производителем рассчитано, что при номинальном токе двигатель не перегреется.

А вот если ток через обмотки двигателя по каким-то причинам увеличится — то электродвигатель начнет перегреваться, и если этот процесс не остановить — то в дальнейшем перегреется и выйдет из строя. В обмотках из-за перегрева начинает плавиться изоляция проводников и происходит короткое замыкание проводников. Поэтому одна из задач защиты - ограничит ток, протекающий через электродвигатель, не выше допустимого.

Одним из самых распространенных способов — это защита электродвигателя при помощи теплового реле. Тепловые реле применяются для защиты электродвигателей от перегрузок недопустимой продолжительности, а также от обрыва одной из фаз.

Конструктивно тепловое реле представляют собой набор биметаллических расцепителей (по одному на каждую фазу), по которым протекает ток электродвигателя, оказывающий тепловое действие на пластины. Под действием тепла происходит изгиб биметаллической пластины, приводящий в действие механизм расцепления. При этом происходит изменение состояния вспомогательных контактов, которые используются в цепях управления и сигнализации. Реле снабжаются биметаллическим температурным компенсатором с обратным прогибом по отношению к биметаллическим пластинам для компенсации зависимости от температуры окружающей среды, обладают возможностью ручного или автоматического взвода (возврата).

Реле имеет шкалу, калиброванную в амперах. В соответствии с международными стандартами шкала должна соответствовать значению номинального тока двигателя, а не тока срабатывания. Ток несрабатывания реле составляет 1,05 I ном. При перегрузке электродвигателя на 20% (1,2 I ном), произойдет его срабатывание в соответствии с токо-временной характеристикой.

Реле, в зависимости от конструкции, могут монтироваться непосредственно на магнитные пускатели, в корпуса пускателей или на щиты. Правильно подобранные тепловые реле защищают двигатель не только от перегрузки, но и от заклинивания ротора, перекоса фаз и от затянутого пуска.

Как правильно подобрать тепловое реле

Схема защиты электродвигателя при подключении его через магнитный пускатель с катушкой 380В и тепловым реле (нереверсивная схема подключения)

Схема состоит: из QF — автоматического выключателя;KM1 — магнитного пускателя; P — теплового реле; M — асинхронного двигателя; ПР — предохранителя; кнопки управления (С-стоп, Пуск) . Рассмотрим работу схемы в динамике.

Включаем питание QF — автоматическим выключателем, нажимаем кнопку «Пуск» своим нормально разомкнутым контактом подает напряжение на катушку КМ1 — магнитного пускателя. КМ1 – магнитный пускатель срабатывает и своими нормально разомкнутыми, силовыми контактами подает напряжение на двигатель. Для того чтобы не удерживать кнопку «Пуск», чтобы двигатель работал, нужно ее зашунтировать, нормально разомкнутым блок контактом КМ1 – магнитного пускателя.
При срабатывании пускателя блок контакт замыкается и можно отпустить кнопку «Пуск» ток побежит через блок контакт на КМ1 — катушку.
Отключаем двигатель, нажимаем кнопу «С – стоп», нормально замкнутый контакт размыкается и прекращается подача напряжение к КМ1 – катушке, сердечник пускателя под действием пружин возвращается в исходное положение, соответственно контакты возвращаются в нормальное состояние, отключая двигатель. При срабатывании теплового реле — «Р», размыкается нормально замкнутый контакт «Р», отключение происходит аналогично.

Недостатки тепловых реле

Следует отметить и недостатки тепловых реле. Иногда трудно подобрать реле из имеющихся в наличии так, чтобы ток теплового элемента соответствовал току электродвигателя. Кроме того, сами реле требуют защиты от короткого замыкания, поэтому в схемах должны быть предусмотрены предохранители или автоматы. Тепловые реле не способны защитить двигатель от режима холостого хода или недогрузки двигателя, причем иногда даже при обрыве одной из фаз. Поскольку тепловые процессы, происходящие в биметалле, носят достаточно инерционный характер, реле плохо защищает от перегрузок, связанных с быстропеременной нагрузкой на валу электродвигателя.
Если нагрев обмоток обусловлен неисправностью вентилятора (погнуты лопасти или проскальзывание на валу), загрязнением оребренной поверхности двигателя, тепловое реле тоже окажется бессильным, т. к. потребляемый ток не возрастает или возрастает незначительно. В таких случаях, только встроенная тепловая защита способна обнаружить опасное повышение температуры и вовремя отключить двигатель.

Александр Коваль
067-1717147
Статья отредактирована в ноябре 2015 года.

В электродвигателе, как и в многих других электротехнических устройствах, могут возникать аварийные ситуации. Если вовремя не принять меры, то в худшем случае из-за поломки электродвигателя, могут выйти из строя и другие элементы энергосистемы.

Наибольшее распространение получили асинхронные электродвигатели. Можно выделить 5 основных видов аварий в асинхронных двигателях:

  • обрыв фазы ОФ статорной обмотки двигателя (вероятность возникновения 40-50%);
  • заторможение ротора ЗР (20-25%);
  • технологические перегрузки ТП (8-10%);
  • понижение сопротивления изоляции обмотки ПС (10-15%);
  • нарушение охлаждения двигателя НО (8-10%).

Любой из этих видов аварий может повлечь выход из строя электродвигателя, а короткое замыкание в двигателе, опасно для питающей сети.

Такие аварийные режимы как ОФ , ЗР , ТП и НО , способны вызвать перегрузку по току в статорной обмотке. В результате этого ток возрастает до 7 Iном и более в течение довольно большого промежутка времени.

Короткое замыкание в электродвигателе может привести к росту тока более чем в 12 Iном в течение очень короткого отрезка времени (около 10 мс).

Учитывая возможные повреждения, и подбирают требуемую защиту.

Защита двигателя от перегрузки. Основные типы.

Тепловая защита – осуществляется путем нагрева током обмотки нагревательного элемента и воздействия его на биметаллическую пластину, которая в свою очередь размыкает контакт в цепи управления контактора или пускателя. Тепловая защита осуществляется с помощь тепловых реле.

Температурная защита — реагирует на увеличение температуры наиболее нагретых частей двигателя с помощью встроенных температурных датчиков (например, позисторов). Через устройства температурной защиты (УВТЗ) воздействует на цепь управления контактора или пускателя и отключает двигатель.

Максимально токовая защита – реагирует на рост тока в статорной обмотке и при его достижении тока уставки отключат цепь управления контактора или пускателя. Осуществляется с помощью максимально токовых реле.

Минимально токовая защита — реагирует на исчезновение тока в статорной обмотке двигателя, например, при обрыве цепи. После чего, подается сигнал на отключение цепи управления контактора или пускателя. Осуществляется с помощью минимально токовых реле.

Фазочувствительная защита – реагирует на изменение угла сдвига фаз между токами в трехфазной цепи статорной обмотки двигателя. При изменении угла сдвига фаз в пределах уставки (например, при обрыве фаз угол увеличивается до 180º) подается сигнал на отключение цепи управления контактора или пускателя. Осуществляется с помощью фазочувствительных реле типа ФУЗ.

Таблица эффективности применения защит от перегрузки:

Тип защиты от перегрузки Надежность защиты
надежно менее надежно не надежно
1 Тепловая защита ТП ОФ; ЗР НО; ПС
2 Температурная защита ТП; НО ОФ; ЗР ПС
3 Максимально токовая защита ЗР ТП ОФ; НО; ПС
4 Минимально токовая защита ОФ НО; ПС; ТП; ЗР
5 Фазочувствительная защита ТП; ОФ; ЗР НО; ПС

Одним из эффективных средств защиты двигателя является автоматический выключатель.

Автоматический выключатель, обладая максимально токовой защитой, что позволит защитить двигатель от чрезмерного роста тока в цепи статорной обмотки, например при обрыве фазы, или повреждении изоляции. При этом он защитит питающую цепь от короткого замыкания в двигателе.

Автоматический выключатель, имеющий в своем составе тепловой расцепитель, расцепитель минимального напряжения, способен защитить двигатель и от других нештатных режимов.

В настоящее время, это одно из наиболее эффективных защитных устройств асинхронных двигателей и цепей, в которых они работают.

Общие правила выбора защиты асинхронных двигателей.

Все двигатели необходимо защищать от короткого замыкания, а электродвигатели, работающие в режиме S1, должны иметь защиту от перегрузки по току.

Электродвигатели, обмотки которых при запуске переключаются с «треугольника» на «звезду», желательно защищать трехполюсными тепловыми реле с ускоренным срабатыванием в неполнофазных режимах. Для электродвигателей, работающих в повторно-кратковременных режимах, рекомендуется предусматривать встроенную температурную защиту. Двигатели, работающие в кратковременном режиме S2 с возможным заторможением ротора без технологического ущерба, следует оснащать тепловой защитой. В случае, если заторможение ротора влечет за собой технологический ущерб, следует применять температурную защиту.

Тепловые реле предназначены в основном для защиты двигателей в режиме S1. Допустимо применение их и для режима S2, если исключено увеличение длительности рабочего периода. Для режима S3 применение тепловых реле допускается в исключительных случаях при коэффициенте загрузки двигателя не более 0,7.

Для защиты обмоток электродвигателя, соединенных в «звезду», могут применяться однополюсные реле (два реле), двухполюсные и трехполюсные реле. Защита обмоток, соединенных в «треугольник», должна осуществляться трехполюсными реле с ускоренным срабатыванием в неполнофазных режимах.

На многоскоростные двигатели нужно предусматривать отдельные реле на каждой ступени скорости при необходимости полного использования мощности на каждой ступени или одно реле с уставкой, выбранной по току ступени наибольшей скорости для двигателей с вентиляторной нагрузкой.

Номинальный ток тепловых элементов реле должен выбираться по номинальному току двигателя так, чтобы номинальный ток двигателя находился между минимальной и максимальной уставками реле по току.

ФPAГMEHT КНИГИ (...) ТЕХНИКО-ЭКОНОМИЧЕСКИЕ ФАКТОРЫ, ВЛИЯЮЩИЕ НА ВЫБОР СРЕДСТВ ЗАЩИТЫ
Анализ режимов работы асинхронного двигателя показывает, что в производственных условиях могут быть разнообразные аварийные ситуации, влекущие за собой разные последствия для двигателя. Средства защиты не обладают достаточной универсальностью для того, чтобы во всех случаях, независимо от причины и характера аварийного режима, отключить двигатель при возникновении любой опасной для него ситуации. Каждый аварийный режим имеет свои особенности. Применяемые в настоящее время защитные аппараты имеют недостатки и достоинства, проявляющиеся в определенных условиях. Следует также принимать во внимание и экономическую сторону вопроса. Выбор средств защиты должен опираться на технико-экономический расчет, в котором необходимо учитывать стоимость самого защитного аппарата, затраты на его эксплуатацию, величину ущерба, который наносит авария двигателя. При этом следует иметь в виду, что надежность действия защиты зависит также от характеристик рабочей машины и режима ее работы. Наибольшей универсальностью обладает температурная защита. Но она стоит дороже, чем другие средства защиты, и сложнее по устройству. Поэтому ее применение оправдано в тех случаях, когда другие виды защиты либо не могут обеспечить надежную работу, либо защищаемая установка предъявляет повышенные требования к надежности действия защиты, например из-за большого ущерба при аварии двигателя.
Тип защитного аппарата следует выбирать при проектировании технологической установки с учетом всех особенностей ее работы. Эксплуатационный персонал должен получать укомплектованное всем необходимым оборудование. Однако в некоторых случаях при переоборудовании или перестройке технологической линии
эксплуатационному персоналу нео ходимо самому решать вопрос, какой тип защиты целесообразно применить в конкретном случае. Для этого необходимо проанализировать возможные аварийные режимы установки и выбрать требуемый защитный аппарат. В настоящей брошюре мы не будем подробно рассматривать методику выбора защиты двигателей от перегрузки. Ограничимся лишь некоторыми рекомендациями общего характера, которые могут быть полезны для эксплуатационного персонала сельских электроустановок.
Прежде всего необходимо установить характерные для данной установки аварийные режимы. Одни из них возможны во всех установках, а другие только в некоторых. Перегрузки при потере фазы независимы от рабочей машины, они могут возникать во всех установках. Тепловые реле и встроенная температурная защита вполне удовлетворительно выполняют защитные функции при этом виде аварийного режима. Применение специальной защиты от потери фазы дополнительно к защите от перегрузки должно быть обосновано. В большинстве случаев она не требуется. Достаточны тепловые реле и температурная защита. Необходимо систематически проверять их состояние и регулировать. Лишь в тех случаях, когда авария двигателя может привести к большому ущербу, можно использовать специальную защиту от перегрузки при потере фазы.
Тепловые реле недостаточно эффективны как средство защиты от перегрузок при переменном (с большими колебаниями нагрузок), при повторно-кратковременном и кратковременном режимах работы. В этих случаях более эффективна встроенная температурная защита. В случае машин с тяжелым пуском также следует отдать предпочтение встроенной температурной защите.
Из имеющегося разнообразия средств защиты асинхронного двигателя широкое применение нашли только два устройства: тепловые реле и встроенная температурная защита. Эти два устройства являются конкурирующими при проектировании электроприводов сельскохозяйственных машин. Для выбора типа защиты проводят технико-экономический расчет по методу приведенных затрат. Не останавливаясь на точном расчете по этому методу, рассмотрим применение его основных положений для выбора наивыгоднейшего варианта защиты.
Предпочтение следует отдавать варианту, при котором будут наименьшие затраты на приобретение, монтаж и эксплуатацию рассматриваемых устройств. При этом должен быть учтен ущерб, который несет производство от недостаточной надежности действия защиты. Затраты, приведенные к одному году использования, определяют по формуле
где К - стоимость двигателя и защитного устройства, включая затраты на их транспортировку и монтаж;
кэ - коэффициент, учитывающий отчисления на амортизацию, обновление оборудования, ремонт;
Э - эксплуатационные расходы (стоимость обслуживания средств защиты, потребляемой электроэнергии и др.);
У - ущерб, который несет производство из-за отказа или неправильного действия защиты.
Величина ущерба складывается из двух слагаемых
где Ут - технологический ущерб, вызванный аварией двигателя (стоимость недоотпущенной или испорченной продукции);
Кд - стоимость замены вышедшего из строя двигателя и защитного устройства, включая затраты на демонтаж старого и монтаж нового оборудования;
р0 - вероятность отказа (неправильного действия) защиты, приведшего к аварии двигателя.
Эксплуатационные расходы значительно меньше остальных составляющих приведенных затрат, поэтому ими можно пренебречь в дальнейших расчетах. Стоимость двигателя со встроенной защитой и аппаратуры встроенной защиты больше стоимости обычного двигателя и теплового реле. Но первая из рассматриваемых защит более совершенна. Она действует эффективно практически при всех аварийных ситуациях, поэтому ущерб от ее неправильного действия будет меньше. Затраты на более дорогую защиту будут оправданы лишь в том случае, если ущерб снизится на величину большую, чем дополнительные затраты на более совершенную защиту.
Величина технологического ущерба зависит от характера технологического процесса и времени простоя оборудования. В отдельных случаях ее можно не учитывать. Это относится прежде всего к отдельно работающим установкам, простои которых на время устранения аварии не оказывают заметного влияния на все производство. По мере насыщения производства средствами механизации и -электрификации повышается уровень требований к надежности работы оборудования. Простои из-за неисправности электрооборудования приводят к большим ущербам, а в некоторых случаях становятся недопустимыми. Пользуясь некоторыми усредненными данными, можно определить сферу экономически оправданного применения более сложных устройств защиты.
Величина вероятности отказа защиты р0 зависит от конструкции и качества изготовления аппаратуры, а также от характера аварийного режима, в котором может оказаться двигатель. Как было показано выше, при некоторых аварийных режимах тепловые реле не обеспечивают надежное отключение двигателя. В этом случае лучше встроенная температурная защита. Опыт использования этой защиты показывает, что величину вероятности отказа этой защиты рвз можно принять равной 0,02. Это означает, что существует вероятность того, что из 100 таких устройств две могут не сработать, вследствие чего произойдет авария двигателя.
Пользуясь формулами (40) и (41), определим, при каком значении вероятности отказов тепловых реле ртр приведенные затраты будут одинаковыми. Это даст возможность оценить сферу применения того или иного устройства. Если пренебречь эксплуатационными затратами, можно написать
где индексы вз и тр соответственно означают встроенную защиту и тепловое реле. Отсюда получим
Для того чтобы представить порядок требуемого уровня надежности действия теплового реле, рассмотрим пример.
Определим предельно допустимое значение ртр теплового реле ТРН-10 с биметаллическими элементами в комплекте с двигателем А02-42-4СХ путем сравнения с вариантом применения двигателя А02-42-4СХТЗ с встроенной температурной защитой УВТЗ, для которого принимаем рвз=0,02. Технологический ущерб принимаем равным нулю. Стоимость двигателя с тепловым реле, включая затраты на транспортировку и монтаж, составляет 116 руб., а для варианта с защитой УВТЗ - 151 руб. Стоимость замены вышедшёго из строя двигателя А02-42-4СХ и теплового реле ТРН-10 с учетом затрат на демонтаж старого оборудования и монтаж нового составляет 131 руб., а для варианта с защитой УВТЗ - 170 руб. В соответствии с существующими нормативами принимаем кэ=0,32. После подстановки этих данных в уравнение (43) получим
Полученные величины характеризуют допустимые вероятности откэзое, выше которых применение тепловых реле экономически невыгодно. Аналогичные цифры получают для других двигателей небольшой мощности. Чтобы определить целесообразность применения рассматриваемых средств защиты, нужно сопоставить допустимые вероятности отказов с фактическими.
Отсутствие достаточных данных о фактических значениях не позволяют точно определить область эффективного применения рассмотренных защитных устройств путем прямого использования изложенного метода технико-экономического расчета. Однако, пользуясь результатами анализа режимов работы асинхронного двигателя и защитных устройств, а также некоторыми данными, косвенно характеризующими показатели требуемой надежности, можно наметить области предпочтительного использования того или иного вида защитного устройства.
Фактический уровень надежности действия защиты зависит не только от принципа ее действия и качества изготовления аппаратуры, но также и от уровня эксплуатации электрооборудования. Там, где налажено техническое обслуживание электрооборудования, несмотря на некоторые недостатки тепловых реле, уровень аварийности электродвигателей невысокий. Практика передовых хозяйств показывает, что при хорошо налаженном техническом обслуживании электроустановок ежегодный процент выхода из строя электродвигателей, защищенных тепловыми реле, можно снизить до 5% и ниже.
Однако следует заметить, что такой вывод справедлив только при рассмотрении общей картины. При рассмотрении некоторых конкретных условий предпочтение должно быть отдано другим устройствам защиты. Исходя из анализа режимов работы электропривода, можно указать ряд установок, для которых вероятность отказов тепловых реле будет высокой по причине недостатков принципа их действия.
1. Электроприводы машин, имеющих резкопеременную нагрузку (измельчители кормов, дробилки, пневмотранспортеры для загрузки силосной массы и т. п.). При больших колебаниях нагрузки тепловые реле не могут «моделировать» тепловое состояние двигателя, поэтому уровень фактических отказов тепловых реле в таких установках будет высоким.
2. Электродвигатели, работающие по схеме «треугольник». Их особенность заключается в том, что при обрыве одной из фаз питающей линии ток в оставшихся линейных проводах и фазах возрастает неодинаково. В наиболее нагруженной фазе ток растет быстрее, чем в линейных проводах.
3. Электродвигатели установок, работающих при повышенной частоте аварийных ситуаций, приводящих к остановке двигателя (например, транспортеры для уборки навоза).
4. Электродвигатели установок, простои которых наносят большой технологический ущерб.

Самым распространенным видом электродвигателей бесспорно можно назвать трёхфазные электродвигатели переменного тока, напряжение которых составляет до 500 В при мощностях от 0,05 до 350 - 400 кВт.

Так как требуется обеспечить бесперебойное и надежное функционирование электродвигателей, то наибольшее внимание в первую очередь следует уделить выбору электродвигателей по режиму работы, номинальной мощности и форме исполнения. Нужно не забывать о том, что немалое значение имеет соблюдение требований и необходимых правил во время разработки принципиальной электрической схемы, подборе пускорегулирующей аппаратуры, кабелей и проводов, эксплуатации и монтаже электропривода.

Работа электродвигателей в аварийных режимах

Как известно, даже в случае, если электроприводы спроектированы в соответствии со всеми нормами и эксплуатируются с соблюдением всех правил, то все равно при их работе всегда остается пусть небольшая, но все-таки вероятность появления аварийных режимов или режимов, которые характеризуются ненормальной работой для двигателей и другого электрооборудования.

Среди различных аварийных режимов можно перечислить следующие:

1. Короткие замыкания, которые в свою очередь делятся на:

  • короткие замыкания, которые происходят в обмотках электродвигателя. Они могут быть однофазными и многофазными, а именно двухфазными и трехфазными;
  • многофазные короткие замыкания, которые происходят в выводной коробке электродвигателя и во внешней силовой цепи (например, в ящиках сопротивлений, на контактах коммутационных аппаратов, в проводах и кабелях);
  • короткие замыкания фазы на нулевой провод или корпус во внешней цепи (в электросетях с заземленной нейтралью) или внутри двигателя;
  • короткие замыкания, возникающие в цепи управления;
  • короткие замыкания, возникающие в обмотке двигателя между витками. Этот тип замыканий часто называют витковыми замыканиями.

Короткие замыкания, возникающие в электроустановках, считаются самым опасным типом аварийных режимов из всех существующих. Как правило, чаще всего они появляются по причине перекрытия изоляции или пробоя. Токи короткого замыкания могут достичь таких амплитуд, которые в десятки и сотни раз превышают значения токов при нормальном режиме работы. Тепловое воздействие и динамические усилия, вызванные токами короткого замыкания, которым подвергаются токоведущие части, способны вывести из строя всю электроустановку целиком.

2. тепловые перегрузки электродвигателя, которые появляются из-за того, что по его обмоткам происходит прохождение повышенных токов. Это может происходить в следующих ситуациях:

  • когда по различным технологическим причинам происходят перегрузки рабочего механизма;
  • когда имеют место быть при застопоривании или, наоборот, пуске двигателя под нагрузкой особо тяжелые условия;
  • когда случается длительное понижение напряжения сети;
  • когда произошло выпадение одной из фаз внешней силовой цепи;
  • когда в обмотке электродвигателя случился обрыв провода;
  • когда имели место быть механические повреждения в рабочем механизме или в самом двигателе;
  • когда по причине ухудшения условий охлаждения двигателя произошли тепловые перегрузки.

Тепловые перегрузки отрицательно сказываются на работе электродвигателя. Главной причиной этого является то, что они вызывают ускоренное разрушение и старение изоляции двигателя, что в свою очередь влечет частое возникновение коротких замыканий. То есть все это приводит к серьезным авариям и слишком быстрому выходу двигателя из строя.

Виды защиты электродвигателей асинхронного типа

Для защиты электродвигателей от различных повреждений, возникающих во время работы двигателя в условиях, отличных от нормальных, разрабатываются всевозможные средства защиты. Один из принципов, применяемый в таких средствах защиты, предусматривает своевременное отключение неисправного двигателя от сети, ограничивая, тем самым, или полностью предотвращая развитие аварии.

Основным и самым действенным средством бесспорно считается электрическая защита двигателей, которая соответствуем требованиям ПУЭ (нормативный документ, «Правила устройства электроустановок»).

Если за основу классификации взять характер ненормальных режимов работы и повреждений, которые могут возникнуть, то можно назвать несколько основных наиболее часто встречающихся типов электрозащиты для двигателей асинхронного типа.

Защита электродвигателей асинхронного типа от коротких замыканий

Когда в главной силовой цепи электродвигателя или в цепи управления токов появляется аварийный режим короткого замыкания, то происходит отключение двигателя. В этом и заключается защита от короткого замыкания.

Срабатывание всех аппаратов, которые используются для осуществления защиты электродвигателей асинхронного типа от коротких замыканий, происходит практически мгновенно, без задержки во времени. К таким аппаратам относятся, например, предохранители плавкие, реле электромагнитные, выключатели автоматические с расцепителем электромагнитного типа.

Защита электродвигателей асинхронного типа от перегрузок

Благодаря наличию защиты от перегрузки двигатель предохраняется от чрезмерного перегрева, возникающего, в частности, при относительно малых по величине, но растянутых во времени тепловых перегрузках. Защиту от перегрузки нужно использовать только для электродвигателей не всех рабочих механизмов, а только тех, у которых возможны ненормальные скачки нагрузки в случае нарушения стандартного рабочего процесса.

Аппараты, которые разработаны с целью защитить сеть от перегрузки, например, электромагнитные реле, температурные и тепловые реле, автоматические выключатели с часовым механизмом или с тепловым расцепителем, в случае возникновения перегрузки способствуют отключению двигателя. При этом такое отключение происходит с определенной конкретной выдержкой времени. Выдержка прямо пропорционально зависит от величины перегрузки. Иными словами, чем больше перегрузка, тем меньше выдержка, и наоборот. Иногда даже происходит мгновенное отключение, это происходит при существенных перегрузках.

Защита электродвигателей асинхронного типа от понижения уровня напряжения или его исчезновения

Защиту от понижения уровня напряжения или его исчезновения также часто называют нулевой защитой. Выполняемая с помощью нескольких (или одного) электромагнитных аппаратов, защита подобного рода отключает электродвигатель при снижении уровня напряжения сети ниже минимально допустимого (возможно установить требуемый уровень минимально допустимого напряжения самостоятельно) значения или при перебоях напряжения питания, а также защищает электродвигатель от самопроизвольного включения после обеспечения допустимого напряжения в сети или устранения перерыва питания.

Для режима работы электродвигателей асинхронного типа на двух фазах также существует защита. Срабатывая, она отключает двигатель, тем самым защищая его от «опрокидывания» (остановка под током из-за понижения момента, развиваемого двигателем, в случае обрыва линий электропитания в одной из фаз главной цепи) и от перегрева.

Электромагнитные и тепловые реле применяются в качестве аппаратов защиты двигателей асинхронного типа. При использовании электромагнитного реле защита может не иметь выдержки времени.

Другие виды электрической защиты электродвигателей асинхронного типа

Не менее эффективные, но реже используемые средства защиты также существуют. Они применяются для защиты от однофазных замыканий на землю в IT сетях (у которых нейтраль изолирована), от повышения уровня напряжения, от увеличения скорости вращения привода и т.п.

Электрические аппараты, применяемые для защиты электродвигателей

В зависимости от функциональной сложности аппараты для электрической защиты электродвигателей асинхронного типа могут применяться для предохранения от одного или нескольких одновременно типов угроз. Защиту от коротких замыканий или перегрузок обеспечивают различные автоматические выключатели. Бывают аппараты защиты однократного или многократного действия. К первым относятся, например, плавкие предохранители. Их недостатком можно считать то, что после выполнения своей функции, такие средства защиты подлежат замене и не могут использоваться повторно. Более подходящими могут оказаться перезаряжаемые средства защиты однократного действия. Что касается аппаратов многократного действия, они отличаются способом возврата в состояния готовности на два типа: с ручным возвратом и автоматическим. Примером таких устройств служат тепловые и электромагнитные реле.

Выбор вида электрической защиты электродвигателей асинхронного типа

Для каждого электродвигателя асинхронного типа необходимо выбирать подходящий ему вид электрической защиты. Нужно учитывать условия работы, степень важности привода, его мощность и порядок обслуживания электродвигателя в целом (наличие закрепленного за двигателем сервис-инженера). Может быть выбран как один, так и сразу несколько видов защиты электродвигателей.

Хорошая защита - это та, которая в итоге окажется надежной и простой в эксплуатации. Для грамотного подбора вариантов защиты необходимо провести аудит электрооборудования. Особенное внимание следует уделить данным, касающимся аварийности оборудования в мастерских, на строительных площадках, в цехах и т.д. В результате подобного анализа будет выявлено множество нарушений нормальной работы технологического оборудования и электродвигателей, что позволит подобрать наиболее соответствующее ситуации средство электрической защиты двигателя.

Защита электродвигателей асинхронного типа от коротких замыканий обязательно должна быть предусмотрена вне зависимости от его характеристик (напряжения и мощности). В данном случае защиту нужно организовать комплексным путем в два приема. В одном случае будет необходимо обеспечивать защиту при значениях тока меньших, чем значения пусковых токов. Это подходит в некоторых случаях возникновения коротких замыканий, например замыкания на корпус внутри двигателя или при витковых замыканиях. Во втором случае защиту нужно отстроить от пусковых и тормозных токов двигателя, которые могут в 5—10 раз превышать его номинальный ток

Наиболее доступные и функционально простые средства защиты не позволят одновременного выполнения этих приемов. Поэтому защита с применением подобного рода аппаратов всегда строится на основании сознательного допущения, что при возникновении вышеуказанных повреждений в двигателе, он отключится не мгновенно, а постепенно, причем при условии дальнейшего развития подобных повреждений, когда ток, потребляемый двигателем из сети, возрастет многократно.

Все аппараты электрической защиты двигателей должны быть тщательным образом отрегулированы и правильно подобраны с учетом всех особенностей в каждом конкретном случае. Не допускается, чтобы средства защиты выдавали ложное срабатывание.