Безопасность жизнедеятельности: Шпаргалка: Радиационная безопасность. Ионизирующие излучения

  1. Кафедра БЖД

    1. Контрольная работа

по дисциплине: Безопасность жизнедеятельности

на тему: Ионизирующие излучения

    1. Пермь, 2004

Введение

Ионизирующим излучением называют излучения, взаимодействие которых со средой приводит к образованию электрических зарядов различных знаков.

Ионизирующее излучение – такое излучение, которым обладают радиоактивные вещества.

Под влиянием ионизирующих излучений у человека возникает лучевая болезнь.

Главной целью радиационной безопасности является охрана здоровья населения, включая персонал, от вредного воздействия ионизирующего излучения путем соблюдения основных принципов и норм радиационной безопасности без необоснованных ограничений полезной деятельности при использовании излучения в различных областях хозяйства, в науке и медицине.

Нормы радиационной безопасности (НРБ-2000) применяются для обеспечения безопасности человека в условиях воздействия на него ионизирующего излучения искусственного или природного происхождения.

Основные характеристики ионизирующих излучений

Ионизирующим излучением называют излучения, взаимодействие которых со средой приводит к образованию электрических зарядов различных знаков. Источники этих излучений широко используются в технике, химии, медицине, сельском хозяйстве и других областях, например при измерении плотности почв, обнаружении течей в газопроводах, измерении толщины листов, труб и стержней, антистатистической обработке тканей, полимеризации пластмасс, радиационной терапии злокачественных опухолей и др. Однако следует помнить, что источники ионизирующего излучения представляют существенную угрозу здоровью и жизни использующих их людей.

Существует 2 вида ионизирующих излучений:

    корпускулярное, состоящее из частиц с массой покоя, отличной от нуля (альфа- и бета-излучение и нейтронное излучение);

    электромагнитное (гамма-излучение и рентгеновское) с очень малой длиной волны.

Альфа-излучение представляет собой поток ядер гелия, обладающих большой скоростью. Эти ядра имеют массу 4 и заряд +2. Они образуются при радиоактивном распаде ядер или при ядерных реакциях. В настоящее время известно более 120 искусственных и естественных альфа-радиоактивных ядер, которые, испуская альфа-частицу, теряют 2 протона и 2 нейрона.

Энергия альфа-частиц не превышает нескольких МэВ (мега-электрон-вольт). Излучаемые альфа-частицы движутся практически прямолинейно со скоростью примерно 20000 км/с.

Под длиной пробега частицы в воздухе или других средах принято называть наибольшее расстояние от источника излучения, при котором еще можно обнаружить частицу до ее поглощения веществом. Длина пробега частицы зависит от заряда, массы, начальной энергии и среды, в которой происходит движение. С возрастанием начальной энергии частицы и уменьшением плотности среды длина пробега увеличивается. Если начальная энергия излучаемых частиц одинакова, то тяжелые частицы обладают меньшими скоростями, чем легкие. Если частицы движутся медленно, то их взаимодействие с атомами вещества среды более эффективно и частицы быстрее растрачивают имеющийся у них запас энергии.

Длина пробега альфа-частиц в воздухе обычно менее 10 см. За счет своей большой массы при взаимодействии с веществом альфа-частицы быстро теряют свою энергию. Это объясняет их низкую проникающую способность и высокую удельную ионизацию: при движении в воздушной среде альфа-частица на 1 см своего пути образует несколько десятков тысяч пар заряженных частиц – ионов.

Бета-излучение представляет собой поток электронов или позитронов, возникающих при радиоактивном распаде. В настоящее время известно около 900 бета-радиоактивных изотопов.

Масса бета-частиц в несколько десятков тысяч раз меньше массы альфа-частиц. В зависимости от природы источника бета-излучений скорость этих частиц может лежать в пределах 0,3 – 0,99 скорости света. Энергия бета-частиц не превышает нескольких МэВ, длина пробега в воздухе составляет приблизительно 1800 см., а в мягких тканях человеческого тела ~ 2,5 см. Проникающая способность бета-частиц, выше, чем альфа-частиц (из-за меньших массы и заряда).

Нейтронное излучение представляет собой поток ядерных частиц, не имеющих электрического заряда. Масса нейтрона приблизительно в 4 раза меньше массы альфа-частиц. В зависимости от энергии различают медленные нейтроны (с энергией менее 1 КэВ (кило-электрон-Вольт) = 10 3 эВ), нейтроны промежуточных энергий (от 1 до 500 КэВ) и быстрые нейтроны (от 500 КэВ до 20 МэВ). При неупругом взаимодействии нейтронов с ядрами атомов среды возникает вторичное излучение, состоящее из заряженных частиц и гамма-квантов (гамма-излучение). При упругих взаимодействиях нейтронов с ядрами может наблюдаться обычная ионизация вещества. Проникающая способность нейтронов зависит от их энергии, но она существенно выше, чем у альфа- или бета-частиц. Нейтронное излучение обладает высокой проникающей способностью и представляет для человека наибольшую опасность из всех видов корпускулярного излучения. Мощность нейтронного потока измеряется плотность потока нейтронов.

Гамма-излучение представляет собой электромагнитное излучение с высокой энергией и с малой длиной волны. Оно испускается при ядерных превращениях или взаимодействии частиц. Высокая энергия (0,01 – 3 МэВ) и малая длина волны обусловливает большую проникающую способность гамма-излучения. Гамма-лучи не отклоняются в электрических и магнитных полях. Это излучение обладает меньшей ионизирующей способностью, чем альфа- и бета-излучение.

Рентгеновское излучение может быть получено в специальных рентгеновских трубах, в ускорителях электронов, в среде, окружающей источник бета-излучения, и др. Рентгеновское излучение представляет собой один из видов электромагнитного излучения. Энергия его обычно не превышает 1 МэВ. Рентгеновское излучение, как и гамма-излучение, обладает малой ионизирующей способностью и большой глубиной проникновения.

Для характеристики воздействия ионизирующего излучения на вещество введено понятие дозы излучения. Дозой излучения – называется часть энергии, переданная излучением веществу и поглощенная им. Количественной характеристикой взаимодействия ионизирующего излучения и вещества является поглощенная доза излучения (Д), равная отношению средней энергии dE, переданной ионизирующим излучением веществу в элементарном объеме, к массе облученного вещества в этом объеме dm:

До недавнего времени за количественную характеристику только рентгеновского и гамма-излучения, основанную на их ионизирующем действии, принималась экспозиционная доза Х – отношение полного электрического заряда dQ ионов одного знака, возникающих в малом объеме сухого воздуха, к массе воздуха dm в этом объеме, т.е.

Для оценки возможного ущерба здоровья при хроническом воздействии ионизирующего излучения произвольного состава введено понятие эквивалентной дозы (Н). Эта величина определяется как произведение поглощенной дозы Д на средний коэффициент качества излучения Q (безразмерный) в данной точке ткани человеческого тела, т.е.:

Существует еще одна характеристика ионизирующего излучения – мощность дозы Х (соответственно поглощенной, экспозиционной или эквивалентной) представляющая собой приращение дозы за малый промежуток времени dx, деленное на этот промежуток dt. Так, мощность экспозиционной дозы (х или w, Кл / кг · с) составит:

Х = W = dx / dt

Биологическое действие рассмотренных излучений на организм человека различно.

Альфа-частицы, проходя через вещество и сталкиваясь с атомами, ионизируют (заряжают) их, выбивая электроны. В редких случаях эти частицы поглощаются ядрами атомов, переводя их в состояние с большей энергией. Эта избыточная энергия способствует протеканию различных химических реакций, которые без облучения не идут или идут очень медленно. Альфа-излучение производит сильное действие на органические вещества, из которых состоит человеческий организм (жиры, белки и углеводы). На слизистых оболочках это излучение вызывает ожоги и другие воспалительные процессы.

Под действием бета-излучений происходит радиолиз (разложение) воды, содержащейся в биологических тканях, с образованием водорода, кислорода, пероксида водорода H 2 O 2 , заряженных частиц (ионов) OH – и HO – 2 . Продукты разложения воды обладают окислительными свойствами и вызывают разрушение многих органических веществ, из которых состоят ткани человеческого организма.

Действие гамма- и рентгеновского излучений на биологические ткани обусловлено в основном образующимися свободными электронами. Нейтроны, проходя через вещество, производят в нем наиболее сильные изменения по сравнению с другими ионизирующими излучениями.

Таким образом, биологическое действие ионизирующих излучений сводится к изменению структуры или разрушению различных органических веществ (молекул), из которых состоит организм человека. Это приводит к нарушению биохимических процессов, протекающих в клетках, или даже к их гибели, в результате чего происходит поражение организма в целом.

Различают внешнее и внутреннее облучение организма. Под внешним облучениемпонимают воздействие на организм ионизирующих излучений от внешних по отношению к нему источников.Внутреннее облучениеосуществляется радиоактивными веществами, попавшими внутрь организма через дыхательные органы, желудочно-кишечный тракт или через кожные покровы. Источники внешнего излучения – космические лучи, естественные радиоактивные источники, находящиеся в атмосфере, воде, почве, продуктах питания и др., источники альфа-, бета-, гамма, рентгеновского и нейтронного излучений, используемые в технике и медицине, ускорители заряженных частиц, ядерные реакторы (в том числе и аварии на ядерных реакторах) и ряд других.

Радиоактивные вещества, вызывающие внутреннее облучение организма, попадают в него при приеме пищи, курении, питье загрязненной воды. Поступление радиоактивных веществ в человеческий организм через кожу происходит в редких случаях (если кожа имеет повреждения или открытые раны). Внутреннее облучение организма длится до тех пор, пока радиоактивное вещество не распадется или не будет выведено из организма в результате процессов физиологического обмена. Внутреннее облучение опасно тем, что вызывает длительно незаживающие язвы различных органов и злокачественные опухоли.

При работе с радиоактивными веществами значительному облучению подвергаются руки операторов. Под действием ионизирующих излучений развивается хроническое или острое (лучевой ожог) поражение кожи рук. Хроническое поражение характеризуется сухостью кожи, появлением на ней трещин, изъявлением и другими симптомами. При остром поражении кистей рук возникают отеки, омертвление тканей, язвы, на месте образования которых возможно развитие злокачественных опухолей.

Под влиянием ионизирующих излучений у человека возникает лучевая болезнь. Различают три степени ее: первая (легкая), вторая и третья (тяжелая).

Симптомами лучевой болезни первой степени являются слабость, головные боли, нарушение сна и аппетита, которые усиливаются на второй стадии заболевания, но к ним дополнительно присоединяются нарушения в деятельности сердечно-сосудистой системы, изменяется обмен веществ и состав крови, происходит расстройство пищеварительных органов. На третьей стадии болезни наблюдаются кровоизлияния выпадение волос, нарушается деятельность центральной нервной системы и половых желез. У людей, перенесших лучевую болезнь, повышается вероятность развития злокачественных опухолей и заболеваний кроветворных органов. Лучевая болезнь в острой (тяжелой) форме развивается в результате облучения организма большими дозами ионизирующих излучений за короткий промежуток времени. Опасно воздействие на организм человека и малых доз радиации, так как при этом могут произойти нарушение наследственной информации человеческого организма, возникнуть мутации.

Низкий уровень развития легкой формы лучевой болезни возникает при эквивалентной дозе облучения приблизительно 1 Зв, тяжелая форма лучевой болезни, при которой погибает половина всех облученных, наступает при эквивалентной дозе облучения 4,5 Зв. 100%-ный смертельный исход лучевой болезни соответствует эквивалентной дозе облучения 5,5–7,0 Зв.

В настоящее время разработан ряд химических препаратов (протекторов), существенно снижающих негативный эффект воздействия ионизирующего излучения на организм человека.

В России предельно допустимые уровни ионизирующего облучения и принципы радиационной безопасности регламентируются «Нормами радиационной безопасности» НРБ-76, «Основными санитарными правилами работы с радиоактивными веществами и другими источниками ионизирующих излучений» ОСП72-80. В соответствии с этими нормативными документами нормы облучения установлены для следующих трех категорий лиц:

Для лиц категории А основным дозовым пределом является индивидуальная эквивалентная доза внешнего и внутреннего излучения за год (Зв/год) в зависимости от радиочувствительности органов (критические органы). Это предельно допустимая доза (ПДД) – наибольшее значение индивидуальной эквивалентной дозы за год, которое при равномерном воздействии в течение 50 лет не вызовет в состоянии здоровья персонала неблагоприятных изменений, обнаруживаемых современными методами.

Для персонала категории А индивидуальная эквивалентная доза (Н , Зв), накопленная в критическом органе за времяТ (лет) с начала профессиональной работы, не должна превышать значения, определяемого по формуле:

Н = ПДД ∙ Т . Кроме того, доза, накопленная к 30 годам, не должна превышать 12 ПДД.

Для категории Б установлен предел дозы за год (ПД, Зв/год), под которым понимают наибольшее среднее значение индивидуальной эквивалентной дозы за календарный год у критической группы лиц, при котором равномерное облучение в течении 70 лет не может вызвать в состоянии здоровья неблагоприятных изменений, обнаруживаемых современными методами. В табл.1 приведены основные дозовые пределы внешнего и внутреннего облучений в зависимости от радиочувствительности органов.

Таблица 1 – Основные значения дозовых пределов внешнего и внутреннего облучений

«ИНСТИТУТ УПРАВЛЕНИЯ»

(г. Архангельск)

Волгоградский филиал

Кафедра «_______________________________»

Контрольная работа

по дисциплине: « безопасность жизнедеятельности »

тема: «ионизирующее излучение и защита от них »

Выполнил студент

гр. ФК – 3 – 2008

Зверков А. В.

(Ф.И.О.)

Проверил преподаватель:

_________________________

Волгоград 2010

Введение 3

1.Понятие ионизирующего излучения 4

2. Основные методы обнаружения ИИ 7

3. Дозы излучения и единицы измерения 8

4. Источники ионизирующего излучения 9

5. Средства защиты населения 11

Заключение 16

Список используемой литературы 17


С ионизирующим излучением и его особенностями человечество познакомилось совсем недавно: в 1895 году немецкий физик В.К. Рентген обнаружил лучи высокой проникающей способности, возникающие при бомбардировке металлов энергетическими электронами (Нобелевская премия, 1901 г.), а в 1896 г. А.А. Беккерель обнаружил естественную радиоактивность солей урана. Вскоре этим явлением заинтересовалась Мария Кюри, молодой химик, полька по происхождению, которая и ввела в обиход слова «радиоактивность». В 1898 году она и ее муж Пьер Кюри обнаружили, что уран после излучения превращается в другие химические элементы. Один из этих элементов супруги назвали полонием в память о родине Марии Кюри, а еще один – радием, поскольку по-латыни это слово обозначает «испускающий лучи». Хотя новизна знакомства состоит лишь в том, как люди пытались ионизирующее излучение использовать, а радиоактивность, и сопутствующие ей ионизирующие излучения существовали на Земле задолго до зарождения на ней жизни и присутствовали в космосе до возникновения самой Земли.

Нет необходимости говорить о том положительном, что внесло в нашу жизнь проникновение в структуру ядра, высвобождение таившихся там сил. Но как всякое сильнодействующее средство, особенно такого масштаба, радиоактивность внесла в среду обитания человека вклад, который к благотворным никак не отнесёшь.

Появилось также число пострадавших от ионизирующей радиации, а сама она начала осознаваться как опасность, способная привести среду обитания человека в состояние, не пригодное для дальнейшего существования.

Причина не только в тех разрушениях, которые производит ионизирующее излучение. Хуже то, что оно не воспринимается нами: ни один из органов чувств человека не предупредит его о приближении или сближением с источником радиации. Человек может находиться в поле смертельно опасного для него излучения и не иметь об этом ни малейшего представления.

Такими опасными элементами, в которых соотношение числа протонов и нейтронов превышает 1…1,6. В настоящее время из всех элементов таблицы Д.И. Менделеева известно более 1500 изотопов. Из этого количества изотопов лишь около 300 стабильных и около 90 являются естественными радиоактивными элементами.

Продукты ядерного взрыва содержат более 100 нестабильных первичных изотопов. Большое количество радиоактивных изотопов содержится в продуктах деления ядерного горючего в ядерных реакторах АЭС.

Таким образом, источниками ионизирующего излучения являются искусственные радиоактивные вещества, изготовленные на их основе медицинские и научные препараты, продукты ядерных взрывов при применении ядерного оружия, отходы атомных электростанций при авариях на них.

Радиационная опасность для населения и всей окружающей среды связана с появлением ионизирующих излучений (ИИ), источником которых являются искусственные радиоактивные химические элементы (радионуклиды), которые образуются в ядерных реакторах или при ядерных взрывах (ЯВ). Радионуклиды могут попадать в окружающую среду в результате аварий на радиационно-опасных объектах (АЭС и др. объектах ядерного топливного цикла – ЯТЦ), усиливая радиационный фон земли.

Ионизирующими излучениями называют излучения, которые прямо или косвенно способны ионизировать среду (создавать раздельные электрические заряды). Все ионизирующие излучения по своей природе делятся на фотонные (квантовые) и корпускулярные. К фотонному (квантовому) ионизирующему излучению относятся гамма-излучение, возникающее при изменении энергетического состояния атомных ядер или аннигиляции частиц, тормозное излучение, возникающее при уменьшении кинетической энергии заряженных частиц, характеристическое излучение с дискретным энергетическим спектром, возникающее при изменении энергетического состояния электронов атома и рентгеновское излучение, состоящее из тормозного и/или характеристического излучений. К корпускулярному ионизирующему излучению относят α-излучение, электронное, протонное, нейтронное и мезонное излучения. Корпускулярное излучение, состоящее из потока заряженных частиц (α-, β-частиц, протонов, электронов), кинетическая энергия которых достаточна для ионизации атомов при столкновении, относится к классу непосредственно ионизирующего излучения. Нейтроны и другие элементарные частицы непосредственно не производят ионизацию, но в процессе взаимодействия со средой высвобождают заряженные частицы (электроны, протоны), способные ионизировать атомы и молекулы среды, через которую проходят. Соответственно, корпускулярное излучение, состоящее из потока незаряженных частиц, называют косвенно ионизирующим излучением.

Нейтронное и гамма излучение принято называть проникающеё радиацией или проникающим излучением.

Ионизирующие излучения по своему энергетическому составу делятся на моноэнергетические (монохроматические) и немоноэнергетические (немонохроматические). Моноэнергетическое (однородное) излучение – это излучение, состоящее из частиц одного вида с одинаковой кинетической энергией или из квантов одинаковой энергии. Немоноэнергетическое (неоднородное) излучение – это излучение, состоящее из частиц одного вида с разной кинетической энергией или из квантов различной энергии. Ионизирующее излучение, состоящее из частиц различного вида или частиц и квантов, называется смешанным излучением.

При авариях реакторов образуются a+ ,b± частицы и g-излучение. При ЯВ дополнительно образуются нейтроны -n° .

Рентгеновское и g-излучение обладают высокой проникающей и достаточно ионизирующей способностью (g в воздухе может распространяться до 100м и косвенно создать 2-3 пары ионов за счёт фотоэффекта на 1 см пути в воздухе). Они представляют собой основную опасность как источники внешнего облучения. Для ослабления g-излучения требуются значительные толщи материалов.

Бета- частицы (электроны b- и позитроны b+) краткобежны в воздухе (до 3,8м/МэВ), а в биоткани – до несколько миллиметров. Их ионизирующая способность в воздухе 100-300 пар ионов на 1 см пути. Эти частицы могут действовать на кожу дистанционно и контактным путём (при загрязнении одежды и тела), вызывая «лучевые ожоги». Опасны при попадании внутрь организма.

Альфа – частицы (ядра гелия) a+ краткобежны в воздухе (до 11 см), в биоткани до 0,1 мм. Они обладают большой ионизирующей способностью (до 65000 пар ионов на 1 см пути в воздухе) и особо опасны при попадании внутрь организма с воздухом и пищей. Облучение внутренних органов значительно опаснее наружного облучения.

Последствия облучения для людей могут быть самыми различными. Они во многом определяются величиной дозы облучения и временем её накопления. Возможные последствия облучения людей при длительном хроническом облучении, зависимость эффектов от дозы однократного облучения приведены в таблице.

Таблица 1. Последствия облучения людей.

Таблица 1.
Радиационные эффекты облучения
1 2 3
Телесные (соматические) Вероятностные телесные (соматические - стохастические) Гинетические
1 2 3

Воздействуют на облучаемого.

Имеют дозовый порог.

Условно не имеют дозового порога.
Острая лучевая болезнь Сокращение продолжительности жизни. Доминантные генные мутации.
Хроническая лучевая болезнь. Лейкозы (скрытый период 7-12 лет). Рецессивные генные мутации.
Локальные лучевые повреждения. Опухоли разных органов (скрытый период до 25 лет и более). Хромосомные абберации.

2. Основные методы обнаружения ИИ

Чтобы избежать ужасных последствий ИИ, необходимо производить строгий контроль служб радиационной безопасности с применением приборов и различных методик. Для принятия мер защиты от воздействия ИИ их необходимо своевременно обнаружить и количественно оценить. Воздействуя на различные среды ИИ вызывают в них определенные физико-химические изменения, которые можно зарегистрировать. На этом основаны различные методы обнаружения ИИ.

К основным относятся: 1) ионизационный, в котором используется эффект ионизации газовой среды, вызываемой воздействием на неё ИИ, и как следствие – изменение ее электропроводности; 2) сцинтилляционный, заключающийся в том, что в некоторых веществах под воздействием ИИ образуются вспышки света, регистрируемые непосредственным наблюдением или с помощью фотоумножителей; 3) химический, в котором ИИ обнаруживаются с помощью химических реакций, изменения кислотности и проводимости, происходящих при облучении жидкостных химических систем; 4) фотографический, заключающийся в том, что при воздействии ИИ на фотопленку на ней в фотослое происходит выделение зерен серебра вдоль траектории частиц; 5) метод, основанный на проводимости кристаллов, т.е. когда под воздействием ИИ возникает ток в кристаллах, изготовленных из диэлектрических материалов и изменяется проводимость кристаллов из полупроводников и др.

3. Дозы излучения и единицы измерения

Действие ионизирующих излучений представляет собой сложный процесс. Эффект облучения зависит от величины поглощенной дозы, ее мощности, вида излучения, объема облучения тканей и органов. Для его количественной оценки введены специальные единицы, которые делятся на внесистемные и единицы в системе СИ. Сейчас используются преимущественно единицы системы СИ. Ниже в таблице 10 дан перечень единиц измерения радиологических величин и проведено сравнение единиц системы СИ и внесистемных единиц.

Таблица 2. Основные радиологические величины и единицы

Таблица 3. Зависимость эффектов от дозы однократного (кратковременного) облучения человека.

Необходимо учитывать, что радиоактивное облучение, полученное в течение первых четырёх суток, принято называть однократными, а за большое время – многократными. Доза радиации, не приводящая к снижению работоспособности (боеспособности) личного состава формирований (личного состава армии во время войны): однократная (в течение первых четырёх суток) – 50 рад; многократная: в течение первых 10-30 суток – 100 рад; в течение трёх месяцев – 200 рад; в течение года – 300 рад. Не путать, речь идёт о потере работоспособности, хотя последствия облучения сохраняются.

4. Источники ионизирующего излучения

Различают ионизирующее излучение естественного и искусственного происхождения.

Облучению от естественных источников радиации подвергаются все жители Земли, при этом, одни из них получают большие дозы, чем другие. В зависимости, в частности, от местожительства. Так уровень радиации в некоторых местах земного шара, там, где особенно залегают радиоактивные породы, оказывается значительно выше среднего, в других местах - соответственно, ниже. Доза облучения зависит также от образа жизни людей. Применение некоторых строительных материалов, использование газа для приготовления пищи, открытых угольных жаровен, герметичность помещений и даже полеты на самолетах - все это увеличивает уровень облучения за счет естественных источников радиации.

Земные источники радиации в сумме ответственны за большую часть облучения, которому подвергается человек за счет естественной радиации. Остальную часть радиации вносят космические лучи.

Космические лучи, в основном, приходят к нам из глубин Вселенной, но некоторая их часть рождается на Солнце во время солнечных вспышек. Космические лучи могут достигать поверхности Земли или взаимодействовать с ее атмосферой, порождая вторичное излучение и приводя к образованию различных радионуклидов.

За последние несколько десятилетий человек создал несколько сотен искусственных радионуклидов и научился использовать энергию атома в самых разных целях: в медицине и для создания атомного оружия, для производства энергии и обнаружения пожаров, для поиска полезных ископаемых. Все это приводит к увеличению дозы облучения как отдельных людей, так и населения Земли в целом.

Индивидуальные дозы, получаемые разными людьми от искусственных источников радиации, сильно различаются. В большинстве случаев эти дозы весьма невелики, но иногда облучение за счет техногенных источников оказывается во много тысяч раз интенсивнее, чем за счет естественных.

В настоящее время основной вклад в дозу, получаемую человеком от техногенных источников радиации, вносят медицинские процедуры и методы лечения, связанные с применением радиоактивности. Во многих странах этот источник ответствен практически за всю дозу, получаемую от техногенных источников радиации.

Радиация используется в медицине как в диагностических целях, так и для лечения. Одним из самых распространенных медицинских приборов является рентгеновский аппарат. Получают все более широкое распространение и новые сложные диагностические методы, опирающиеся на использование радиоизотопов. Как ни парадоксально, но одним из способов борьбы с раком является лучевая терапия.

Источником облучения, вокруг которого ведутся наиболее интенсивные споры, являются атомные электростанции, хотя в настоящее время они вносят весьма незначительный вклад в суммарное облучение населения. При нормальной работе ядерных установок выбросы радиоактивных материалов в окружающую среду очень невелики. Атомные электростанции являются лишь частью ядерного топливного цикла, который начинается с добычи и обогащения урановой руды. Следующий этап - производство ядерного топлива. Отработанное в АЭС ядерное топливо иногда подвергают вторичной обработке, чтобы извлечь из него уран и плутоний. Заканчивается цикл, как правило, захоронением радиоактивных отходов. Но на каждой стадии ядерного топливного цикла в окружающую среду попадают радиоактивные вещества.

5. Средства защиты населения

1. Коллективные средства защиты: убежища, быстровозводимые убежища (БВУ), противорадиационные укрытия (ПРУ), простейшие укрытия (ПУ);

2. Индивидуальные средства защиты органов дыхания: фильтрующие противогазы, изолирующие противогазы, фильтрующие респираторы, изолирующие респираторы, самоспасатели, шланговые, автономные, патроны к противогазам;

3. Индивидуальные средства защиты кожи: фильтрующие, изолирующие;

4. Приборы дозиметрической разведки;

5. Приборы химической разведки;

6. Приборы - определители вредных примесей в воздухе;

7. Фотографии.

6. Радиационный контроль

Под радиационной безопасностью понимается состояние защищённости настоящего и будущего поколения людей, материальных средств и окружающей среды от вредного воздействия ИИ.

Радиационный контроль является важнейшей частью обеспечения радиационной безопасности, начиная со стадии проектирования радиационно-опасных объектов. Он имеет целью определение степени соблюдения принципов радиационной безопасности и требований нормативов, включая не превышение установленных основных пределов доз и допустимых уровней при нормальной работе, получение необходимой информации для оптимизации защиты и принятия решений о вмешательстве в случае радиационных аварий, загрязнения местности и зданий радионуклидами, а также на территориях и в зданиях с повышенным уровнем природного облучения. Радиационный контроль осуществляется за всеми источниками излучения.

Радиационному контролю подлежат: 1) радиационные характеристики источников излучения, выбросов в атмосферу, жидких и твердых радиоактивных отходов; 2) радиационные факторы, создаваемые технологическим процессом на рабочих местах и в окружающей среде; 3) радиационные факторы на загрязненных территориях и в зданиях с повышенным уровнем природного облучения; 4) уровни облучения персонала и населения от всех источников излучения, на которые распространяется действие настоящих Норм.

Основными контролируемыми параметрами являются: годовая эффективная и эквивалентная дозы; поступление радионуклидов в организм и их содержание в организме для оценки годового поступления; объёмная или удельная активность радионуклидов в воздухе, воде, продуктах питания, строительных материалов; радиоактивное загрязнение кожных покровов, одежды, обуви, рабочих поверхностей.

Поэтому, администрация организации может вводить дополнительные, более жесткие числовые значения контролируемых параметров - административные уровни.

Причём государственный надзор за выполнением Норм радиационной безопасности осуществляют органы Госсанэпиднадзора и другие органы, уполномоченные Правительством Российской Федерации в соответствии с действующими нормативными актами.

Контроль за соблюдением Норм в организациях, независимо от форм собственности, возлагается на администрацию этой организации. Контроль за облучением населения возлагается на органы исполнительной власти субъектов Российской Федерации.

Контроль за медицинским облучением пациентов возлагается на администрацию органов и учреждений здравоохранения.

Человек подвергается облучению двумя способами. Радиоактивные вещества могут находиться вне организма и облучать его снаружи; в этом случае говорят о внешнем облучении. Или же они могут оказаться в воздухе, которым дышит человек, в пище или в воде и попасть внутрь организма. Такой способ облучения называют внутренним.

От альфа-лучей можно защититься путём:

Увеличения расстояния до ИИИ, т.к. альфа-частицы имеют небольшой пробег;

Использования спецодежды и спецобуви, т.к. проникающая способность альфа-частиц невысока;

Исключения попадания источников альфа-частиц с пищей, водой, воздухом и через слизистые оболочки, т.е. применение противогазов, масок, очков и т.п.

В качестве защиты от бета-излучения используют:

Ограждения (экраны), с учётом того, что лист алюминия толщиной несколько миллиметров полностью поглощает поток бета-частиц;

Методы и способы, исключающие попадание источников бета-излучения внутрь организма.

Защиту от рентгеновского излучения и гамма-излучения необходимо организовывать с учётом того, что эти виды излучения отличаются большой проникающей способностью. Наиболее эффективны следующие мероприятия (как правило, используемые в комплексе):

Увеличение расстояния до источника излучения;

Сокращение времени пребывания в опасной зоне;

Экранирование источника излучения материалами с большой плотностью (свинец, железо, бетон и др.);

Использование защитных сооружений (противорадиационных укрытий, подвалов и т.п.) для населения;

Использование индивидуальных средств защиты органов дыхания, кожных покровов и слизистых оболочек;

Дозиметрический контроль внешней среды и продуктов питания.

Для населения страны, в случае объявления радиационной опасности существуют следующие рекомендации:

Укрыться в жилых домах. Важно знать, что стены деревянного дома ослабляют ионизирующее излучение в 2 раза, а кирпичного - в 10 раз. Погреба и подвалы домов ослабляют дозу излучения от 7 до 100 и более раз;

Принять меры защиты от проникновения в квартиру (дом) радиоактивных веществ с воздухом. Закрыть форточки, уплотнить рамы и дверные проёмы;

Сделать запас питьевой воды. Набрать воду в закрытые ёмкости, подготовить простейшие средства санитарного назначения (например, мыльные растворы для обработки рук), перекрыть краны;

Провести экстренную йодную профилактику (как можно раньше, но только после специального оповещения!). Йодная профилактика заключается в приёме препаратов стабильного йода: йодистого калия или водно-спиртового раствора йода. При этом достигается стопроцентная степень защиты от накопления радиоактивного йода в щитовидной железе. Водно-спиртовой раствор йода следует принимать после еды 3 раза в день в течение 7 суток: а) детям до 2 лет - по 1-2 капли 5%-ной настойки на 100 мл молока или питательной смеси; б) детям старше 2 лет и взрослым - по 3-5 капель на стакан молока или воды. Наносить на поверхность кистей рук настойку йода в виде сетки 1 раз в день в течение 7 суток.

Начать готовиться к возможной эвакуации: подготовить документы и деньги, предметы, первой необходимости, упаковать лекарства, минимум белья и одежды. Собрать запас консервированных продуктов. Все вещи следует упаковать в полиэтиленовые мешки. Постараться выполнить следующие правила: 1) принимать консервированные продукты; 2) не пить воду из открытых источников; 3) избегать длительных передвижений по загрязненной территории, особенно по пыльной дороге или траве, не ходить в лес, не купаться; 4) входя в помещение с улицы, снимать обувь и верхнюю одежду.

В случае передвижения по открытой местности используйте подручные средства защиты:

Органов дыхания: прикрыть рот и нос смоченными водой марлевой повязкой, носовым платком, полотенцем или любой частью одежды;

Кожи и волосяного покрова: прикрыть любыми предметами одежды, головными уборами, косынками, накидками, перчатками.

Заключение

И так как только были открыты ионизирующие излучения и их вредное воздействие на живые организмы, появилась необходимость контролировать облучение этими излучениями человека. Каждый человек должен знать об опасности радиации и уметь защищаться от нее.

Радиация по своей природе вредна для жизни. Малые дозы облучения могут «запустить» не до конца еще изученную цепь событий, приводящих к раку или генетическим повреждениям. При больших дозах радиация может разрушать клетки, повреждать ткани органов и явиться причиной скорой гибели организма.

В медицине одним из самых распространенных приборов является рентгеновский аппарат, также получают все более широкое распространение и новые сложные диагностические методы, опирающиеся на использование радиоизотопов. Как ни парадоксально, но одним из способов борьбы с раком является лучевая терапия, хотя и облучение направлено на исцеление больного, но нередко дозы оказываются неоправданно высокими, поскольку дозы, получаемые от облучения в медицинских целях, составляют значительную часть суммарной дозы облучения от техногенных источников.

Огромный ущерб приносят и аварии на объектах, где присутствует радиация, яркий этому пример Чернобыльская АЭС

Таким образом необходимо всем нам задуматься, чтобы не получилось так, что упущенное сегодня может оказаться совершенно непоправимым завтра.

Список используемой литературы

1. Небел Б. Наука об окружающей среде. Как устроен мир. В 2 томах, М., «Мир», 1994.

2. Ситников В.П. Основы безопасности жизнедеятельности. –М.: АСТ. 1997.

3. Защита населения и территорий от ЧС. (ред. М.И.Фалеев) – Калуга: ГУП «Облиздат», 2001.

4. Смирнов А.Т. Основы безопасности жизнедеятельности. Учебник для 10, 11 классов СШ. – М.: Просвещение, 2002.

5. Фролов. Основы безопасности жизнедеятельности. Учебник для студентов учебных заведений среднего профессионального образования. – М.: Просвещение, 2003.

Источник света делится на:

    Лампы накаливания (Лодыгин)

    Газоразрядные лампы (Яблочков)

    Полупроводниковые источники света (светодиоды) (Алферов)

    Неэлектрические источники

    1. Химический источник

      Фотолюминесцентный

      Радиолюминесцентные (фосфор 31)

Характеристики источников света:

    Номинальное напряжение (обычно 220 или 127)

    Мощность лампы

    Номинальный световой поток [Ф ном ]

Цветовое оформление производственного интерьера. Работоспособность в определенной степени зависит от цветового оформления.

Красный цвет – возбуждает

Оранжевый – бодрит

Желтый – веселит

Зеленый – успокаивает

Синий – регулирует дыхание

Черный – резко снижает настроение

Белый - вызывает апатию

Шум и вибрация

    Влияние шума на деятельность человека.

Шум – любой нежелательный звук, оказывающий вредное воздействие на организм человека.

Поражение шумом:

    Снижает внимание

    Ухудшает реакцию

    Угнетает нервную систему

    Способствует нарушению обмена веществ

Шумовая болезнь – профессиональное заболевание (перестают действовать некоторые органы из-за шума).

Звуковые колебания делятся на:

    Инфразвук (менее 20 Гц)

    Слышимый (от 20 Гц до 20 кГц)

    Ультразвуковой диапазон

Низкочастотный (от 20 до 400 Гц)

Средняя частота (от 400 до 1000)

Высокочастотный (от 1000 до 4000)

Интенсивность - отношение мощности к площади переносимой энергии. [Вт/м 2 ]

Давление звуковой волны (измеряется в паскалях).

Прирост силы ощущения

Измеряется в Бэлах

Нормирование шума

Нормируется по:

    Предельному спектру (постоянные шумы)

    По эквивалентному уровню шума (непостоянные шумы)

До 35 дБ – не беспокоит человека

От 40 до 70 вызывает неврозы

Свыше 70 дБ ведет к тугоухости

до 140 вызывает боль

свыше 140 смерть

    Защита от шума

    Снижение звуковой мощности источника шума

    Изменение направленности шума

    Рациональная планировка производственных участков

    Наиболее рациональным способом уменьшения шума является снижение звуковой мощности его источника. Снижение механических шумов достигается: улучшением конструкции механизмов; заменой металлических деталей на пластмассовые; заменой ударных технологических процессов на безударные.

Эффективность этих мероприятий по снижению уровня шума дает эффект до 15 дБ.

    Следующим способом снижения шума является изменение направленности его излучения.

Этот способ применяется в том случае, когда работающее устройство направленно излучает шум. Примером такого устройства может служить труба для сброса в атмосферу сжатого воздуха в сторону, противоположную рабочему месту.

    Рациональная планировка предприятий и цехов. Если на территории предприятия имеется несколько шумных цехов, то их целесообразно сосредоточить в одном - двух местах, максимально удаленных от остальных цехов и жилых районов.

    Следующий способ борьбы с шумом связан с уменьшением звуковой мощности по пути распространения шума (звукоизоляция). Практически это достигается использованием звукоизолирующих ограждений и кожухов, звукоизолирующих кабин и пультов управления, звукоизолирующих и акустических экранов.

В качестве материалов для звукоизолирующих ограждений рекомендуется использовать бетон, железобетон, кирпич, керамические блоки, деревянные полотна, стекло.

Звукоизолирующими кожухами обычно полностью закрывают издающее шум устройство. Кожухи изготавливают из листового металла (сталь, дюралюминий) или пластмассы. Как и в случае звукоизолирующих ограждений, кожухи более эффективно снижают уровень шума на высоких частотах, чем на низких.

5. Звукопоглощение. В производственных помещениях уровень звука существенно повышается из-за отражения шума от строительных конструкций и оборудования. Для снижения уровня отраженного звука применяют специальную акустическую обработку помещения с использованием средств звукопоглощения, к которым относятся звукопоглощающие облицовки и штучные звукопоглотители. Они поглощают звук. При этом колебательная энергия звуковой волны переходит в тепловую вследствие потерь на трение в звукопоглотителе.

Для звукопоглощения используют пористые материалы (т.е. материалы, обладающие не сплошной структурой), так как потери на трение в них более значительны. И наоборот, звукоизолирующие конструкции, отражающие шум, изготавливают из массивных, твердых и плотных материалов.

Средства индивидуальной защиты

    Бируши (снижают до 20 дБ)

    Вкладыши (до 40 дБ)

    Шлемы (до 60-70 дБ)

    Вибрация. Влияние вибрации на жизнедеятельность

Вибрация – это механические колебания твердого тела вокруг положения равновесия.

С физической точки зрения вибрация – это колебательный процесс, в результате которого тело через определенные промежутки проходит одно и то же устойчивое положение.

Частотные характеристики вибрации:

    Частотный диапазон для общих вибраций (F=0,8*80 Гц)

    Средние геометрические частоты (1, 2, 4, 8, 16, 32, 63 Гц)

    Частотный диапазон для локальных вибраций (от 5 до 1400 Гц)

    СГЧ (8, 16, 32, 63, 125, 250, 500, 1000)

Абсолютные параметры вибрации

    Амплитуда [А] [У] измеряется в метрах

    Виброскорость [V] м/с

    Виброускорение [a] м/с 2

Относительные параметры вибрации

    Уровень виброскорости

α v =20Lg(V/V 0) [дБ]

V 0 =5*10 -8 м/с Пороговое значение

    Уровень виброускорения

α a =20Lg(a/a 0) дБ

Вибрацию делят на два вида :

    Локальная вибрация (действует на отдельные части тела)

    Общая вибрация (действует на весь организм через опорные поверхности (пол, сидение)).

Вибрация очень опасна для организма. При совпадении внешних вибраций и колебаний организма наступает резонанс (6-9 Гц).

Вибрационная болезнь (не лечится):

1 стадия: изменение кожных чувств; боль и слабость в костях; изменения в сосудах

2 стадия: нарушение кожной чувствительности; спазмы пальцев

3 стадия:атрофия плечевого пояса; изменение ЦНС (центральная нервная система) и ССС (сердечно-сосудистая система)

Источники вибрации

В соответствии с ССБТ (гост 12) источники вибрации делятся на:

    1. Транспортные источники (авто, ж/д и водный)

      Транспортно-технологические (краны, экскаваторы)

      Технологические (станки, компрессоры и насосы)

  1. Локальные

    1. Ручные машинки

      Ручной инструмент

Нормирование вибрации

Вибрация нормируется в соответствии с санитарными нормами (производственная вибрация, вибрация жилых и общественных помещений).

Вибрация нормируется по двум показателям:

    Вибрация локальная

    Вибрация общая

И та, и другая вибрация нормируется по уровню скорости в дБ.

Очень часто нормируют одновременно и шум и вибрацию.

Шум нормируют:

    По эквивалентному уровню звука

    По звуковому давлению инфразвука

    По звуковому давлению ультразвука воздушного

    По уровню виброскорости ультразвука.

4) Защита от вибрации

    Снижение вибрации в источнике

    1. Вибропоглащение (вибродемпфер) Механическая энергия превращается в тепловую энергию

      Виброгашение (массив, фундамент)

    Уменьшение вибрации по пути ее распространения

    1. Виброизоляция (помещения изоляторы)

    Средства индивидуальной защиты

Основные средства индивидуальной защиты – это виброзащитная обувь и виброзащитные перчатки

    Соблюдение режима труда и отдыха

Степень воздействия вибрации на человека зависит от времени непрерывной работы вибро инструмента. Медики установили, что через каждые 30 минут делать перерывы на 10-15 минут, то виброболезни можно избежать.

Электромагнитное излучение (ЭМИ)

    Воздействие ЭМИ на человека.

Неионизирующие электромагнитные излучения включают:

    Ультрафиолетовое излучение

    Видимый свет

    Инфракрасное излучение

    Радио волны

К ионизирующим видам относятся рентгеновские и гамма излучения.

С точки зрения безопасности жизнедеятельности не ионизирующие электромагнитные излучения делятся на три группы:

    ЭМП (электромагнитные излучения) радиочастот

    ЭМП (электромагнитное излучения промышленной частоты)

    Постоянные магнитные поля

Электромагнитные излучения радиочастот

Основные параметры электромагнитных излучений :

Источники электромагнитных излучений :

    Радиотехнические объекты

    Радиостанции и базовые станции сотовой связи

    Термические цеха

    Бытовые источники

    1. Микроволновые печи

      Мобильные и радиотелефоны

      Компьютеры

Зоны воздействия электромагнитных полей (часто на экзамене)

(воздействие характеризуется только плотностью потока энергии [I])

Воздействия на человека электромагнитных излучений связано с тепловым эффектом. Электромагнитное излучение (ЭМИ) – передает определенное количество энергии телу человека, эта энергия преобразуется в тепловую до определенного предела организм отводит это тепло, когда он перестает справляться с отводом тепла человек заболевает.

Органы, которые более подвержены ЭМИ: глаза; мозг желудок печень

Симптомы: утомляемость и изменения в крови, потом возникают опухоли и аллергии.

    Нормирования электромагнитной среды

СанНПиН 2.2.4. 191-03 - электромагнитные поля в производственных условиях

    ВДУ магнитного поля земли

    Предельно допустимые уровни магнитных полей

    Предельно допустимые уровни электростатических полей

    Предельно допустимые уровни электрических и магнитных полей промышленной частоты

    Предельно допустимые уровни электромагнитных полей (по диапазонам)

Плотность потока энергии – в СНГ

В США характеристика – удельная мощность поглощение

    Электромагнитная безопасность

Осуществляется следующими методами:

    Защита временем

    Защита расстоянием

    Защита рациональным возмещением источника ионизирующих излучений

    Уменьшение мощности источников ионизирующих излучений

    Экранирование

    1. Отражающие (токи Фуко гасят эти волны)

      Поглощающие

    Применение индивидуальных средств защиты (халаты с металлической основой)

    Правила пользования сотовым телефоном

Плотность потока энергии мобильного телефона в области мозга составляет (16 Вт/м 2 облучение в минуту, а допустимая норма 10 Вт/м 2)

    Наибольшая мощность возникает в момент вызова

    Расстояние до уха (сильно не прислонять)

    Переносить из руки в руку (т.е. от одного уха к другому)

    Использование наушников (гарнитуры)

    Вредные факторы, возникающие при работе с компьютером

    Рабочая поза и освещенность

    Тепло (инфракрасное излучение)

    Шум и вибрация

    Статическое электричество

    Электромагнитные поля

Меры безопасности :

    Соблюдение эргономики рабочего места (удобное расположение и освещенность)

    Микроклимат (температура не должна превышать 35 градусов; влажность 65%, воздух от 0,1 до 02 м/с)

    Объем помещения (на каждого пользователя не менее 20 м 2)

    Объем воздуха (не менее 20 м 3 /час)

    Расстояние до дисплея (не менее 60 см)

    Время отдыха (10 минут в час)

Радиационная безопасность

    Виды ионизирующих излучений

Под радиацией понимается ионизирующее излучение.

Ионизирующее излучение – это излучение взаимодействие которого со средой приводит к образованию ионов.

Ионизирующее излучение делится на:

    Характеристика источников ионизирующего излучения. (Активность)

Источник ионизирующего излучения – это вещества и установки, при использовании которых возникает ионизирующее излучение.

Характеристикой источников ионизирующего излучения является активность [А].

Активность – количество единиц образованное источником излучения в единицу времени. (Измеряется в Бк – беккерель и Кюри).

1 Бк – активность источника в котором в 1 секунду происходит 1 распад.

1 Кюри – активность источника в котором в 1секунду происходит 37 миллиардов распадов.

Удельная активность – это активность 1 килограмма (единицы массы) источника, т.е. отношение активности к массе. (Бк/кг).

Объемная активность – отношение активности к объему источника. (Бк/м 3)

Поверхностная активность – отношение активности источника к его площади. (Бк/м 2)

Закон радиоактивного распада определяет изменение активности во времени. A t = A 0 e - λt

Закон Вигнера Вея – при взрывах и авариях активность источника меняется по показательному закону. A t = A 0 (t/t 0) - n

    Характеристика взаимодействия ионизирующих излучений со средой. (Дозовые характеристики)

Для характеристики воздействия ионизирующего излучения используется понятие «доза измерения ».

В зависимости от поставленной задачи используют различные дозы. Если надо определить количество электричества созданного ионизирующим излучением, то используют экспозиционную дозу.

Экспозиционная доза - это количество электричества созданное ионизирующим излучением в единице массы вещества. Доза измеряется в рентгенах. [рентген]

Поглощенная доза – количество энергии поглощенное единицы массы вещества при прохождении через него излучения.

Эквивалентная доза – доза эквивалентная гамма излучению. . В системе СИ эквивалентная доза измеряется в зивертах, а внесистемная единица бэр.

Эффективная доза .

При равномерном облучении эффективная доза равна эквивалентной дозе . При облучении всего человека пользуются эффективной дозой.

Доза является интегральным показателем. В качестве дифференциального показателя используют мощность дозы. Мощность дозы характеризует поле ионизирующего излучения. Было определено, что мощность дозы прямо пропорциональна активности и обратно пропорциональна квадрату сопротивлению.

Любой экран ослабляет ионизирующее излучение по экспоненциальному закону.

    Облучение человека в повседневных условиях

ОПУ складывается из бытового и фонового излучения.

Фоновое облучение складывается из естественного радиоактивного фона (фон Земли и космоса) и техногенно-измененное радиоактивное поле (фон от ядерных взрывов и ядерной энергетики).

Бытовое облучение складывается из медицинского облучения и облучения электронной аппаратурой.

ЕРФ – фон Земли и космоса.

ТИРФ – фон от ядерных взрывов и энергетики

Каждый человек в среднем получает 3 мЗв/год.

    Требования к ограничению облучения

    Федеральный закон №3 о радиационной безопасности населения

    Норма радиационной безопасности НОРБ 99/2009

    Основные своды правил о радиационной безопасности 99 (ОСПоРБ-99)

Персонал группы А (20 мЗв/год)

Персонал группы Б (5 мЗв/год)

Все население (1 мЗв/год)

Строительные материалы – гранит, радон, радиационные приборы.

Раздел 3 (техника БЖД)

Электробезопасность

    Технические средства обеспечения электро безопасности

    Средства обеспечения электро безопасности.

Электробезопасность – это система организационных и технических мероприятий и средств, обеспечивающих защиту от вредных и опасных факторов: (часто спрашивают на экзамене)

    Электрический ток

    Электрическая дуга

    Электромагнитных излучений

    Статического электричества

    Воздействие электрического тока на человека

От воздействия тока возникают травмы, которые называются электро травмы.

Электро травмы могут быть:

    Местными (т.е. поражать в месте прикосновения к току) обычно бывают при высоких частотах.

    1. Электрические ожоги

      Электрические знаки

      Металлизация кожи

    Общие (поражается все тело).

    1. Электрический удар (делится на 5 степеней)

1 степень (возникновение судороги)

2 степень (возникновение и судороги и боли)

3 степень (судорога и потеря сознания)

4 степень (потеря сознания + или прекращение дыхание или прекращение биения сердца)

5 степень (клиническая смерть) прекращение дыхания, биения сердца.

      Электрический шок

    Факторы определяющие исход поражения электрическим током

Закон Ома – ток через человека пропорционален напряжению и обратно пропорционален сопротивлению.

Факторы поражения тока.

1 фактор . Сила тока I (для 50 Гц)

Существует три критерия:

    Ток пороговой ощутимости (примерно 1 мА).

    Пороговые не отпускающий (примерно 10 мА)

    Пороговый фибриляционный (смертельный) примерно 100 мА.

2 фактор . Напряжение прикосновения. Допустимым считается напряжение 20 В.

Напряжение прикосновения – это напряжение между двумя точками электрической сети, к которой дотронулся человек.

3 фактор . Сопротивление тела человека.

При нормальном режиме эксплуатации электроустановок сопротивление тела человека принимает 6,7 кОм. При аварийном состоянии оборудование снижается сопротивление до 1 кОм. Если температура выше 35 градусов и влажность выше 75% сопротивление уменьшается еще в 3 раза.

4 фактор . Длительность воздействия электрического тока на человека.

Кардиоцикл человека определяет дополнительное время воздействия электрического тока. (t=0,2 – 1 сек)

5 фактор . Путь тока через тело человека.

Наиболее опасные пути тока через человека рука – рука, рука – ноги (т.к. проходят через тело человека).

6 фактор Род тока.

Самый опасный переменный. Менее опасный постоянный и выпрямленный.

7 фактор Частота тока.

Самый опасный ток с частотой от 20 до 100 Гц. Чем выше частота тока, тем меньше вероятность электрического удары и выше вероятность электрического ожога.

8 фактор . Контакт в точках акупунктуры.

9 фактор . Внимание. Электрический ток находится в крови человека. Чем больше внимательность, тем больше ток. Он смягчает последствия.

10 фактор . Индивидуальные свойства человека.

11 фактор . Схема включения.

Наиболее опасно двухфазное прикосновение (скорее всего смерть).

Однофазное прикосновение в сети с изолированной нейтралью. (менее опасно, чем предыдущее)

Однофазное прикосновение в сетях с заземленной нейтралью (опасно). Особо когда человек с босой ногой.

12 фактор . Условия внешней среды.

По условиям внешней среды все помещения делят на 4 класса:

    Помещение без повышенной опасности

    Помещение с повышенной опасностью

    Помещения особо опасные

    Помещения с особо неблагоприятными условиями.

Опасность определяется: температурой (35 градусов предел), влажностью (75% предел), электропроводностью полов, наличие пыли в воздухе, наличие заземленного оборудования.

    Классификация электрических сетей

Все электрические сети можно разделить на 2 большие группы:

    Сети с напряжением до 1000 В

    Сети с напряжением свыше 1000 В

Кроме этого электрические сети делят в зависимости от заземления нейтрали:

    С заземленной нейтралью

    С изолированной нейтралью

В зависимости от количества проводов:

    Трехпроводные

    Четырехпроводные

    Пяти проводные

Наиболее распространены четырехпроводные сети с заземленной нейтралью. Эти сети называются TNC.

1 буква Т терра (показывает, что электрические проводники заземлены)

2 буква N. Показывает, что электроустановка замыкается на нейтральный провод.

3 буква С. Показывает, что нулевой защитный и нулевой заземленный входит в один провод.

В настоящее время наиболее широко стали применяться пяти проводные сети. В этих сетях нулевой провод рабочий и нулевой провод защитный разъединены. Обозначаются TN-S.

Для переносного электрооборудования используется трехпроводная сеть с изолированной нейтралью Обозначается IT. Схема эффективна, если она на небольшой протяженности, хорошо обслуживается, находится в сухом помещение.

    Технические способы обеспечения электробезопасности

Электробезопасность включает в себя следующие элементы:

    Технические способы обеспечения безопасности

    1. Электрическая изоляция (не менее 500 кОм)

      Зануление

      Заземление

      Защитное отключение

      Электрическое разделение сетей

      Применение малых напряжений

      Ограждение токоведущих частей

      Применение средств сигнализаций, блокировки, а также знаков безопасности и плакатов.

    Индивидуальные средства защиты

    Организационные мероприятия

    Нормативно-правовые акты

Зануление (Принципиальная схема зануления)

Зануление – это присоединение корпуса к заземленному нулевому проводу.

Принцип действия : превращение замыкания на корпус в короткое замыкание.

Область применения : Трехфазные четырехпроводные сети с глухо заземленной нейтралью

Защитное заземление

Защитное заземление – преднамеренное соединение корпуса с землей.

Принцип действия : снижение до безопасного значения тока через человека.

Область применения : трехфазные трехпроводные сети с изолированной нейтралью (для сетей до 1000 В).

    Электрозащитные средства (называют средства индивидуальной защиты СИЗ)

    Средства изолирующие

    1. Основные. Позволяют работать под напряжением. (Диэлектрические перчатки, изолирующие клещи и указатели напряжения)

      Дополнительные. (диэлектрические калоши, изолирующие подставки, коврики)

    Средства ограждающие

    1. Переносные средства, включающие в себя временные переносные ограждения и изолирующие накладки.

    Средства экранирующие

    1. Переносные экранирующие средства

    Средства предохранительные

Это средства, которые защищают от поражающих факторов не электрической природы, возникающие при работе с электро оборудованием. (очки, щитки, предохранительные пояса, противогазы, невоспламеняющиеся рукавицы).

    Организационные основы электробезопасности

Выше, мы рассмотрели технические основы безопасности, но как показывает анализ несчастных случаев, много людей гибнет из-за плохой организации электробезопасности.

К основным организационным мероприятиям отнесем:

    Оформление работ на электроустановках должно проводиться: по нарядам или распоряжению. Если работы проводятся больше 1 часа или в них участвуют больше трех человек, то должен быть выписан наряд на эти работы. Если работа меньше часа и менее трех человек, то распоряжение.

    Люди, которые проводят электрические работы, обязаны иметь допуск к работе. Для этого им присваивается классификация. Их всего 5 групп.

    Надзор за проведение работ

    Соблюдение режима

    1. труда и отдыха

      Перехода на другие работы

      Окончание работ

    Оказание первой помощи при поражении током

Первая помощь должна оказаться в течении 1 минуты .

Необходимо : установить наличие дыхания, пульса, шока; организовать вызов скорой помощи; проводить реанимационные мероприятия: восстановить дыхание, непрямой массаж сердца.

Радиация в ХХ в. представляет собой растущую угрозу для всего человечества. Радиоактивные вещества, перерабатываемые в ядерную энергию, попадающие в строительные материалы и, наконец, используемые в военных целях, оказывают вредное воздействие на здоровье людей. Поэтому защита от ионизирующих излучений (радиационная безопасность ) превращается в одну из важнейших задач по обеспечению безопасности жизнедеятельности человека.

Радиоактивные вещества (или радионуклиды) – это вещества, способные испускать ионизирующее излучение. Причиной его является нестабильность атомного ядра, в результате которой оно подвергается самопроизвольному распаду. Такой процесс самопроизвольных превращений ядер атомов неустойчивых элементов называют радиоактивным распадом, или радиоактивностью.

Ионизирующее излучение – излучение, которое создается при радиоактивном распаде и образует при взаимодействии со средой ионы различных знаков.

Акт распада сопровождается испусканием излучений в виде гамма-лучей, альфа-, бета-частиц и нейтронов.

Радиоактивные излучения характеризуются различной проникающей и ионизирующей (повреждающей) способностью. Альфа-частицы обладают столь малой проникающей способностью, что задерживаются листом обыкновенной бумаги. Их пробег в воздухе равен 2-9 см, в тканях живого организма - долям миллиметра. Иными словами, эти частицы при наружном воздействии на живой организм неспособны проникнуть через слой кожи. Вместе с тем ионизирующая способность таких частиц чрезвычайно велика, и опасность их воздействия возрастает при попадании внутрь организма с водой, пищей, вдыхаемым воздухом или через открытую рану, так как они могут повредить те органы и ткани, в которые проникли.

Бета-частицы обладают большей, чем альфа-частицы, проникающей, но меньшей ионизирующей способностью; их пробег в воздухе достигает 15 м, а в тканях организма - 1-2 см.

Гамма-излучение распространяется со скоростью света, обладает наибольшей глубиной проникновения, и ослабить его может только толстая свинцовая или бетонная стена. Проходя через материю, радиоактивное излучение вступает с ней в реакцию, теряя свою энергию. При этом чем выше энергия радиоактивного излучения, тем больше его повреждающая способность.

Величина энергии излучения, поглощенная телом либо веществом, называется поглощенной дозой . В качестве единицы измерения поглощенной дозы излучения в системе СИ принят Грей (Гр). На практике используется внесистемная единица - рад (1 рад = 0,01 Гр). Однако при равной поглощенной дозе альфа-частицы дают значительно больший повреждающий эффект, чем гамма-излучение. Поэтому для оценки повреждающего действия различных видов ионизирующего излучения на биологические объекты применяют специальную единицу измерения - бэр (биологический эквивалент рентгена). В системе СИ единицей этой эквивалентной дозы является зиверт (1 Зв = 100 бэр).

Для оценки радиационной обстановки на местности, в рабочем или жилом помещении, обусловленной воздействием рентгеновского или гамма-излучения, используют экспозиционную дозу облучения . За единицу экспозиционной дозы в системе СИ принят кулон на килограмм (Кл/кг). На практике она чаще всего измеряется в рентгенах (Р). Экспозиционная доза в рентгенах достаточно точно характеризует потенциальную опасность воздействия ионизирующих излучений при общем и равномерном облучении тела человека. Экспозиционной дозе в 1 Р соответствует поглощенная доза, примерно равная 0,95 рад.

При прочих одинаковых условиях доза ионизирующего излучения тем больше, чем длительнее облучение, т.е. доза накапливается со временем. Доза, соотнесенная с единицей времени, называется мощностью дозы, или уровнем радиации. Так, если уровень радиации на местности составляет 1 Р/ч, это означает, что за 1 час нахождения в данной местности человек получит дозу в 1 Р.

Рентген является весьма крупной единицей измерения, и уровни радиации обычно выражаются в долях рентгена - тысячных (миллирентген в час - мР/ч) и миллионных (микрорентген в час - мкР/ч).

Для обнаружения ионизирующих излучений, измерения их энергии и других свойств применяются дозиметрические приборы: радиометры идозиметры.

Радиометр - это прибор, предназначенный для определения количества радиоактивных веществ (радионуклидов) или потока излучений.

Дозиметр - прибор для измерения мощности экспозиционной или поглощенной дозы.

Человек в течение всей жизни подвергается воздействию ионизирующего излучения. Это прежде всего естественный радиационный фон Земли космического и земного происхождения. В среднем доза облучения от всех естественных источников ионизирующего облучения составляет в год около 200 мР, хотя эта величина в разных регионах Земли может колебаться в пределах 50-1000 мР/год и более.

Естественный радиационный фон – излучение, создаваемое космическим излучением, природными радионуклидами, естественно распределенными в земле, воде, воздухе, и другими элементами биосферы (например, пищевыми продуктами).

Кроме того, человек встречается с искусственными источниками излучения (техногенный радиационный фон) . К нему относится, например, ионизирующее излучение, используемое в медицинских целях. Определенный вклад в техногенный фон вносят предприятия ядерно-топливного цикла и ТЭЦ на угле, полеты самолетов на больших высотах, просмотр телепрограмм, пользование часами со светящимися циферблатами и т.д. В целом техногенный фон колеблется от 150 до 200 мбэр.

Техногенный радиационный фон – естественный радиационный фон, измененный в результате деятельности человека.

Таким образом, каждый житель Земли ежегодно в среднем получает дозу облучения в 250-400 мбэр. Это уже обычное состояние среды обитания человека. Неблагоприятного действия такого уровня радиации на здоровье человека не установлено.

Совершенно иная ситуация возникает при ядерных взрывах и авариях на атомных реакторах, когда образуются обширные зоны радиоактивного заражения (загрязнения) с высоким уровнем радиации.

Любой организм (растение, животное или человек) живет не изолированно, а так или иначе связан со всей живой и неживой природой. В этой цепочке путь радиоактивных веществ примерно следующий: растения усваивают их листьями непосредственно из атмосферы, корнями из почвы (почвенных вод), т.е. аккумулируют, и поэтому концентрация РВ в растениях выше, чем в окружающей среде. Все сельскохозяйственные животные получают РВ с пищей, водой, из атмосферы. Радиоактивные вещества, попадая в организм человека с пищей, водой, воздухом, включаются в молекулы костной ткани и мышц и, оставаясь в них, продолжают облучать организм изнутри. Поэтому безопасность человека в условиях радиоактивного загрязнения (заражения) окружающей среды достигается защитой от внешнего облучения, заражения радиоактивными осадками, а также защитой органов дыхания и желудочно-кишечного тракта от попадания РВ внутрь организма с пищей, водой ивоздухом. В общем, действия населения в районе заражения в основном сводятся к соблюдению соответствующих правил поведения и осуществлению санитарно-гигиенических мероприятий. При сообщении о радиационной опасности рекомендуется незамедлительно выполнить следующие из них:

1. Укрыться в жилых домах или служебных помещениях. Важно знать, что стены деревянного дома ослабляют ионизирующее излучение в 2 раза, а кирпичного - в 10 раз. Заглубленные укрытия (подвалы) еще больше ослабляют дозу излучения: с деревянным покрытием - в 7 раз, с кирпичным или бетонным - в 40-100 раз.

2. Принять меры защиты от проникновения в квартиру (дом) радиоактивных веществ с воздухом: закрыть форточки, вентиляционные люки, отдушины, уплотнить рамы и дверные проемы.

3. Создать запас питьевой воды: набрать воду в закрытые емкости, подготовить простейшие средства санитарного назначения (например, мыльные растворы для обработки рук), перекрыть краны.

4. Провести экстренную йодную профилактику (как можно раньше, но после специального оповещения!). Йодная профилактика заключается в приеме препаратов стабильного йода: таблеток йодистого калия или водно-спиртового раствора йода. Йодистый калий следует принимать после еды вместе с чаем или водой 1 раз в день в течение 7 суток по одной таблетке (0,125 г) на один прием. Водноспиртовой раствор йода нужно принимать после еды 3 раза в день в течение 7 суток по 3-5 капель на стакан воды.

Следует знать, что передозировка йода чревата целым рядом побочных явлений, таких, как аллергическое состояние и воспалительные изменения в носоглотке.

5. Начать готовиться к возможной эвакуации. Подготовить документы и деньги, предметы первой необходимости, упаковать лекарства, к которым вы часто обращаетесь, минимум белья и одежды (1-2 смены). Собрать запас имеющихся у вас консервированных продуктов на 2-3 суток. Все это следует упаковать в полиэтиленовые мешки и пакеты. Включите радиоточку для прослушивания информационных сообщений Комиссии по ЧС.

6. Постарайтесь соблюдать правила радиационной безопасности и личной гигиены, а именно:

Использовать в пищу только консервированные молоко и пищевые продукты, хранившиеся в закрытых помещениях и не подвергавшиеся радиоактивному загрязнению. Не пить молоко от коров, которые продолжают пастись на загрязненных полях: радиоактивные вещества уже начали циркулировать по так называемым биологическим цепочкам;

Не есть овощи, которые росли в открытом грунте и сорваны после начала поступления радиоактивных веществ в окружающую среду;

Принимать пищу только в закрытых помещениях, тщательно мыть руки с мылом перед едой и полоскать рот 0,5-процентным раствором питьевой соды;

Не пить воду из открытых источников и водопровода после официального объявления о радиационной опасности; накрыть колодцы пленкой или крышками;

Избегать длительных передвижений по загрязненной территории, особенно по пыльной дороге или траве, не ходить в лес, воздержаться от купания в ближайшем водоеме;

Переобуваться, входя в помещение с улицы (“грязную” обувь следует оставлять на лестничной площадке или на крыльце);

7. В случае передвижения по открытой местности необходимо использовать подручные средства защиты:

Органов дыхания - прикрыть рот и нос смоченными водой марлевой повязкой, носовым платком, полотенцем или любой частью одежды;

Кожи и волосяного покрова - прикрыться любыми предметами одежды - головными уборами, косынками, накидками, перчатками. Если вам крайне необходимо выйти на улицу, рекомендуем надеть резиновые сапоги.

Ниже приводятся меры предосторожности в условиях повышенной радиации, рекомендованные известным американским врачом Гейлом - специалистом по радиационной безопасности.

НЕОБХОДИМО:

1. Хорошее питание.

2. Ежедневный стул.

3. Отвары семян льна, чернослива, крапивы, слабительных трав.

4. Обильное питье, чаще потеть.

5. Соки с красительными пигментами (виноградный, томатный).

6. Черноплодная рябина, гранаты, изюм.

7. Витамины Р, С, В, сок свеклы, моркови, красное вино (3 ст. ложки ежедневно).

8. Редька тертая (утром натереть, вечером съесть и наоборот).

9. 4-5 грецких орехов ежедневно.

10. Хрен, чеснок.

11. Крупа гречневая, овсяная.

12. Хлебный квас.

13. Аскорбиновая кислота с глюкозой (3 раза в день).

14. Активированный уголь (1-2 шт. перед едой).

15. Витамин А (не более двух недель).

16. Квадемит (по 3 раза в день).

Из молочных продуктов лучше всего употреблять в пищу творог, сливки, сметану, масло. Овощи и фрукты очищать до 0,5 см, с кочанов капусты снимать не менее трех листов. Лук и чеснок обладают повышенной способностью к поглощению радиоактивных элементов. Из мясных продуктов преимущественно есть свинину и птицу. Мясные бульоны исключить. Мясо готовить таким образом: первый отвар слить, вновь залить его водой и варить до готовности.

ПРОДУКТЫ С АНТИРАДИОАКТИВНЫМ ДЕЙСТВИЕМ:

1. Морковь.

2. Растительное масло.

3. Творог.

4. Таблетки кальция.

НЕЛЬЗЯ УПОТРЕБЛЯТЬ В ПИЩУ:

2. Холодец, кости, костный жир.

3. Вишни, абрикосы, сливы.

4. Говядину: она более всего может быть заражена.

Тема 5. Защита от ионизирующих излучений.

Воздействие ионизирующих излучений на человека.
Ионизирующее излучение

Ионные пары

Разрыв молекулярных соединений

(свободные радикалы).

Биологический эффект

Радиоактивность - самораспад атомных ядер, сопровождающийся излучением гамма-квантов, выбрасыванием - и -частиц. При ежедневной длительности (несколько месяцев или лет) облучения в дозах превышающих ПДД, у человека развивается хроническая лучевая болезнь (1 стадия - функциональное нарушение центральной нервной системы, повышенная утомляемость, головные боли, снижение аппетита). При однократном облучении всего тела высокими дозами (>100 бэр) развивается острая лучевая болезнь. Доза 400-600 бэр - возникает смерть у 50% облученных. Первичный этап воздействия на человека - ионизация живой ткани, молекул йода. Ионизация приводит к разрыву молекулярных соединений. Образуются свободные радикалы (H, OH), которые вступают в реакции с другими молекулами, что разрушает тело, нарушает работу нервной системы. Радиоактивные вещества накапливаются в организме. Выводятся они крайне медленно. В дальнейшем возникает острая или хроническая лучевая болезнь, лучевой ожог. Отдаленные последствия - лучевая катаракта глаз, злокачественная опухоль, генетические последствия. Естественный фон (космическое излучение и излучение радиоактивных веществ в атмосфере , на земле, в воде). Мощность эквивалентной дозы 0,36 - 1,8 мЗв/год, что соответствует мощности экспозиционной дозы 40-200 мР/год. Рентгеновские снимки: черепа - 0,8 - 6 Р; позвоночника - 1,6 - 14,7 Р; легких (флюорография) - 0,2 - 0,5 Р; рентгеноскопия - 4,7 - 19,5 Р; желудочно-кишечного тракта - 12,82 Р; зубов -3-5 Р.

Различные виды облучения не одинаково воздействуют на живую ткань. Воздействие оценивают по глубине проникновения и количеству пар ионов, образующихся на одном см пути частицы или луча. - и -частицы проникают лишь в поверхностный слой тела, - на несколько десятков мкм и образует несколько десятков тысяч пар ионов на пути одного см. - на 2,5 см и образуют несколько десятков пар ионов на пути 1 см. Рентгеновское и  - излучение обладает большой проникающей способностью и малым ионизирующим действием.  - кванты, рентгеновское, нейтронное излучение с образованием ядер отдачи и вторичным излучением. При равных поглощенных дозах Д погл разные виды излучения вызывают не одинаковый биологический эффект. Это учитывается эквивалентной дозой

Д экв = Д погл * К i , 1 Кл/кг =3,876 * 10 3 Р

i =1

где Д погл - поглощенная доза разных излучений, рад;

К i - коэф качества излучения.

Экспозиционная доза Х - применяется для характеристики источника излучения по ионизирующей способности ед измерения кулон на кг (Кл/кг). Дозе 1 Р соответствует образование 2,083 * 10 9 пар ионов на 1 см 3 воздуха 1 Р = 2,58 * 10 -4 Кл/кг.

Единицей измерения эквивалентной дозы излучения является зиверт (ЗВ ), спец. единица этой дозы - биологический эквивалент рентгена (БЭР) 1 ЗВ = 100 бэр. 1 бэр - доза эквивалентного излучения, которое создает такое же биологическое поражение, как и 1 рад рентгеновского или  - излучения (1 бэр = 0,01Дж/кг). Рад - внесистемная единица поглощенной дозы соответствует энергии 100 эрг поглощенной веществом массой 1г (1 рад = 0,01Дж/кг =2,388 * 10 -6 кал/г). Единица поглощенной дозы (СИ) - Грей - характеризует поглощенную энергию в 1 Дж на массу в 1кг облученного вещества (1 Грей = 100 рад).
Нормирование ионизирующих облучений

Согласно нормам радиационной безопасности (НРБ- 76) для человека установлены предельно допустимые дозы облучения (ПДД). ПДД - это годовая доза облучения, которая при равномерном накоплении в течение 50 лет не вызовет неблагоприятных изменений здоровья облучаемого и его потомства.

Нормами установлены 3 категории облучения:

А - облучение лиц работающих с источниками радиоактивных излучений (персонал АЭС);

Б - облучение лиц работающих в соседних помещениях (ограниченная часть населения);

В - облучение населения всех возрастов.

Значения ПДД облучения (сверх естественного фона)

Однократная доза внешнего облучения допускается равной 3 бэр в квартал при условии, что годовая доза не привысит 5 бэр. В любом случае доза накопленная к 30 годам не должна превышать 12 ПДД т.е. 60 бэр.

Естественный фон на земле - 0,1 бэр/год (от 00,36 до 0,18 бэр/год).

Контроль облучения (службой радиационной безопасности или специальным работником).

Осуществляют систематическим измерением доз ионизирующих излучений источников на рабочих местах.

Приборы дозиметрического контроля основаны на ионизационном сцинтилляционном и фотографическом методах регистрации.

Ионизационный метод - основан на способности газов под действием радиоактивных излучений становится электропроводными (за счет образования ионов).

Сцинтилляционный метод - основан на способности некоторых люминесцирующих веществ, кристаллов, газов испускать вспышки видимого света при поглощении радиоактивного излучения (фосфор, флуор, люминофор).

Фотографический метод - основан на воздействии радиоактивного излучения на фотоэмульсию (почернение фотопленки).

Приборы: КПД - 6 (карманный индивидуальный дозиметр 0,02-0,2Р); счетчики Гейгера(0,2-2Р).

Радиоактивность - самопроизвольное превращение неустойчивых атомных ядер в ядра элементов, сопровождающиеся испусканием ядерных излучений.

Известны 4 типа радиоактивности: альфа - распад, бета - распад, спонтанное деление атомных ядер, протонная радиоактивность.

Для измерения мощности экспозиционной дозы: ДРГ-0,1; ДРГ3-0,2;СГД-1

Дозиметры экспозиционной дозы накопительного типа: ИФК-2,3; ИФК-2,3М; КИД -2; ТДП - 2.
Защита от ионизирующих излучений

Ионизирующие излучения поглощает любой материал, но в различной степени. Используют следующие материалы:

к - коэфф. пропорциональности, к  0,44 * 10 -6

Источник - электровакуумный аппарат. Напряжение U = 30-800 кВ, ток анода I= десятки мА.

Отсюда толшина экрана:

d = 1/ * ln ((P 0 /P доп)*B)

На основании выражения построены номонограммы которые позволяют для необходимой кратности ослабления и заданного напряжения определять толщину экрана из свинца.

К осл = P 0 /P доп по К осл и U -> d

к = I*t*100/36*x 2 P доп

I - (мА)- ток в рентгеновской трубке

t (ч) в нед.

P доп - (мР/нед).

Для быстрых нейтронов с энерг.
J x =J 0 /4x 2 где J 0 - абсолютный выход неитронов в 1 сек.

Защита водой или парафином (из-за больш. колич. водорода)

Контейнеры для хранения и транспортировки - из смеси парафина с каким - либо веществом, сильно поглощающим медленные нейтроны (напр различные соединения бора).

Способы и средства защиты от радиоактивных излучений.

Радиоактивные вещества как потенциальные источники внутреннего облучения по степени опасности разделяют на 4 группы - А,Б,В,Г (в убывающем порядке по степени опасности).

Установлены “ Основными санитарными правилами работы с радиоактивными веществами и источниками ионизирующих излучений” - ОСП -72. Все работы с открытыми радиоактивными веществами разделяются на 3 класса (см табл). Сп и ср-ва защиты для работ с открытыми радиоактивными в-ми установлены в зависимости от класса (I,II,III) радиационной опасности работ с изотопами.
Активность препарата на рабочем месте мкКи


Класс опасности работ

А

Б

В

Г

I

> 10 4

>10 5

>10 6

>10 7

II

10 -10 4

100-10 5

10 3 - 10 6

10 4 - 10 7

III

0.1-1

1-100

10-10 3

10 2 -10 4

Работы с открытыми источниками класса I, II требуют специальных мер защиты и проводятся в отдельных изолированных помещениях. Не рассматриваются. Работы с источниками III класса проводятся в общих помещениях специально оборудованных местах. Для этих работ установлены следующие меры защиты:

1) На оболочке прибора мощность экспозиционной дозы должна быть 10 мр/ч;


    На расстоянии 1 м от прибора мощность экспозиционной дозы  0,3 мр/ч;

    Приборы помещаются в специальном защитном контейнере, в защитном кожухе;

    Сокращают продолжительность работ;

    Вывешивают знак радиационной опасности

    Производство работ осуществляется по наряду, бригадой в составе 2 человек, с квалификационной группой - 4.

    До работ допускаются лица старше 18 лет, специально обученные, медосмотры не реже 1 раза в 12 мес.

    Применяются СИЗ: халаты, шапочки, из х.б. ткани, очки из стекла со свинцом, манипуляторы, инструмент.

    Стены помещения окрашены масляной краской на высоту больше 2 метров, полы стойкие к моющим средствам.

ТЕМА 6.

Эргономические основы охраны труда.
В процессе труда на человека воздействуют психофизические факторы, физические нагрузки, среда обитания и др.

Изучением совокупного воздействия этих факторов, согласованием их с человеческими возможностями , оптимизацией условий труда занимается эргономика.
Расчет категории тяжести труда.

Тяжесть труда подразделена на 6 категорий в зависимости от изменения функционального состояния человека по сравнению с исходным состоянием покоя. Категория тяжести труда определяется медицинской оценкой или эргономическим расчетом (результаты близки).

Порядок расчета следующий:

Составляется “ Карта условий труда на рабочем месте”, в которую заносят все биологически значимые показатели (факторы) условий труда с оценкой их по 6-ти бальной шкале. Оценка на основе норм и критериев. “Критерии для оценки условий труда по шестибальной системе”.

Баллы рассматриваемых факторов k i суммируют и находят усредненный балл:

k ср = 1/n  i =1 n k i

Определяют интегральный показатель воздействия на человека всех факторов:

k  = 19.7 k ср - 1.6 k ср 2

Показатель работоспособности:

k работ = 100-((k  - 15,6)/0,64)

По интегральному показателю из таблицы находят категорию тяжести труда.

1 категория - оптимальные условия труда, т.е. такие, которые обеспечивают нормальное состояние организма человека. Опасные и вредные факторы отсутствуют. k   18 Работоспособность высокая, отсутствуют функциональные сдвиги по медицинским показателям.

3 категория - на грани допустимых. Если по расчету категория тяжести труда окажется выше 2 кат., то необходимо принимать технические решения по рационализации наиболее тяжелых факторов и доводить их до нормальных.

тяжести труда.

Показатели психофизиологической нагрузки: напряжение органов зрения, слуха, внимания, памяти; количество информации, проходящей через органы слуха, зрения.

Физическая работа оценивается по энергозатратам в Вт:

Условия окруж среды (микроклимат, шум, вибрация, состав воздуха, освещение и др.). Оцениваются по нормам ГОСТов ССБТ.

Безопасность труда (электробезопасность, облучение, взрыво- и пожаробезопасность). Оцениваются по нормам ПТБ и ГОСТов ССБТ.

Информационная нагрузка оператора определяется следующим образом. Афферентные (операции без воздействия.), эфферентные (операции по управлению).

Определяется энтропия (т.е. количество информации, приходящейся на одно сообщение) каждого источника информации:

Hj = -  pi log 2 pi, бит/сигн.

где j - источников информации, в каждом по n сигналов (элементов);

Hj - энтропия одного (j- го) источника информации;

pi = k i /n - вероятность i -го сигнала рассматриваемого источника информации;

n - число сигналов от 1 источника информации;

ki - число повторений одноименных сигналов или однотипных элементов работы.

Определяется энтропия всей системы


    число источников информации.
Допустимой энтропией информации считается 8-16 бит/сигн.

Определяется расчетный поток информации

Фрасч = H  * N/t,

где N - общее число сигналов (элементов) всей операции (системы);

t - длительность операции, сек.

Проверяется условие Фмин  Фрасч  Фмакс, где Фмин =0,4 бит/сек, Фмакс = 3,2 бит/сек – наименьшее и наибольшее допустимые количества информации обрабатываемые оператором.