Дальнейшая судьба вселенной. Какое будущее ждет Вселенную

Какой будет Вселенная через 10 100 лет? При ее неограниченном расширении все протоны распадутся,
галактики превратятся в черные дыры, а сами черные дыры «испарятся». Если Вселенная в будущем коллапсирует, то процессы ее расширения и сжатия могут циклически повторяться…

В последние годы успехи в изучении взаимодействий элементарных частиц при высоких энергиях способствовали значительному прогрессу в космологии. Попытки описать все основные силы природы как различные проявления одной фундаментальной силы частично оказались успешными в так называемых объединенных теориях взаимодействия элементарных частиц.

Такие теории позволяют хотя бы приближенно описать основные физические процессы в температурном интервале, начиная от крайне низких температур, близких к абсолютному нулю, до температур порядка 10 32 К. Они дают возможность составить общее представление о свойствах материи при плотностях, представляющих космологический интерес - от значений меньше 10 -300 г/см 3 до величин, превышающих 10 100 г/см 3 . Экстремальные условия, свойственные границам указанных интервалов, могут преобладать либо на очень ранних, либо на самых поздних стадиях эволюции Вселенной.

Сравнительно недавно несколько физиков и космологов, в том числе и авторы настоящей статьи, попробовали экстраполировать процесс развития Вселенной в далекое будущее, вплоть до того времени, когда ее возраст достигнет 10 100 лет.

Теория Большого взрыва

В основе метода экстраполяции лежит модель Большого взрыва. Согласно этой модели, началом расширения Вселенной послужил взрыв исключительно плотного компактного образования, произошедший
10-20 млрд. лет назад. В настоящее время считается общепризнанным, что эволюцию Вселенной определили первые моменты с начала ее расширения.

Использование терминологии, связанной со взрывом, объясняется тем, что материя и энергия в наблюдаемой Вселенной представляются как бы разлетающимися в пространстве. Правда, термин «Большой взрыв» не совсем удачный, поскольку ассоциируется с наблюдением взрыва как бы со стороны. Наблюдать же «со стороны» взрывное расширение Вселенной, включающей в себя все сущее, в прин-
ципе невозможно.

Само пространство тоже расширяется в том смысле, что все галактики удаляются друг от друга со скоростями, пропорциональными расстоянию между ними. Наблюдателю, находящемуся в нашей Галактике, другие галактики представляются «разбегающимися» от него. Чем дальше галактика, тем с большей скоростью она удаляется от нас. С увеличением расстояния на 1 млн. световых лет эта скорость возрастает на 17 км/с. Математической основой модели Большого взрыва являются уравнения общей теории относительности Эйнштейна.

Примерно через три минуты после начала расширения Вселенной ядерные реакции привели к синтезу гелия, а также других легких элементов, хотя и в гораздо меньших количествах. Однако Вселенная охладилась слишком быстро, для того чтобы успели образоваться углерод и другие более тяжелые элементы. Поэтому значительная часть водорода сохранилась и послужила ядерным горючим для звезд.

Наблюдаемый избыток вещества по сравнению с антивеществом, возможно, обусловлен реакциями, протекавшими всего через 10 ~ 38 с. после начала расширения. Именно на основе этого предположения большинство объединенных теорий взаимодействия элементарных частиц предсказывают возможность
распада любой ядерной материи.

Из-за недостаточности наших представлений о самых ранних стадиях расширения Вселенной пока нельзя ответить на важнейший вопрос космологии: будет ли Вселенная постоянно расширяться или силы гравитации остановят ее расширение и увлекут пространство и время вновь к состоянию изначального
«огненного шара» ?

Поскольку с помощью экспериментов и наблюдений пока не удается решить вопрос о замкнутости Вселенной, при прогнозировании ее далекого будущего приходится принимать во внимание обе возможности - и ее замкнутость, и открытость.

Открытая Вселенная

Сначала предположим, что критическая плотность не достигается и Вселенная открыта. Что произойдет с ее крупномасштабной структурой (т.е. каково будущее геометрических свойств Вселенной) и локальными образованиями (от протонов до галактик) ?

Согласно современным представлениям, эволюция локальных образований открытой Вселенной должна пройти шесть основных этапов.

  • Первый из них займет 10 14 лет после Большого взрыва. За это время у всех звезд выгорит их «горючее». Основным ядерным горючим на протяжении почти всей жизни звезды является водород, который в ее недрах превращается в гелий. После того как большая часть водородного горючего исчерпана, размеры
    звезды быстро увеличиваются в несколько раз, и она становится красным гигантом. На этой стадии гелий превращается в углерод и другие более тяжелые элементы.

Термоядерные реакции в этих процессах «работают» в таком направлении: водород превращается в гелий, гелий в углерод, а углерод в более тяжелые элементы. Эта последовательность превращений обычно
завершается образованием железа. Ядра железа имеют самую низкую полную энергию на единицу массы по
сравнению с указанными элементами, так что при достижении «железного предела» энергия ядерного горючего Вселенной полностью исчерпывается.

  • Второй этап эволюции Вселенной состоит в потере всеми звездами своих планет. Если к звезде, вокруг которой обращается планета (или планеты), приблизится другая звезда на расстояние, не превышающее радиус планетной орбиты, то последняя будет сильно изменена гравитационным полем приблизившейся звезды и планета может улететь в межзвездное пространство. Средний промежуток времени, в течение которого возможна подобная встреча, зависит от концентрации звезд в данной области пространства, радиуса планетных орбит и от скорости сближения звезд.

Концентрацию звезд в пространстве можно оценить по объему, в котором содержится по крайней мере одна звезда. Звезда с обращающейся вокруг нее планетой «заметает» в пространстве цилиндр, размер которого зависит от размера орбиты планеты и от скорости звезды.

Средний интервал времени между звездными сближениями равен времени, необходимому для того, чтобы объем этого цилиндра стал равен объему, содержащему по крайней мере одну звезду. Концентрация звезд в типичной галактике равна примерно одной звезде на 35 кубических световых лет пространства.

По оценке Ф. Дайсона (Институт высших исследований в Принстоне, США), средний радиус орбиты планеты примерно равен 100 млн. км, а скорость движения звезды в пространстве составляет 50 км/с. Объем цилиндра, «заметаемого» движущейся планетной системой, окажется по прошествии 10 15 лет равным 35 кубическим световым годам, поэтому встреча с другой звездой в течение этого промежутка времени вполне возможна.

На основании этого можно предположить, что примерно через 100 подобных сближений звезда лишится всех своих планет; следовательно, за время, равное 100 * 10 15 лет, т.е. за 10 17 лет, все звезды потеряют свои планеты.

  • Третий этап эволюции Вселенной - результат еще больших сближений звезд. Когда две звезды проходят близко друг от друга, гравитационное взаимодействие между ними способно передать кинетическую энергию от одной звезды к другой. При достаточно большом сближении одна из звезд может приобрести настолько высокую скорость, что «вылетит» из галактики. В силу закона сохранения
    энергии кинетическая энергия второй звезды при этом соответственно уменьшится. В итоге эта звезда приблизится к ядру галактики.

Этот этап может быть назван этапом испарения галактик. Взаимодействие звезд воспроизводит в гигантском
масштабе взаимодействие молекул, испаряющихся с поверхности жидкости. Сходный по характеру обмен энергией, возможно, приведет к тому, что не только звезды, но и значительная часть межзвездного газа также покинет галактики.

После того как примерно 90 % массы галактик испарится, гравитационное поле станет «собирать» оставшиеся звезды и вещество в ядро с возрастающей плотностью. Галактики, которые мы наблюдаем в настоящее время, по-видимому, имеют в центре сверхмассивную черную дыру - область пространства, которую не могут покинуть ни вещество, ни излучение (не принимая во внимание особый случай, связанный с законами квантовой механики).

Даже если никакой черной дыры в центре галактики не существует, плотность ее ядра, вероятно, возрастет настолько, что гравитационные силы преодолеют сопротивление, оказываемое давлением газа, и ядро катастрофически быстро сожмется (коллапсирует). В результате образуется сверхмассивная черная дыра.

Расчеты, аналогичные проведенным нами для случая потери планет звездами, показывают, что испарение звезд из галактик, сопровождающееся коллапсом последних, произойдет к тому времени, когда возраст Вселенной достигнет 10 18 лет.

  • Четвертый и пятый этапы эволюции открытой Вселенной - это космологические явления в поздних ее стадиях, предсказываемые большинством объединенных теорий взаимодействия элементарных частиц. Правда, эти явления не играют существенной роли, пока возраст Вселенной после эпохи коллапса галактик не увеличится по меньшей мере еще в 100 раз.

Если протон подвержен распаду, то процесс этот окажет существенное влияние на те звезды, которые не будут поглощены черными дырами в центре галактик. Это звезды, испарившиеся из галактик. Распад протонов и нейтронов будет поддерживать температуру звездного вещества, гораздо более высокую по сравнению с межзвездной средой.

Если предположить, что время жизни протона составляет 10 30 лет, то скорость распада в звезде размером с
Солнце должна быть порядка 10 27 протонов в год. Распад каждого протона порождает ливень энергетических электронов, позитронов, нейтрино и фотонов. Все эти дочерние частицы, за исключением нейтрино, поглощаются звездой, и поглощенная энергия поддерживает высокую температуру звездного вещества.

Точное значение температуры звезды в эпоху протонного распада можно определить следующим образом. Предположим, что интенсивность излучения звезды равна количеству тепловой энергии, выделяемой в единицу времени при распаде протонов. В этом равновесном состоянии температура зависит от массы звезды, площади поверхности, с которой излучается тепло, энергии покоя и времени жизни протона.

Вычисления показывают, что равновесная температура составляет 100 К для самых массивных «мертвых» звезд (которые, как это ни парадоксально, имеют наименьшие размеры) и примерно 3 К для больших по
размеру и менее массивных звезд.

Звезды охладятся до равновесной температуры к тому времени, когда возраст Вселенной составит 10 20 лет,
после этого их температура будет оставаться примерно постоянной до тех пор, пока большая часть протонов не распадется. Возраст Вселенной к этому времени достигнет 10 30 лет.

Интенсивность излучения звезд будет относительно невысокой, но отнюдь не ниже интенсивности фонового излучения, связанного с Большим взрывом. Температура, соответствующая фоновому излучению, зависит от свойств открытой расширяющейся Вселенной. Если плотность Вселенной меньше критической, то к тому времени, когда ее возраст достигнет 10 30 , эта температура уменьшится до 10 -20 К.

С другой стороны, если плотность в точности равна критической, то Вселенная будет расширяться медленнее и температура, соответствующая фоновому излучению, уменьшится до 10 -13 К. Таким образом, она будет на 13 - 20 порядков ниже температуры «мертвых» звезд.

  • Шестой и последний этап в эволюции открытой Вселенной - это распад черных дыр. Как следует из эйнштейновской теории гравитации, ничто - ни вещество, ни излучение - не может выйти из черной дыры. Существует граница, называемая «горизонтом событий», на которой скорость, необходимая для ухода от черной дыры, оказывается равной скорости света.

Поэтому никакая частица, находящаяся за горизонтом событий, не может приобрести скорость, достаточную для пересечения этой границы. Однако в 1974 г. С. Хокинс из Кембриджского университета (Англия) показал, что в силу законов квантовой механики черная дыра может отдать всю энергию, связанную с ее массой, в результате чего она исчезнет.

Хокинс показал, что интенсивность излучения черной дыры обратно пропорциональна квадрату ее массы.
Сначала эта интенсивность невелика, но по мере уменьшения массы черной дыры она возрастает. Отсюда следует, что все черные дыры должны в конце концов исчезнуть, иначе говоря «испаряться».

К тому времени, когда возраст Вселенной достигнет 10 100 лет, все сверхмассивные черные дыры - результат коллапса галактик - испарятся. Эти процессы испарения, в особенности их последние стадии, будут сопровождаться все более нарастающей эмиссией фотонов. Таким образом, в возрасте 10 100 лет Вселенная будет состоять из крайне разреженного газа электронов и позитронов, нейтрино и фотонов малой энергии, испущенных задолго до испарения черных дыр, а также многочисленных расширяющихся сфер, состоящих из фотонов высокой энергии, родившихся в процессе испарения черных дыр.

Замкнутая Вселенная

Все высказанные выше предположения относятся к открытой Вселенной. Попробуем заглянуть в будущее Вселенной, предположив, что существует достаточное количество несветящейся материи, для того чтобы силы гравитации остановили расширение Вселенной и привели к ее сжатию.

Чем ближе средняя плотность к критическому зна-чению, тем дольше фаза расширения замкнутой Вселенной. Однако мы не знаем таких причин, в силу которых средняя плотность была бы достаточно близкой к критической, для того чтобы Вселенная расширялась в течение времени, достаточного для распада большей части протонов.

Поэтому в фазе максимального расширения замкнутая Вселенная, как и при расширении открытой Вселенной, вероятно, будет состоять из «мертвых» звезд, сверхмассивных черных дыр - остатков галактик, а также нейтрино и фотонов малой энергии.

Основные события в фазе расширения замкнутой Вселенной происходят в той же последовательности, как и события при расширении открытой Вселенной. (Коллапс открытой Вселенной, разумеется, невозможен.) С изучением коллапса связаны работы нескольких исследователей, включая М. Риса из Кембриджского университета (Англия).

По мере увеличения энергии фотонов при сжатии Вселенной они нагревают «мертвые» звезды, что приводит к их быстрому «сгоранию», взрыву или испарению. В процессе возрастания ее плотности черные
дыры поглощают вещество и при столкновении друг с другом сливаются.

Можно рассчитать, что во Вселенной, в которой на каждую галактику приходится по одной сверхмассивной
черной дыре, «мертвые» звезды поглощаются черными дырами вскоре после того, как из них начинает испаряться вещество. Все черные дыры в конце концов сливаются в одну гигантскую черную дыру (коллапс Вселенной).

Что же ждет нашу Вселенную?

Что касается будущего Вселенной, для человека наиболее важным, по-видимому, является вопрос о будущем жизни и разума. Сможет ли разум постоянно поддерживать условия, благоприятные для жизни?

Несколько космологов, в том числе Дайсон и С. Фраучи из Калифорнийского технологического института, предпринимают в настоящее время попытки анализа путей энергообеспечения жизни в далеком будущем, а также проблем связи при освоении цивилизацией все более удаленных областей космического пространства.

Дайсон полагает, что материальными носителями жизни и сознания совсем не обязательно должны быть
только клетки с их ДНК. Существенной особенностью сознания является определенная сложность структуры, которая в принципе может быть реализована в любом «подходящем материале». Тем самым он полагает, что идея о мыслящем компьютере или о мыслящем облаке не может быть отброшена из общих соображений, как философски неприемлемая.

С учетом этих предположений, изменения космической среды, вызванные гибелью или остыванием звезд и их испарением из галактик, не обязательно будут разрушительными для систем, которые можно считать «живыми» и «разумными».

Например, энергию в принципе, можно «добывать» из гравитационного поля сверхмассивной черной дыры. Однако распад протонов и нейтронов возможно приведет к фундаментальным изменениям, ибо кажется маловероятным, что разум может быть основан на системе из электронов и позитронов. Кроме того,
если Вселенная замкнута, то условия, необходимые для жизни, могут существовать только в определенные периоды в течение каждого цикла.

В открытой Вселенной «границы жизни» иные. С испарением черных дыр наступает космический энергетический кризис, поскольку по мере расширения Вселенной оставшиеся частицы вещества и фотоны теряют свою энергию. Любая постоянная скорость потребления энергии произвольными формами жизни в конце концов окажется недостаточной.

С другой стороны, Дайсон полагает, что увеличивающиеся периоды «гибернации», во время которых энергия не потребляется, могут сопровождаться периодами ее потребления. Таким образом, для очень долгого существования цивилизаций в открытой Вселенной потенциальная возможность имеется.

Долгосрочный расчёт будущего Вселенной напрямую зависит от процесса расширения Вселенной: будет ли он бесконечно долго ускоряться, или скорость его расширения будет постоянной на протяжении значительного времени, или же в какой-то момент Вселенная начнет сжиматься. Считается, что это зависит от средней плотности Вселенной (т.к. называемой критической плотности). Если плотность равна критической (вариант плоской Вселенной), то расширение идет с одинаковой скоростью, если больше, то Вселенная в конце концов схлопнется (вариант замкнутой Вселенной), если меньше то будет расширяться с всё большем ускорением, что в итоге приведет к Большому Разрыву (вариант открытой Вселенной).
Данные по сверхновым Ia говорят, что в данный момент расширение Вселенной ускоряется, а значит будет ускоряться и впредь. Следом за Ф. Адамс и Г. Лайфлин для более удобного описания будущего введем понятие космологической декады (η) - десятичный показатель степени возраста Вселенной в годах:

Эпоха звёзд

Нынешняя эпоха, эпоха активного рождения звёзд закончится ровно в тот момент, когда галактики исчерпают все запасы межзвёздного газа, в это же время закончат свой путь и маломассивные звёзды - красные карлики - полностью исчерпав свои источники горения.
Гораздо раньше потухнет Солнце. Но сначала оно превратится в красный гигант, поглотив Меркурий и Венеру. Земля же, если не разделит их судьбу, раскалится настолько, что будет представлять собой сплошной сгусток лавы.

Эпоха распада

Если в предыдущей стадии основное население Вселенной это звёзды, подобные нашему Солнцу, то в эпоху распада - белые и коричневые карлики, и совсем чуток нейтронных звёзд и чёрных дыр. Обычных звёзд нет вообще, они все дошли до конечного этапа своей эволюции: белые карлики, нейтронные звёзды, чёрные дыры.
Если в прошлой стадии горение водорода было самым распространённым процессом, то в эту эпоху его место в коричневых карликах, да и идет гораздо-гораздо медленнее. Ныне главенствует процессы аннигиляции тёмной материи и распад протона.
Галактики также сильно отличаются от нынешних: все звёзды уже неоднократно сталкивались друг с другом. Да и размер галактик значительно больше: все галактики, входящие в состав локального скопления слились в одну.

Эпоха чёрных дыр

На этом этапе фактически всё вещество представляет собой море элементарных частиц. И лишь в некоторых уголках Вселенной продолжают жить нейтронные звёзды. На первую роль выходят чёрные дыры.
Две предыдущих и эпоха ранней Вселенной оставили после себя три разных типа чёрных дыр:
Дыры звёздной массы. Они образовались после вспышек звёзд с массой выше 10 Mʘ.
промежуточной массы.
сверхмассивные, предположительно в центре каждой галактики находится подобные дыры. Их масса порой равна миллиарду солнечных масс.
За предыдущие декады они акрецировали на себя вещество. В эту эпоху, они только излучают. Основных механизма тут два - столкновение двух чёрных дыр и последующее слияние высвобождают значительную гравитационную энергию, образуются гравитационные волны. Вторым механизмом является Излучение Хокинга: благодаря своей квантовой природе некоторым фотонам удаётся пробираться за горизонт событий. Вместе с фотоном чёрная дыра теряет и массу, а потеря массы ведет к ещё большему потоку фотонов. В какой-то момент гравитация больше не может удерживать фотоны света под горизонтом событий и чёрная дыра взрывается, выкидывая последние остатки фотонов.
Однако возможен и другой сценарий. Если Вселенная открытая или плоская, то подобно современным галактикам чёрные дыры могут образовывать свои скопления и сверхскопления, и точно также они будут сливаться. В итоге образуется гигантская чёрная дыра, которая будет жить фактически вечно.

Эпоха вечной тьмы

Это время уже без каких либо источников энергии. Сохранились только остаточные продукты всех процессов, происходящих в прошлых декадах: фотоны с огромной длиной волны, нейтрино, электроны и позитроны. Температура стремительно приближается к абсолютному нулю. Время от времени позитроны и электроны образуют неустойчивые атомы позийтрония, долгосрочная судьба их - полная аннигиляция.
Если в эту эпоху Вселенная продолжает расширяться, то её дальнейшая судьба непредсказуема. Известная нам физика в этот момент времени уже не работает. Это ещё больше усиливает сходство с первыми мгновениями Большого взрыва: море элементарных частиц, высокая однородность и полная неприменимость современных законов физики.
Однако, если Вселенная замкнута, то до этой стадии, как впрочем и до двух предыдущих может не дожить. Из наблюдений сверхновых типа Ia можно дать верхнее ограничение на среднюю плотность вещества в две критические величины, т.е. минимальное время до Большого сжатия 50 млрд. лет.
Вселенная будет напоминать современную вплоть до момента, когда её радиус не станет в пять раз меньше современного. В этот самый момент все скопления во Вселенной образуют единое мегаскопление, однако галактики не потеряют свою индивидуальность: в них всё также происходят рождения звёзд, всё также вспыхивают сверхновые и, возможно, развивается биологическая жизнь. Всему этому придет конец, когда Вселенная ужмётся ещё в 20 раз и станет в 100 раз меньше чем сейчас, в тот момент Вселенная будет представлять собой одну огромную галактику.
Температура реликтового фона достигнет 274К и на планетах земного типа начнет таять лед. Дальнейшее сжатие приведет к тому, что излучение реликтового фона затмит даже центральное светило планетарной системы, выжигая на планетах последние ростки жизни. А вскоре после этого испарятся и сами звёзды, либо будут разорваны на куски, подобную участь разделят и планеты. В тот момент Вселенная будет похожу на ту молодую, что была в первые годы своего рождения. Дальнейшие события будут напоминать те, что происходили в начале, но промотанные в обратном порядке: атомы распадаются на атомные ядра и электроны, начинает доминировать излучение, потом начинают распадаться атомные ядра на протоны и нейтроны, затем распадаются и сами протоны и нейтроны на отдельные кварки, происходит великое объединение. В этот момент, как и в момент Большого взрыва перестают работать известные нам законы физики и дальнейшую судьбу Вселенной предсказать невозможно.

Проблемы современных моделей

Вопрос о форме Вселенной является важным открытым вопросом космологии. Говоря математическим языком, перед нами стоит проблема поиска трёхмерной топологии пространственного сечения Вселенной, то есть такой фигуры, которая наилучшим образом представляет пространственный аспект Вселенной. Общая теория относительности как локальная теория не может дать полного ответа на этот вопрос, хотя некоторые ограничения вводит и она.

Во-первых, неизвестно, является ли Вселенная глобально пространственно плоской, то есть применимы ли законы Евклидовой геометрии на самых больших масштабах. В настоящее время большинство космологов полагают, что наблюдаемая Вселенная очень близка к пространственно плоской с локальными складками, где массивные объекты искажают пространство-время. Это мнение было подтверждено последними данными WMAP, рассматривающими «акустические осцилляции» в температурных отклонениях реликтового излучения.

Во-вторых, неизвестно, является ли Вселенная односвязной или многосвязной. Согласно стандартной модели расширения, Вселенная не имеет пространственных границ, но может быть пространственно конечна. Это может быть понято на примере двумерной аналогии: поверхность сферы не имеет границ, но имеет ограниченную площадь, причём кривизна сферы постоянна. Если Вселенная действительно пространственно ограничена, то в некоторых её моделях, двигаясь по прямой линии в любом направлении, можно попасть в отправную точку путешествия (в некоторых случаях это невозможно из-за эволюции пространства-времени.

Вселенная - глобальный объект, который включает в себя время, космос и всё его содержимое: галактики, звёзды, планеты, их луны, все прочие тела, всю материю, всю энергию. Этот огромный и замечательный объект когда-то зародился. Как у всего хорошего, у Вселенной тоже есть свой конец. С прошлым и зарождением Вселенной учёные вроде как определились. А вот предсказания о конце Вселенной остаются набором теорий, которые выдают разный результат в зависимости от принимаемых значений нескольких постоянных.

Рождение и жизнь

Доминирующей теорией зарождения Вселенной в современной науке является Большой взрыв . Если экстраполировать видимое расширение Вселенной, 13,799 ± 0,021 миллиарда лет назад всё вещество находилось в одной точке нулевого размера с бесконечной плотностью и температурой. Затем началось расширение. Мало какие из последующих процессов находятся в пределах полного понимания современной физики.

Коллапс будет отличаться от изначального расширения. Огромные скопления галактик сблизятся , затем начнут сливаться целые галактики. В какой-то момент звёзды подойдут друг к другу настолько близко, что дойдёт до частых столкновений. Звёзды не смогут рассеивать вырабатываемое тепло и начнут взрываться, оставляя горячий неоднородный газ. Из-за растущей температуры его атомы распадутся на элементарные частицы, которые будут поглощены срастающимися чёрными дырами. Гипотеза не указывает, каков будет финал.

Существует ещё одна гипотеза-продолжение - Большой отскок . Простая формулировка гласит, что Вселенная испытывает циклы Больших взрывов и Больших сжатий. Возможно, и эта Вселенная возникла в результате распада предыдущей. Это означает, что мы живём в одну из точек бесконечного цикла сжатий и взрывов. Впрочем, их нумерация не имеет смысла из-за прохождения точки сингулярности . Некоторые теории утверждают, что результатом Большого сжатия станет то же состояние, с которого всё началось. Произойдёт ещё один Большой Взрыв. Цикл будет бесконечно продолжаться.

Но последние экспериментальные наблюдения дальних сверхновых как объектов стандартной светимости и составление карты реликтового излучения показывают, что расширение не замедляется, а лишь ускоряется .

За миллиарды лет звёзды выгорят. Из их останков родятся белые карлики, нейтронные звёзды и чёрные дыры. Через 150 миллиардов лет от текущего момента при том же ускорении разбегания галактик все галактики за пределами Местной группы выйдут за космологический горизонт. События в Местной группе никак не смогут влиять на события в удалённых галактиках, и наоборот. При наблюдении удалённой галактики время будет замедляться, а затем просто остановится. Другими словами, через 150 миллиардов лет наблюдатель в Местной группе никогда не увидит событий в удалённых галактиках. Более не будут возможны ни полёты к ним, ни какие-либо формы связи.

Через 800 миллиардов лет светимость Местной группы заметно снизится. Стареющие звёзды будут выдавать всё меньше света, красные карлики будут вымирать в белые. Через 2 триллиона лет от текущего момента из-за красного смещения удалённые галактики будет невозможно как-либо обнаружить: даже длина волн их гамма-лучей будет выше, чем размер наблюдаемой вселенной.


Через 100 триллионов лет закончится формирование звёзд, в космосе будут тускло светить их остатки. После того, как потухнет последняя звезда, космос изредка будут озарять вспышки слияний двух белых карликов. Через 10 15 лет планеты либо упадут на остатки своих бывших звёзд, либо уйдут к другим телам. Похожим образом через 10 19 -10 20 лет объекты покинут галактики. Небольшая часть объектов упадёт в сверхмассивную чёрную дыру.

Дальнейшее развитие зависит от того, стабилен протон или нет. Некоторые эксперименты утверждают, что минимальный период полураспада протона составляет 10 34 лет. Если это действительно так, через 10 40 лет во Вселенной останутся почти лишь только лептоны и фотоны. Исчезнут остатки звёзд, останутся лишь чёрные дыры. Возможно, процесс гибели нуклонов займёт больше времени.

Через 10 100 лет от текущего момента чёрные дыры испарятся излучением Хокинга . Наконец, Вселенная будет почти полностью пуста. В ней будут летать фотоны, нейтрино, электроны и позитроны, изредка сталкиваясь.

Если протоны стабильны, то через 10 1500 холодным слиянием и квантовым туннелированием лёгкие ядра превратятся в атомы железа 56 Fe. Элементы тяжелее этого изотопа распадутся с излучением альфа-частиц. Через 10 10 26 лет квантовое туннелирование превратит большие объекты в чёрные дыры. Возможно, железные звёзды превратятся в нейтронные через 10 10 76 лет от настоящего момента.

Есть вероятность, через 10 10 10 56 лет квантовые флуктуации зародят новый Большой взрыв. Хотя в этом вакууме может зародиться даже разумное существо: приблизительная оценка времени зарождения Больцмановского мозга - раз в 10 10 50 лет.

Есть и другие, более экзотические гипотезы. К примеру, в 2010 году учёные предсказали , что через пять миллиардов лет время закончится . Это событие трудно будет увидеть или как-то предсказать, его обещают внезапным. Пространство может кончиться из-за схлапывания ложного вакуума в истинный, в более энергетически низкое состояние, что, возможно, повлечёт полное разрушение объектов Вселенной.

Все эти гипотезы разработаны для текущих реалий простого уравнения состояния для тёмной энергии. Как и следует из имени, о тёмной энергии известно мало. Если верна инфляционная модель Вселенной, то в первые моменты после Большого взрыва существовали другие формы тёмной энергии. Возможно, уравнение состояния поменяется. Изменятся выводы, которые можно сделать из него. Трудно предсказать, что мы узнаем о тёмной энергии, если она получила развитие лишь в конце прошлого века.

Но во всех случаях гибель Вселенной - очень далёкое по меркам человечества явление. Если рассматривать её с масштаба продолжительности жизни одного человека, это слишком глобальное событие, чтобы о нём беспокоиться.

Наука выделяет четыре основных пути, на которых Вселенная может встретить свою судьбу:

1. Большое Замерзание.
2. Большой Хруст.
3. Большое Изменение.
4. Большой Разрыв.

Первый намек на возможный конец Вселенной приходит к нам из термодинамики, науке о тепле. Термодинамика — это такой проповедник физики с дикими глазами, который держит картонный транспарант с простым предупреждением: «Тепловая смерть грядет».

Несмотря на свое название, тепловая смерть Вселенной не представляется огненным адом. Напротив, это смерть всех уровней тепла. Звучит не очень страшно, но тепловая смерть — это хуже, чем запечься до корочки. Это потому, что почти все в повседневной жизни требует определенных разниц температур, прямо или косвенно. Когда Вселенная достигнет тепловой смерти, везде будет одна температура. Это означает, что ничего интересного больше никогда не произойдет. Все звезды умрут, вся материя распадется, все превратится в редкий бульон из частиц и излучения. Даже энергия этого бульона будет уменьшаться с течением времени в результате расширения Вселенной, оставляя все с температурой едва ли выше абсолютного нуля.

В этом процессе Большого Замерзания Вселенная станет равномерно холодной, мертвой и пустой.


После разработки теории термодинамики в начале 1800-х годов, тепловая смерть выглядит как единственным возможным путем конца Вселенной. Но через 100 лет общая теория относительности Эйнштейна провозгласила, что у Вселенной может быть куда более интересная судьба.

Общая теория относительности говорит, что материя и энергия искривляют пространство и время. Это отношение между пространством-временем и материей-энергии — между сценой и актерами на ней — распространяется на всю Вселенную. Все, что есть во Вселенной, по мнению Эйнштейна, определяет конечную судьбу самой Вселенной.

Теория предсказывает, что Вселенная в целом должна либо расширяться, либо сжиматься. Она не может оставаться в прежнем размере. Эйнштейн понял это в 1917 году и так не хотел это признавать, что отказался от собственной теории.

Тогда в 1929 году американский астроном Эдвин Хаббл обнаружил неопровержимые доказательства того, что Вселенная расширяется. Эйнштейн изменил свое мнение, назвав свою предыдущую настойчивость относительно статической Вселенной «величайшей ошибкой» своей карьеры.

Если Вселенная расширяется, когда-то она должна была быть меньше, чем сейчас. Понимание этого привело к появлению теории Большого Взрыва: идеи о том, что Вселенная началась с невероятно малой точки и быстро расширилась. Мы можем увидеть это по «послесвечению» Большого Взрыва — в качестве космического микроволнового фона — постоянного потока радиоволн, идущих со всех направлений в небе.

Получается, судьба Вселенной зависит от очень простого вопроса: будет ли Вселенная расширяться дальше и как быстро?

Для Вселенной, содержащей обычную «начинку» — материю и свет, — ответ на вопрос зависит от количества этой начинки. Больше начинки — значит, больше гравитации, которая стягивает все назад и замедляет расширение. Пока количество начинки не превосходит критический порог, Вселенная будет расширяться вечно и в конечном итоге умрет тепловой смертью.

Но если начинки будет слишком много, расширение Вселенной замедлится и остановится. Тогда Вселенная начнет сжиматься. Сокращающаяся Вселенная будет становиться все меньше и меньше, плотнее и горячее, пока все не закончится в красочном компактном аду, противоположном Большому Взрыву и известном как Большое Сжатие.

На протяжении большей части 20 века астрофизики не были уверены, какой из этих сценариев возымеет действие. Большое Замерзание или Большое Сжатие? Лед или огонь? Они пытались провести космическую перепись, подсчитав количество начинки в нашей Вселенной. Оказалось, что мы до странного близко находимся к критическому порогу, и наша судьба остается под вопросом.

В конце 20 века все изменилось. В 1998 году две соперничающих группы астрофизиков сделали невероятное заявление: расширение вселенной ускоряется.

Обычная материя и энергия не могли бы повлиять на Вселенную таким образом. Это стало первым свидетельством существования нового фундаментального вида энергии, «темной энергии», поведение которой совершенно загадочно для нас.

Темная энергия расталкивает Вселенную в стороны. Мы пока не понимаем, что это такое, но порядка 70% энергии Вселенной приходится на темную энергию, и это число растет день ото дня. Существование темной энергии означает, что количество начинки во Вселенной не определяет ее конечную судьбу. Космосом управляет темная энергия, она ускоряет расширение Вселенной. Следовательно, сценарий Большого Сжатия маловероятен.
Но это не означает, что и Большое Замерзание неизбежно. Есть и другие возможные исходы.

Один из них произошел не в процессе изучения космоса, а из мира субатомных частиц. Это, пожалуй, наиболее странная из возможных судеб Вселенной: что-то фантастическое и при этом вероятное.

В классическом научно-фантастическом романе Курта Воннегута «Колыбель для кошки», «лед-девять» представляет собой новую форму водяного льда с интересными свойствами: он образуется при температуре 46 градусов, а не 0. Если кристалл льда-девять уронить в стакан с водой, вода вокруг кристалла примет его форму, так как его энергия ниже, чем у жидкой воды. Новые кристаллы льда-девять будут проделывать то же самое с водой вокруг себя, и в мгновение ока цепная реакция превратит всю воду в стакане — или в океанах Земли — в твердый лед-девять.

То же самое может случиться в реальной жизни с нормальным льдом и нормальной водой. Если вы наберете в очень чистый стакан очень чистой воды и охладите ее ниже нуля градусов, вода станет переохлажденной: она будет оставаться жидкой ниже естественной точки замерзания. В воде нет никаких примесей, а в стакане нет неровностей, чтобы начал образовываться лед. Но если вы уроните кристалл льда в воду, вода быстро замерзнет, как лед-девять.

Лед-девять и переохлажденная вода могут показаться мало связанными с судьбой Вселенной. Но что-то похожее происходит с самим пространством. Квантовая физика гласит, что даже в абсолютном вакууме присутствует небольшое количество энергии. Но тогда должен существовать другой тип вакуума, содержащий меньше энергии. Если это так, тогда вся Вселенная похожа на стакан с переохлажденной водой. И будет оставаться таковой, пока не покажется «пузырь» вакуума с низкой энергией.

К счастью, мы не знаем таких пузырей. К несчастью, квантовая физика утверждает, что если низкоэнергетический вакуум возможен, пузырь с таким вакуумом неизбежно появится где-то во Вселенной. Когда это произойдет, то подобно истории со льдом-девять новый вакуум «преобразует» старый вакуум вокруг себя. Пузырь будет расти со скоростью света, и мы никогда не увидим его приближения. Внутри пузыря все будет совершенно другим и явно не гостеприимным. Свойства фундаментальных частиц вроде электронов и кварков могут быть совершенно другими, переписывающими правила химии и, возможно, препятствующими образованию атомов. Люди, планеты и даже сами звезды могут быть уничтожены в процессе этого Большого Изменения. В работе 1980 года физики Сидни Коулман и Франк де Люччия назвали его «глобальной экологической катастрофой».

После Большого Изменения и темная энергия будет вести себя по-другому. Вместо того чтобы подталкивать расширение Вселенной, темная энергия может внезапно свернуть Вселенную саму в себя, заставив ее коллапсировать в Большом Сжатии.
Есть и четвертая возможность, и опять темная энергия занимает центральное место. Эта идея очень спорная и невероятная, но не стоит сбрасывать ее со счетов. Темная энергия может быть намного мощнее, чем мы думаем, и сама по себе привести Вселенную к концу без всяких Больших Изменений, Замерзаний и Сжатий.

У темной энергии есть своеобразное свойство. Когда Вселенная расширяется, ее плотность остается постоянной. Это означает, что со временем она разрастается, чтобы идти в ногу с увеличением объема Вселенной. Это необычно, хотя и не нарушает законы физики.

Тем не менее все может быть намного страннее. Что, если плотность темной энергии увеличивается по мере расширения Вселенной? Точнее, что, если количество темной энергии во Вселенной увеличивается быстрее, чем расширяется сама Вселенная?

Эту идею выдвинул Роберт Колдуэлл из Дартмутского колледжа в Ганновере, Нью-Гемпшир. Он назвал это «фантомной темной энергией». И она приводит нас к невероятно странной судьбе Вселенной.

Если фантомная темная энергия существует, тогда нас ждет темная сторона силы, выражаясь языком «Звездных войн». Сейчас плотность темной энергии чрезвычайно низка, намного ниже плотности материи на Земле или даже плотности галактики Млечный Путь, которая намного менее плотная, чем Земля. Однако с течением времени плотность фантомной темной энергии может нарастать и разрывать Вселенную на части. В работе 2003 года Колдуэлл и его коллеги представили сценарий под названием «космический конец света». Как только фантомная темная энергия становится более плотной, чем конкретный объект, этот объект разрывается в клочья.

Сначала фантомная темная энергия разорвет Млечный Путь, отправив его звезды в полет. Затем разорвется Солнечная система, поскольку притяжение темной энергии станет мощнее, чем притяжение Солнца относительно Земли. Наконец, за несколько минут Земля просто взорвется. Сами атомы начнут распадаться, и уже через секунду Вселенная будет разорвана. Колдуэлл называет это Большим Разрывом. Большой Разрыв, по признанию самого Колдуэлла, «весьма диковинный» сценарий.

Фантомная темная энергия бросает вызов фундаментальным идеям Вселенной, вроде допущения о том, что материя и энергия не могут двигаться быстрее скорости света. Это хорошие аргументы против Большого Разрыва. Наблюдения за расширением Вселенной, а также эксперименты с физикой частиц показывают, что в качестве конца света более вероятно Большое Замерзание, за которым последует Большое Изменение, а затем и Большое Сжатие.

Но это довольно мрачный портрет будущего — века холодной пустоты, которые ждут вакуумного распада и финального взрыва, переходящего в небытие. Есть ли какой-нибудь другой вариант? Или мы обречены?

Очевидно, конкретно у нас нет причин переживать о конце Вселенной. Все эти события произойдут через триллионы лет в будущем, за исключением разве что Большого Изменения, так что пока все идет по плану. Также нет причин беспокоиться за человечество. Если не случится иное, генетический разрыв изменит наших потомков до неузнаваемости задолго до этого. Однако смогут ли разумные существа любого вида, люди или нет, выжить в принципе?

Физик Фримен Дайсон из Института перспективных исследований в Принстоне, Нью-Джерси, рассмотрел этот вопрос в классической работе 1979 года. В то время он пришел к выводу, что жизнь сможет изменить себя, чтобы пережить Большое Замерзание, которое, как считал физик, будет менее проблемным, чем ад Большого Сжатия. Но в наши дни он менее оптимистичен, благодаря открытию темной энергии.

«Если Вселенная ускоряется, это плохие новости, — говорит Дайсон. Ускоренное расширение означает, что мы в конечном итоге потеряем контакт со всем, кроме горстки галактик, что резко ограничит количество доступной нам энергии. — В долгосрочной перспективе такая ситуация будет весьма печальной».

Однако положение вещей может измениться. «Мы на самом деле не знаем, будет ли расширение продолжаться и почему оно ускоряется, — говорит Дайсон. — Оптимистичный взгляд на вещи состоит в том, что ускорение будет замедляться по мере расширения Вселенной. Если это произойдет, будущее будет более благоприятным».

Но что, если расширение не будет замедляться или станет известно, что грядет Большое Изменение? Некоторые физики предлагают решение, безумное в принципе. Чтобы избежать конца Вселенной, мы должны построить собственную Вселенную в лаборатории и удрать в нее.

Один из физиков, работавших над этой идее, это небезызвестный Алан Гут из Массачусетского технологического института в Кембридже; он известен своими работами на тему юной Вселенной.
«Не могу сказать, что законы физики допускают возможность такого, — говорит Гут. — Если это возможно, потребуются технологии, выходящие за пределы всего, что мы можем представить. Это потребует гигантского количества энергии, которую еще нужно будет добыть и удержать».

Первый шаг, по мнению Гута, заключается в создании невероятной плотной формы материи — такой плотной, что она будет на грани коллапса в черную дыру. Если сделать это правильно, а затем быстро убрать материю за пределами этого сгустка, можно получить регион пространства, который начнет быстро расширяться.

По сути, вы провоцируете скачок создания совершенно новой Вселенной. По мере расширения области пространства, граница будет сокращаться, создавая пузырь искривленного пространства внутри чего-то большего. Фанатам «Доктора Кто» это может показаться знакомым, и по словам Гута, TARDIS это довольно точная аналогия того, о чем идет речь. В конце концов, «снаружи» сожмется до нуля, и новорожденная Вселенная начнет собственное существование, независимое от судьбы предыдущей Вселенной. Очевидно, как эта схема сработает на самом деле, совершенно непонятно. Мы даже не знаем, возможно это или нет.

Впрочем, у Гута есть другой источник надежды на лучшую судьбу для нашего мира — проблеск надежды. Гут первым предположил, что в самой юности Вселенная расширилась чрезвычайно быстро за долю секунды, эта идея известна как «инфляция». Многие космологи считают, что инфляция является самым точным описанием расширения юной Вселенной, и Гут предлагает создать новую Вселенную, опираясь именно на этот процесс быстрого расширения.

Инфляция имеет интригующие последствия для конечной судьбы Вселенной. Согласно этой теории, наша Вселенная — это малая часть мультивселенной, множества карманных вселенных, которые плавают вокруг.

«В таком случае, даже если мы убедимся, что наша отдельная Вселенная умрет в процессе замерзания, мультивселенная будет жить вечно, и новая жизнь будет рождаться в каждой отдельной карманной Вселенной, — говорит Гут. — Мультивселенная воистину бесконечная, а в бесконечном будущем отдельные Вселенные могут жить и умирать сколько им вздумается».

В общем, ничего хорошего нас не ждет.

Больше всего во Вселенной нас удивляет то, как мало мы о ней знаем. И точно так же, как мы хотим знать, что происходит с нашей смертью, наука задается вопросом о том, что происходит в конце Вселенной. Научное сообщество произвело много теорий - и некоторые действительно впечатляют.

Большое сжатие

Наиболее убедительная теория о том, как началась Вселенная - это Большой Взрыв, когда вся материя сначала была в виде сингулярности, бесконечно плотной точки в бездне из ничего. Потому что-то привело к взрыву. Материя расширилась с невероятной скоростью и в конечном счете сформировала Вселенную, которую мы видим сегодня.

Большое Сжатие, как вы можете догадаться, это противоположность Большому Взрыву. Вся материя расширяется наружу к краям Вселенной под воздействием гравитации нашей вселенной. Согласно этой теории, гравитация в конечном счете замедлится и начнет сокращаться. Это сокращение вернет всю материю (планеты, звезды, галактики, черные дыры - все) обратно в центр, с которого все началось, и сожмет в сингулярность. Мы окажемся в тех же условиях, в которых была вселенная до Большого Взрыва - вся материя вселенной сожмется в бесконечно малую точку - инфинитезималь.

Однако вряд ли это произойдет, если верить тем знаниям, которые у нас сейчас есть, поскольку Вселенная расширяется все более быстрыми темпами.

Неизбежная тепловая смерть Вселенной

Думайте о тепловой смерти как о чем-то, совершенно противоположном Большому Сжатию. Гравитация не сможет преодолеть расширение, поэтому вселенная просто будет расширяться в геометрической прогрессии. Галактики будут отдаляться друг от друга как несчастные любовники, и ночь между ними будет все шире и шире.

Вселенная живет по тем же правилам, что и любая термодинамическая система, и все они в конечном счете закончат одинаково: когда тепло равномерно распределится. Грубо говоря, ветер разнесет тепло по всей Вселенной, и она станет холодной, темной и скучной. Все звезды, которые мы знаем, померкнут одна за одной, и однажды не хватит энергии зажечь новые. Вся вселенная погаснет. Материя будет, но в форме частиц, и их движение будет совершенно случайно. Вселенная будет в состоянии равновесия, и эти частицы будут отскакивать друг от друга, не обмениваясь энергией. Мы останемся «смятым окурком, плевком, в тени под скамьей, куда угол проникнуть лучу не даст. И слежимся в обнимку с грязью, считая дни, в перегной, в осадок, в культурный пласт».

Тепловая смерть из-за черных дыр

Согласно популярной теории, большая часть материи во вселенной кружится вокруг черных дыр. Достаточно взглянуть на галактики, в которых вмещается почти все, и сверхмассивные черные дыры в их центрах. Черные дыры съедают звезды и целые галактики, которые пересекают горизонт событий.

В конечной вселенной эти черные дыры в конечном итоге поглотят большую часть материи и мы останемся наедине с темной вселенной. Время от времени будет вспышка света, почти как молния, когда объект подойдет достаточно близко к черной дыре, чтобы испустить энергию, и снова все погрузится во тьму. В конечном итоге останутся только гравитационные колодцы в нигде. Массивные черные дыры поглотят меньшие и станут еще больше. Таким будет финальное состояние вселенной. Со временем черные дыры испаряются (теряют свою массу), излучая так называемое излучение Хокинга. Поэтому, когда умрет последняя черная дыра, мы останемся с равномерно распределенными субатомными частицами излучения Хокинга.

Конец времени

Если и есть что-то вечное, то это время. Вне зависимости, существует вселенная или нет, время идет своим чередом. В противном случае не было бы никакой возможности отличить один момент от следующего (хотя есть теория, что время - это всего лишь последовательность событий). Но что, если время просто застынет? Что, если не будет больше моментов? Просто одна и та же минута во времени, навсегда.

Предположим, что мы живем во Вселенной, когда никогда не закончится. С бесконечным количеством временем все, что может случиться, случится со 100-процентной вероятностью (согласно теории Пуанкаре). Этот же парадокс произойдет, если вы будете жить вечно. Вы живете бесконечное время, поэтому любое событие случится гарантированно (и произойдет бесконечное количество раз). Поэтому, если вы будете жить вечно, шанс того, что вы застынете во времени, 100-процентный. Поскольку это допущение спутало множество расчетов, которые пытались предсказать конец нашей вселенной, ученые предположили кое-что еще: само время должно однажды остановиться.

Допустим, вы будете живы, чтобы это испытать (миллиарды лет после конца Земли), но вы не сможете понять, что что-то пошло не так. Время просто остановится и все замерзнет, как снимок, как слепок, навсегда. Но и навсегда это не будет, потому что время просто не будет двигаться вперед. Это будет просто один момент времени. Вы никогда не умрете и не постареете. Это своего рода псевдобессмертие, но вы об этом никогда не узнаете.

Большой Отскок

Большой Отскок похож на Большое Сжатие, но куда более оптимистичен. Представьте себе тот же сценарий: гравитация замедляет расширение Вселенной и конденсирует все в одной точке. Согласно теории, этого сжатия может быть достаточно, чтобы начать еще один взрыв, и вселенная начнется снова. Ничто не уничтожится, но перераспределится.

Физикам не нравится это объяснение, поэтому некоторые ученые полагают, что вселенная просто не вернется обратно к сингулярности. Скорее она очень близко приблизится к этому состоянию и отскочит, подобно тому, как мяч отскакивает от пола. Большой Отскок в этом плане очень похож на Большой Взрыв и теоретически может породить новую вселенную. В этом колеблющемся цикле наша вселенная может стать первой вселенной в серии или четырехсотой. Никто не узнает об этом.

Большой Разрыв

Вне зависимости от того, как именно закончится все сущее, ученым нужно использовать слово «большой», чтобы описать этот конец. Согласно этой теории, невидимая сила под названием «темная энергия», ускоряет расширение наблюдаемой вселенной. В конце концов расширение настолько ускорится, как «Энтерпрайз» с варп-фактором девять, что вселенной не останется ничего, кроме как разорваться в ничто.

Самая страшная часть этой теории в том, что хотя большинство этих сценариев случаются после того, как сгорают звезды, Большой Разрыв должен произойти, по ранним оценкам, через 16 миллиардов лет. На этой стадии Вселенная, планеты и теоретически жизнь еще будут существовать. Этот катаклизм может сжечь ее живьем, оторвать от всего сущего и скормить космическим львам, которые живут между вселенными. Неизвестно, что будет. Но эта смерть явно более жестокая, чем медленная тепловая смерть.

Событие вакуумной метастабильности

Эта теория зависит от идеи того, что Вселенная существует в принципиально нестабильном состоянии. Если вы посмотрите на значения квантовых частиц, нетрудно догадаться, почему некоторые полагают, что наша Вселенная балансирует на грани устойчивости. Некоторые ученые предполагают, что спустя миллиарды лет Вселенная просто упадет с этой грани. Когда это случится, в какой-то момент времени во вселенной появится пузырь. Этот пузырь будет расширяться во всех направлениях со скоростью света и уничтожит все, к чему прикоснется. В конце концов этот пузырь уничтожит все во Вселенной.

Но не переживайте: вселенная все еще будет там. Законы физики будут другими, а возможно - и другая жизнь. Но во вселенной не будет ничего, чего мы не смогли бы понять.

Временной барьер

Если мы попробуем вычислить вероятности в мультивселенной (в которой есть бесконечное число вселенных), мы вернемся к проблеме, озвученной выше: все может случиться со 100-процентной вероятностью. Чтобы обойти эту проблему, ученые просто берут участок Вселенной и рассчитывают вероятности для него. Это работает, но границы, которые они очерчивают, неизбежно отрезают участок от остального мира.

Поскольку законы физики не имеют смысла в бесконечной вселенной, единственный вывод, который можно сделать, это то, что существует физическая граница, предел, за который выйти нельзя. И если верить физикам, в следующие 3,7 миллиарда лет мы пересечем этот временной барьер, и для нас вселенная закончится. Хотя куда более вероятно то, что мы просто не можем понять и описать этот принцип с нашей физической терминологией.

Этого не будет (поскольку мы живем в мультивселенной)

По сценарию мультивселенной с бесконечным количеством вселенных, эти вселенные могут возникать даже в процессе нашего существования. Они могли начать возникать даже с Большим Взрывом. Одна вселенная закончит Большим Сжатием, другая тепловой смертью, третья Большим Разрывом и так далее. Но это неважно: в мультивселенной наша вселенная - всего лишь одна из множества других. И даже если наш мир рассыпется радугой в пустоте между вселенными, большая «вселенная» останется. И поскольку в ней будет другая вселенная и существование, и жизнь, нам ничего не угрожает.

Количество новых вселенных всегда будет большем, чем старых, поэтому в теории число вселенных увеличивается.

Вечная вселенная

Долгое время считалось, что Вселенная была, есть и всегда будет. Это одна из первых концепций, которые создали люди о природе Вселенной, однако в последнее время эта теория получила новый толчок, уже серьезно подкрепленный с точки зрения физики.

Так вот, не с сингулярности Большого Взрыва начался отсчет времени, время могло существовать и раньше (за бесконечность до этого), а сингулярность и результирующий взрыв могли стать следствием столкновения двух бран (структур пространства-времени более высокого уровня бытия). В этой модели Вселенная циклична и будет продолжать расширяться и сжиматься всегда.

Мы, кстати, можем выяснить это в ближайшие 20 лет - у нас есть спутник Планк, исследовавший космос в поисках паттернов микроволнового фона, которые подскажут нам что-нибудь о происхождении Вселенной. Это долгий процесс, но он предоставит нам знания о том, с чего началась наша Вселенная, а возможно подскажет, чем она закончится.