Калькулятор онлайн. Решение неравенств: линейные, квадратные и дробные



















Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цель урока: формирование навыков решения линейных неравенств.

Тип урока: урок изучения нового материала.

Задачи урока:

  • Образовательные:
  1. вспомнить, что такое неравенство;
  2. вспомнить свойства числовых неравенств;
  3. выяснить с учащимися, что значит решить неравенство;
  4. ввести понятие линейного неравенства;
  5. познакомить учащихся с алгоритмом решения линейных неравенств.
  • Воспитательные:
    1. отработать навыки решения линейных неравенств, применяя алгоритм решения линейных неравенств.
  • Развивающие:
    1. развитие умения самостоятельно анализировать текст, добывать знания и делать выводы;
    2. развитие познавательного интереса;
    3. развитие мышления учащихся;
    4. развитие умений общаться в группах, сотрудничать и взаимообучать;
    5. развитие правильной речи учащихся.

    Ход урока

    1 этап. Мотивационный

    Учитель обращается к классу: «Серьезность изучаемых в школе предметов не мешает нам творчески переосмысливать новые знания. Думая о сегодняшнем уроке, я почти случайно зарифмовала свои размышления. Послушайте, что у меня получилось, и попробуйте определить тему урока».

    В математике - соотношенье между числами и выраженьями,
    В них и знаки для сравнения: меньше, больше иль равно?
    Я вам дам одну подсказку, вполне полезную возможно,
    Мир объединяет равенство, частица «не» указывает на …… (неравенство)

    Итак, тема урока «Неравенства ».

    2 этап. Изучение нового материала

    Стадия осмысления: (5 мин) (добывание учащимися знаний)

    (применяю прием маркировки текста «Инсерт» - учащиеся читают текст, вникают в него, делают специальные пометки)

    Отмечают «+» то, что им уже известно , «-» то, что новое, не знакомо .

    Текст

    Неравенство – это два числа или выражения, соединенные одним из знаков:

    • > (больше),
    • < (меньше),
    • ≤ (меньше или равно),
    • ≥ (больше или равно),
    • ≠ (не равно).

    Линейное неравенство – это неравенство вида ax + b > 0 (или ax + b < 0) , где а и b – любые числа, причем а 0 .

    Решением неравенства с одной переменной называется значение переменной, которое обращает его в верное числовое неравенство. Например, х + 5 < 17. Подставив вместо х значение 1 , получим 1+ 5 < 17, 6 < 17 – верное числовое неравенство. Значит, х = 1 – решение данного неравенства.

    Решить неравенство – это значит найти все его решения или доказать, что решений нет.

    Свойства числовых неравенств:

    1. Если а > b и b > c, то а > с.
    2. Если а > b, то а + с > b + с.
    3. Если а > b и m > 0, то аm > bm;
      Если а > b и m < 0 , то am < bm.
    4. Если а > b и с > d, то a + c > b + d.
    5. Если а > b и с > d, то ac > bd, где а, b, c, d – положительные числа.
    6. Если а > b, а и b – неотрицательные числа, то aⁿ > bⁿ , n – любое натуральное число.
    Алгоритм решения линейных неравенст Пример: решить неравенство
    5(х – 3) > 2х - 3
    1. Раскрыть скобки: 5х – 15 > 2х - 3
    2. Перенести все слагаемые с х влево, а числа вправо, меняя при этом знак на противоположный: 5х – 2х > -3 + 15
    3. Привести подобные слагаемые: 3х > 12
    4. Разделить обе части неравенства на число, стоящее перед х (если это число положительное, то знак неравенства не меняется; если это число отрицательное, то знак неравенства меняется на противоположный): 3х > 12: 3
    х > 4
    5. Перейти от аналитической модели х > 4 к геометрической модели:
    6. Указать множество решений данного неравенства, записав ответ: Ответ: (4; +∞)

    Фаза рефлексии: (беседа с классом по вопросам)

    Учитель составляет «Кластер» на доске.

    1. Что из того, что вы прочитали, вам уже было знакомо?
    2. Что из того, что вы прочитали, оказалось новой информацией?
    3. А что вам напоминает алгоритм решения линейного неравенства? (решение линейного уравнения, за исключением создания геометрической модели и записи ответа)

    Судя по этой схеме, вы уже многое знаете о неравенствах, а сегодня на уроке мы расширим эти знания.

    3 этап. Закрепление нового материала (отработка навыков решения линейных неравенств)

    Стратегия «Зигзаг»: (в группе по 5 человек, 5 групп) отработка навыков решения линейных уравнений: каждый ученик получает свое неравенство, решает, применяя алгоритм решения линейного неравенства, затем обсуждение в группах и объяснение другим ученикам.

    1. Попытка решить самому!!! 5 мин

    Задание: Решить неравенство и изобразить множество его решений на координатной прямой.

    №1. 17 – х > 2∙(5 – 3х)

    №2. 2∙(32 – 3х) ≥ 1- х

    №3. 8 + 5х ≤ 3∙(7 + 2х)

    №4. 2∙(0,1х – 1) < 7 – 0,8х

    №5. 5х + 2 ≤ 1 – 3∙(х + 2)

    2. Разбор задания в группе. 5 мин

    Переходят в экспертные группы с одинаковым заданием. Обсуждают решения, консультируют друг друга и исправляют свои ошибки, если они есть. Необходимо, чтобы каждый понял решение своего неравенства.

    Учитель выступает в роли консультанта.

    (Ученик сам – группа учеников – учитель)

    3. Взаимообучение. 5-7 мин Ученики возвращаются на свои места и рассказывают ход решения своего неравенства по очереди другим, идет запись в тетрадь неравенств.

    Задача группы: чтобы каждый овладел алгоритмом решения линейных неравенств.

    После того, как ученики готовы идет самопроверка нескольких неравенств через ИКТ, нескольких у доски.

    Обсуждение (беседа): Кто верно выполнил решение всех неравенств («один за всех и все за одного ») поднимите руку? Кто допустил ошибки? Где и почему?

    Если позволит время: для тех, кто не ошибся решить (или в качестве домашнего задания) творческое задание (одно на выбор) и сделать к нему соответствующий вывод:

    1) 2(х + 8) – 5х < 4 – 3х (решения нет)

    2)

    3) При каких значениях х двучлен 5х – 7 принимает положительные значения?

    4 этап. Подведение итогов

    Ребята! Чем мы на уроке занимались? Чему учились?

    Давайте вспомним: Что значит решить неравенство? Чем мы будем пользоваться при решении неравенства? (обратить еще раз внимание на алгоритм)

    Ребята! Как вы думаете, кто сегодня отличился на уроке? (оценивают себя сами)

    5 этап. Домашнее задание

    П.34 В программе для создания слайдов выполнить презентацию о неравенстве Коши.

    Хочу я вам дать совет:

    «Через математические знания, полученные в школе, лежит широкая дорога к огромным, почти необозримым областям труда и открытий»

    А.И. Маркушевич

    Всем спасибо за урок! Желаю успехов!

    Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

    Сбор и использование персональной информации

    Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

    От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

    Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

    Какую персональную информацию мы собираем:

    • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

    Как мы используем вашу персональную информацию:

    • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
    • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
    • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
    • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

    Раскрытие информации третьим лицам

    Мы не раскрываем полученную от Вас информацию третьим лицам.

    Исключения:

    • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
    • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

    Защита персональной информации

    Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

    Соблюдение вашей конфиденциальности на уровне компании

    Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

    Например, неравенством является выражение \(x>5\).

    Виды неравенств:

    Если \(a\) и \(b\) – это числа или , то неравенство называется числовым . Фактически это просто сравнение двух чисел. Такие неравенства подразделяются на верные и неверные .

    Например:
    \(-5<2\) - верное числовое неравенство, ведь \(-5\) действительно меньше \(2\);

    \(17+3\geq 115\) - неверное числовое неравенство, так как \(17+3=20\), а \(20\) меньше \(115\) (а не больше или равно).


    Если же \(a\) и \(b\) – это выражения, содержащие переменную, то у нас неравенство с переменной . Такие неравенства разделяют по типам в зависимости от содержимого:

    \(2x+1\geq4(5-x)\)

    Переменная только в первой степени

    \(3x^2-x+5>0\)

    Есть переменная во второй степени (квадрате), но нет старших степеней (третьей, четвертой и т.д.)

    \(\log_{4}{(x+1)}<3\)

    \(2^{x}\leq8^{5x-2}\)

    ... и так далее.

    Что такое решение неравенства?

    Если в неравенство вместо переменной подставить какое-нибудь число, то оно превратится в числовое.

    Если данное значение для икса превращает исходное неравенство верное числовое, то оно называется решением неравенства . Если же нет - то данное значение решением не является. И чтобы решить неравенство – нужно найти все его решения (или показать, что их нет).

    Например, если мы в линейное неравенство \(x+6>10\), подставим вместо икса число \(7\) –получим верное числовое неравенство: \(13>10\). А если подставим \(2\), будет неверное числовое неравенство \(8>10\). То есть \(7\) – это решение исходного неравенства, а \(2\) – нет.

    Однако, неравенство \(x+6>10\) имеет и другие решения. Действительно, мы получим верные числовые неравенства при подстановке и \(5\), и \(12\), и \(138\)... И как же нам найти все возможные решения? Для этого используют Для нашего случая имеем:

    \(x+6>10\) \(|-6\)
    \(x>4\)

    То есть нам подойдет любое число больше четырех. Теперь нужно записать ответ. Решения неравенств, как правило, записывают числовыми , дополнительно отмечая их на числовой оси штриховкой. Для нашего случая имеем:

    Ответ: \(x\in(4;+\infty)\)

    Когда в неравенстве меняется знак?

    В неравенствах есть одна большая ловушка, в которую очень «любят» попадаться ученики:

    При умножении (или делении) неравенства на отрицательное число, меняется на противоположный («больше» на «меньше», «больше или равно» на «меньше или равно» и так далее)

    Почему так происходит? Чтобы это понять, давайте посмотрим преобразования числового неравенства \(3>1\). Оно верное, тройка действительно больше единицы. Сначала попробуем умножить его на любое положительное число, например, двойку:

    \(3>1\) \(|\cdot2\)
    \(6>2\)

    Как видим, после умножения неравенство осталось верным. И на какое бы положительное число мы не умножали – всегда будем получать верное неравенство. А теперь попробуем умножить на отрицательное число, например, минус тройку:

    \(3>1\) \(|\cdot(-3)\)
    \(-9>-3\)

    Получилось неверное неравенство, ведь минус девять меньше, чем минус три! То есть, для того, чтобы неравенство стало верным (а значит, преобразование умножения на отрицательное было «законным»), нужно перевернуть знак сравнения, вот так: \(−9<− 3\).
    С делением получится аналогично, можете проверить сами.

    Записанное выше правило распространяется на все виды неравенств, а не только на числовые.

    Пример: Решить неравенство \(2(x+1)-1<7+8x\)
    Решение:

    \(2x+2-1<7+8x\)

    Перенесем \(8x\) влево, а \(2\) и \(-1\) вправо, не забывая при этом менять знаки

    \(2x-8x<7-2+1\)

    \(-6x<6\) \(|:(-6)\)

    Поделим обе части неравенства на \(-6\), не забыв поменять с «меньше» на «больше»

    Отметим на оси числовой промежуток. Неравенство , поэтому само значение \(-1\) «выкалываем» и в ответ не берем

    Запишем ответ в виде интервала

    Ответ: \(x\in(-1;\infty)\)

    Неравенства и ОДЗ

    Неравенства, также как и уравнения могут иметь ограничения на , то есть на значения икса. Соответственно, из промежутка решений должны быть исключены те значения, которые недопустимы по ОДЗ.

    Пример: Решить неравенство \(\sqrt{x+1}<3\)

    Решение: Понятно, что для того чтоб левая часть была меньше \(3\), подкоренное выражение должно быть меньше \(9\) (ведь из \(9\) как раз \(3\)). Получаем:

    \(x+1<9\) \(|-1\)
    \(x<8\)

    Все? Нам подойдет любое значение икса меньшее \(8\)? Нет! Потому что если мы возьмем, например, вроде бы подходящее под требование значение \(-5\) – оно решением исходного неравенства не будет, так как приведет нас к вычислению корня из отрицательного числа.

    \(\sqrt{-5+1}<3\)
    \(\sqrt{-4}<3\)

    Поэтому мы должны еще учесть ограничения на значения икса – он не может быть таким, чтоб под корнем было отрицательное число. Таким образом, имеем второе требование на икс:

    \(x+1\geq0\)
    \(x\geq-1\)

    И чтобы икс был окончательным решением, он должен удовлетворять сразу обоим требованиям: он должен быть меньше \(8\) (чтобы быть решением) и больше \(-1\) (чтобы быть допустимым в принципе). Нанося на числовую ось, имеем окончательный ответ:

    Ответ: \(\left[-1;8\right)\)

    Проще можно сказать, что это такие неравенства, в которых есть переменная только в первой степени, и она не находится в знаменателе дроби.

    Примеры:

    \(\frac{3y-4}{5}\) \(\leq1\)

    \(5(x-1)-2x>3x-8\)

    Примеры не линейных неравенств:

    \(3>-2\) – здесь нет переменных, только лишь числа, значит это числовое неравенство
    \(\frac{-14}{(y-3)^{2}-5}\) \(\leq0\) – есть переменная в знаменателе, это
    \(5(x-1)-2x>3x^{2}-8\) - есть переменная во второй степени, это

    Решение линейных неравенств

    Решением неравенства будет любое число, подстановка которого вместо переменной сделает неравенство верным. Решить неравенство – значит найти все такие числа.

    Например, для неравенства \(x-2>0\) число \(5\) будет решением, т.к. при подстановке пятерки вместо икса мы получим верное числовое: \(3>0\). А вот число \(1\) решением не будет, так как при подстановке получится неверное числовое неравенство:\(-1>0\) . Но решением неравенства будут не только пятерка, но и \(4\), \(7\), \(15\), \(42\), \(726\) и еще бесконечное множество чисел: любое число, больше двойки.


    Поэтому линейные неравенства не решают перебором и подстановкой значений. Вместо этого их с помощью приводят к одному из видов:

    \(xc\), \(x\leqс\), \(x\geqс\), где \(с\) - любое число

    После чего ответ отмечается на числовой оси и записывается в виде (также называемого интервалом).

    Вообще, если вы умеете решать , то и линейные неравенства вам под силу, потому что процесс решения очень схож. Есть лишь одно важное дополнение:

    Пример. Решить неравенство \(2(x+1)-1<7+8x\)
    Решение:

    Ответ: \(x\in(-1;\infty)\)

    Особый случай №1: решение неравенства – любое число

    В линейных неравенствах возможна ситуация, когда ему в качестве решения пойдет абсолютно любое число – целое, дробное, отрицательное, положительное, ноль… Например, вот такое неравенство \(x+2>x\) будет верным при любом значении икса. Ну, а как же может быть иначе, ведь слева к иксу прибавили двойку, а справа – нет. Естественно, что слева будет получаться большее число, какой бы икс мы не взяли.

    Пример. Решить неравенство \(3(2x-1)+5<6x+4\)
    Решение:

    Ответ: \(x\in(-\infty;\infty)\)

    Особый случай №2: неравенство не имеет решений

    Возможна и обратная ситуация, когда у линейного неравенства вообще нет решений, то есть никакой икс не сделает его верным. Например, \(x-2>x\) не будет верным никогда, ведь слева из икса вычитают двойку, а справа – нет. Значит, слева всегда будет меньше, а не больше.

    Пример. Решить неравенство \(\frac{x-5}{2}\) \(>\) \(\frac{3x+2}{6}\) \(-1\)
    Решение:

    \(\frac{x-5}{2}\) \(>\) \(\frac{3x+2}{6}\) \(-1\)

    Нам мешают знаменатели. Сразу же избавляемся от них, умножая всё неравенство на общий знаменатель всех , то есть – на 6

    \(6\cdot\)\(\frac{x-5}{2}\) \(>\)\(6\cdot\)\((\frac{3x+2}{6}\) \(-1\)\()\)

    Раскроем скобки

    \(6\cdot\)\(\frac{x-5}{2}\) \(>\)\(6\cdot\)\(\frac{3x+2}{6}\) \(-6\)

    Сократим то, что можно сократить

    \(3\cdot(x-5)>3x+2-6\)

    Слева раскроем скобку, а справа приведем подобные слагаемые

    \(3x-15>3x-4\)


    Перенесем \(3x\) влево, а \(-15\) вправо, меняя знаки

    \(3x-3x>-4+15\)


    Вновь приводим подобные слагаемые


    Получили неверное числовое неравенство. И оно будет неверным при любом иксе, ведь он никак не влияет на получившееся неравенство. Значит, любое значение икса решением не будет.

    Ответ: \(x\in\varnothing\)

    В статье рассмотрим решение неравенств . Расскажем доступно о том, как строиться решение неравенств , на понятных примерах!

    Перед тем, как рассмотреть решение неравенств на примерах, разберемся с базовыми понятиями.

    Общи сведения о неравенствах

    Неравенством называется выражение, в котором функции соединяются знаками отношения >, . Неравенства бывают как числовые, так и буквенные.
    Неравенства с двумя знаками отношения, называются двойными, с тремя - тройными и т.д. Например:
    a(x) > b(x),
    a(x) a(x) b(x),
    a(x) b(x).
    a(x) Неравенства, содержащие знак > или или - нестрогими.
    Решением неравенства является любое значение переменой, при котором это неравенство будет верно.
    "Решить неравенство " означает, что надо найти множество всех его решений. Существуют различные методы решения неравенств . Для решения неравенства пользуются числовой прямой, которая бесконечна. Например, решением неравенства x > 3 есть промежуток от 3 до +, причем число 3 не входит в этот промежуток, поэтому точка на прямой обозначается пустым кружком, т.к. неравенство строгое.
    +
    Ответ будет следующим: x (3; +).
    Значение х=3 не входит в множество решений, поэтому скобка круглая. Знак бесконечности всегда выделяется круглой скобкой. Знак означает «принадлежание».
    Рассмотрим как решать неравенства на другом примере со знаком :
    x 2
    -+
    Значение х=2 входит в множество решений, поэтому скобка квадратная и точка на прямой обозначается закрашенным кружком.
    Ответ будет следующим: x }