Монтажные работы при возведении бетонных сооружений. Монтаж железобетонных конструкций

ПРОЕКТ ПРОИЗВОДСТВА РАБОТ
на монтаж сборных железобетонных конструкций системы "куб 2,5"

1. Общая часть

1. Общая часть

1.1 Настоящий проект производства работ разработан на монтаж сборных железобетонных конструкций системы "куб 2,5" на объекте: "Жилая застройка в микрорайоне "Юго-Западный". Корпуса N 13, 14, 15. Адрес: Московская область, г.Подольск.

2. Технологическая последовательность производства работ

2.1 Общие данные

Каркас системы КУБ-2 5 предназначен для применения в жилых домах и общественных зданиях, а также во вспомогательных зданиях промышленных предприятий с количеством этажей до 15 включительно.

Каркас собирается из изделий заводского изготовления с последующим замоноличиванием узлов.

Каркас системы КУБ-2.5 запроектирован по рамной или рамно-связевой схеме, передача горизонтальных усилий на колонны и элементы жесткости обеспечивается замоноличиванием панелей перекрытия с превращением их в жесткий диск в горизонтальной плоскости.

Несущая способность перекрытий позволяет использование каркаса в зданиях с интенсивностью нагрузок на этаж не более 1300 кг/м.

Разработанные конструкции каркаса предусматривают высоты этажей в зданиях 2,8 м, 3,0 м и 3,3 м при основной сетке колонн 6,0х6,0 м. Для зданий высотой более 15 этажей необходима индивидуальная разработка колонн.

В системе КУБ-2,5 приняты железобетонные сжато-растянутые связи-раскоса по восходящей схеме, обеспечивавшие пространственную жесткость и устойчивость рамно-связевого варианта системы. Несущая способность элемента связи определена из расчета ее работы на продольную силу растяжения.

Сечение элемента связей принято 200х250 мм, армирование 4-мя несущими арматурными стержнями, оба конца которых приварены к закладным петлям, расположенным в обоих концах элемента.

2.2 Монтаж колонн и связей

2.2.1 Подготовительные работы

Перед началом монтажа колонн на фундамент необходимо выполнить следующие работы:

Изготовить монолитные фундаменты стаканного типа, проверить точность выполнения стаканов их привязки к осям здания. Выполненные конструкции принять по акту;

Выполнить подготовку пола подвала;

Убедиться в том, что бетон фундамента набрал 70% проектной прочности.

Перед началом монтажа последующих колонн необходимо выполнить следующие работы:

Смонтировать ограждение перекрытия. Проемы в перекрытиях закрыть деревянными щитами;

Проверить правильность установки нижележащих колонн и принять их по акту;

Подготовить необходимое монтажное оборудование;

Бетон монолитных конструкций (швы) нижележащих колонн и перекрытий должен набрать 70% от проектной прочности.

2.2.2 Последовательность производства работ

2.2.2.1 Работы по установке колонн на фундамент ведутся в следующей последовательности:

Стакан промыть водой под напором и сделать подливку из цементного раствора М-200, верх которой должен соответствовать проектной отметке низа колонны;

После подачи колонны к стакану фундамента, монтажникам подойти к ней, успокоить от колебаний и опустить в стакан. Если высота колонны от обреза стакана не превышает 12 см, то фиксацию ее клиньями от потери устойчивости можно считать достаточной; если этот размер превышает 12 см, то необходима установка специальных подкосов, которые снимаются после монтажа и замоноличивания первого перекрытия. Во время монтажа колонны необходимо следить за тем, чтобы продольные риски располагались по отношению к примыкающим к ним ограждающим конструкциям согласно рисунка 2;

Используя продольные риски на гранях колонны, выполнить ее выравнивание по вертикали и горизонтали после чего зафиксировать колонну с помощью 4-х стальных клиньев;

Пазух в стакане забетонировать мелкозернистым бетоном В25 с последующим уплотнением;

Монтажникам установить вышку туру Арис 1х1,5х9,6 м (возможна замена на аналогичные по характеристикам) и выполнить монтаж телескопических подкосов к колонне. Второй конец подкосов закрепить в перекрытие при помощи анкерных болтов;


Рис.1. Схема фиксации колонны при помощи клиньев

Рис.2. Схема расположения продольных рисок по отношению к примыкающим конструкциям

2.2.2.2 Работы по установке колонн друг на друга ведется в следующей последовательности:

На площадке складирования вставить в сквозное отверстие колонны в уровне верхнего яруса цапфу и зафиксировать ее шпильками. К цапфе и шпильке привязать канат (для осуществления расстроповки после монтажа колонн). Канат прикрепить к колонне. Установить на колонне обойму (для крепления телескопических подкосов) ниже отметки низа перекрытия ребрами вниз;

По сигналу стропальщика подать колонну к месту монтажа, при этом монтажники должны находиться за пределами опасной зоны, образованной от падения колонны;

После подачи колонны к месту установки, монтажникам подойти к ней и успокоить от колебаний. Совместить колонны друг над другом и опустить, при этом стержень нижнего торца верхней колонны должен войти в патрубок верхнего торца нижней колонны. Далее стоит выполнить сварку арматуры согласно проекта;

Монтажникам установить вышку туру Арис 1х1,5х9,6 м (возможна замена на аналогичные по характеристикам) и выполнить монтаж телескопических подкосов к колонне. Второй конец подкосов закрепить в перекрытие при помощи анкерных болтов. Раскосы разрешается убирать только после монтажа плит вышележащего перекрытия;

После монтажа колонны выполнить ее расстроповку, вытащив шпильку из цапфы и выдернув цапфу из колонны веревкой.

2.2.2.3 Монтаж связей колонн ведется в следующей последовательности:

На площадке складирования выполнить предварительную попарную сборку элементов связей в треугольник с помощью монтажной распорки;

Выполнить приварку опорных столиков к колонне;

По сигналу стропальщика подать связь к месту монтажа, при этом монтажники должны находиться за пределами опасной зоны, образованной от падения связи. Железобетонные связи устанавливаются "в елочку" по восходящей схеме;

После подачи связи к месту установки, монтажникам подойти к ней и успокоить от колебаний. Установить связь на столики и приварить;

Выполнить обетонирование опорных конструкций мелкозернистым бетоном B15 в пределах габарита сечения элемента.

Рис.3. Внешний вид колонны и ее узлов

Рис.4. Узел соединения колонн

Рис.5. Узел крепления связей

2.3 Монтаж плит перекрытия

2.3.1 Общие данные

Панели перекрытия разработаны в 2-х модификациях: одномодульные с максимальными размерами 2980x2980х160 и двухмодульные - 2980x5980x160. В торцах панелей предусмотрены петлевые выпуски, обеспечивающие в каркасе здания монолитную связь смежных панелей, и монтажные столики, обеспечивающие в большинстве случаев монтаж перекрытия без поддерживающих стоек.

Одномодульные панели перекрытия разделяются, в зависимости от их местоположения в каркасе, на надколонные (панели непосредственно опирающиеся на колонны) НП - межколонные (панели расположенные между надколонными) МП - и средние (расположенные между межколонными) СП.

2.3.2 Подготовительные работы

Перед монтажом панелей перекрытия необходимо убедиться в том, что:

Расстояния между колоннами соответствует проектным значениям в пределах допусков;

Геометрические размеры панелей (размеры диагоналей, "пропеллерность" и пр.), арматурные выпуски, закладные детали и т.п. соответствуют проектным требованиям;

Отсутствуют технологические наплывы бетона, мешающие монтажу и сварке.

2.3.3 Последовательность производства работ

Вариант монтажа 2-х модульных панелей предусматривает следующую последовательность:

Монтаж 1-модульной надколонной панель НП;

Монтаж 2-модульной панели НМП;

Монтаж 2-модульной панели МСП;

Рис.6. Вариант монтажа 2-модульных панелей

Вариант монтажа I-модульных панелей предусматривает следующую последовательность:

Монтаж надколонной панели НП;

Монтаж межколонной панели МП;

Монтаж средней панели СП;

Рис.7. Вариант монтажа I-модульных панелей

2.3.3.1 Монтаж панелей ведется в следующей последовательности:

Установить на колонну монтажный кондуктор;

По сигналу стропальщика подать плиту НП к месту монтажа, при этом монтажники должны находиться за пределами опасной зоны, образованной от падения плиты;

После подачи плиты к месту установки, монтажникам подойти к ней, успокоить от колебаний и опустить на кондуктор;

Откорректировать уровень панели при помощи специализированных болтов на кондукторе;

Установить под плиту телескопические стойки;

Прикрепить панель НП к колонне с помощью сварки обечайки плиты с рабочей арматурой колонны. После выполнения сварочных работ разрешается снять кондуктор;

В местах установки межколонных связей выполнить приварку к обечайке связей панели конструкций оголовка вершины треугольника;

Идет завершение процесса оплаты.

Полный текст документа будет доступен вам, как только оплата будет подтверждена.
После подтверждения оплаты, страница будет автоматически обновлена , обычно это занимает не более нескольких минут.

Приносим извинения за вынужденное неудобство.

Основной материал строительной индустрии - бетон. Из него производятся в заводских условиях, на полигонах, прямо на объектах строительства конструкции и их элементы различных типов, назначения, которые формируют несущую структуру и внешний облик сооружений. Нормативные документы устанавливают практические требования к процессу монтажа бетонных и железобетонных изделий.

Какие бывают железобетонные конструкции?

Изделия подразделяются на сборные, монолитные, сборно-монолитные. Первые - заводские образцы, которые объединяются в каркас или соединяются с ним сваркой и последующим бетонированием. Вторые - отливаются на объектах, каркасы которых будут принимать повышенные нагрузки (фундаментные плиты, самонесущие каркасы и пр.).

Последние - рациональным образом объединяют разнородные элементы первого и второго типов. Заводские конструкции оснащаются обычной и (увеличивает сопротивление нагрузкам, действующим на изгиб). Монолитные изделия содержат только обычный арматурный каркас.

СНиП 3.03.01-87, устанавливающий нормы для всех этапов установки железобетонных конструкций, технологии и материалы. ГОСТ 10922-90, устанавливающий общие условия формирования изделий из арматуры и их сварки в железобетонных конструкциях. ГОСТ 14098-91, стандартизирующий виды конструкционного исполнения, геометрические параметры соединений при сварке закладных деталей и арматуры. Требования перечисленных документов включаются в проект производства работ на объектах строительства (ППР).

Как происходит установка конструкций?

Монтаж сборных бетонных и железобетонных конструкций включает:

  • промежуточное складирование и перемещение изделий;
  • установку железобетонной продукции из сборных элементов;
  • армирование в монолитных конструкциях;
  • заливку и уход за бетоном до набора прочности;
  • обработку бетона.

Складирование и перемещение

Размещение изделий на стройплощадке производится с учетом последовательности монтирования. Продукция укладывается в штабели (допустимое количество индивидуально для конкретного типа) на прокладки высотой около 3 см, располагаемые строго друг под другом, или в групповые кассеты. Компоненты каркаса размещаются в зоне монтажа (рабочий радиус досягаемости крана без изменения вылета его стрелы) крана. Изменение вылета стрелы допускается только для переноса плит перекрытия. Перемещение структурных компонентов производится только грузоподъемной техникой.

Стропы крепятся за монтажную арматуру в соответствии с чертежами. Допускается ручной перенос грузов весом до 50 кг (волоком - запрещается) на дальность до 30 м. Перед сборкой допускается раскладка на прокладки однотипных компонентов (колонны, балки и пр.) с целью осмотра состояния выпусков арматуры. Такие конструкционные выпуски защищаются от повреждений, крепить стропы к ним недопустимо.

Поднятие и опускание грузов осуществляется со статичным зависанием над точкой отрыва/установки на высоте 300 мм. Пространственное положение изделий при этом должно соответствовать проектному положению при установке в структуру здания (примеры - панели, колонны, лестничные марши и пр.). Для улучшения ориентации в воздухе пользуются одной-двумя оттяжками, прикрепленными к ним. Метизы на стройплощадке размещаются в рассортированном виде в специальном помещении.

Бетонные работы

Составляющие композиций бетона дозируются по массе. Объем воды в растворе - ориентир для объема модифицирующих добавок, которые изменяют свойства бетона (морозостойкость, пластичность, текучесть, гидрофобность и пр.). Пропорции составляющих определяются относительно всех партий (марок) цемента и заполнителей путем и . Не допускается повышать удобоукладываемость бетона добавлением воды в затворенную смесь. Требования, устанавливаемые СНиП 3.03.01-87 к формированию растворов, показаны в таблице 1.


Места укладки (формы), их швы и поверхности очищаются от сезонной осадочной влаги, грязи, мусора, пятен масла и жиров, цементной пылевой пленки, затем промываются под давлением и высушиваются. Размер фракций зерен заполнителя не должен быть больше 1/3 от размера сечения шва в самом узком месте, не должен превышать 3/4 минимальной дистанции между армирующими прутками. Бетон заливается послойно. Вибротрамбовка производится погружением инструмента на глубину 50 – 100 мм.

Его опора на закладные детали, опалубку и арматуру недопустима. Шаг перемещения по поверхности - 1,5 радиуса действия оборудования. Модели поверхностного действия переставляются с перекрытием участков трамбования на 100 мм. Последующие слои раствора заливаются после набора прочности предыдущим слоем 1,5 МПа.

Обработка бетона

После укрывается цементной стяжкой высотой 20 – 30 мм, которая покрывается гидроизолирующим составом. подвергается формированию технологических отверстий и проемов, антидеформационных швов (набор прочностных показателей от 50% и выше). Предпочтительно применение алмазных режущих инструментов (исключают вибрационные нагрузки) с принудительным отводом тепла с рабочего участка.

Армирование


Осуществляется установкой в опалубки заводских плоских армирующих сеток, имеющих продольные и поперечные компоненты. Такое армирование группирует длинные стержни и удерживает поперечные от деформирования. Объемное соединение слоев конструкционной арматуры внутри опалубки и рабочей арматуры разных изделий осуществляется вязальной проволокой, сваркой, винтовыми муфтами, обжимными гильзами и пр. Перед заливкой проверяется качество монтирования металла, форма освобождается от мусора, окалины.

Армирующая конструкция должна со всех сторон иметь высотой 20 – 30 мм. Заливка раствора сопровождается уплотнением штыкованием и вибротрамбовкой. (отношение суммы площадей сечения армирующего металла к площади сечения конструкции) нижних колонн здания устанавливается не меньше 2,01%, верхних - 0,79%. Бетонную конструкцию металл может наполнять не больше, чем на 0,1%.

Процессы монтажа железобетонных конструкций


Подготовка фундаментов под колонны

Точность, трудоемкость и продолжительность установки колонн и других элементов каркаса промышленных сооружений зависит прежде всего от правильного устройства фундаментов под колонны и точности подготовки опорных поверхностей.

В случае применения железобетонных фундаментов стаканного типа небольшой высоты следует учитывать их особенности. Верхний уровень этих фундаментов значительно ниже уровня бровки котлована. Колонны на таких фундаментах следует монтировать при открытых котлованах.



Более высокие фундаменты, верхний уровень которых располагается примерно на 0,15 м ниже отметки пола, дают возможность до монтажа колонн уложить фундаментные балки, засыпать котлованы, спланировать площадку и устроить подготовку под полы, чтобы обеспечить благоприятные условия для работы транспортного и монтажного оборудования. С целью улучшения условий транспортирования и монтажа применяют также фундаменты с подколонниками.

Для обеспечения точности и ускорения установки колонн требуется правильно расположить стаканы фундаментов в плане (смещение осей допускается не более ±10 мм); обеспечить точные проектные отметки дна стаканов (допуск ±20 мм); выдержать заданный зазор между проектным положением граней колонн и стенками стакана. Целесообразно устройство в подливке дна стакана неглубокого приямка (рис. 2), соответствующего очертаниям торца колонны, располагаемого по разбивочным осям и обеспечивающего фиксированную установку колонны по проектным осям. Для образования приямка в дне стакана применяют металлические формы .

Один тип форм используют для устройства приямков при установке колонн на заранее подлитую до проектной отметки поверхность дна стакана фундамента. Конструкция этой формы высотой 7,5 см снабжена крепежными винтами для установки ее относительно разби-вочных осей. Другой тип форм применяют при неподлитых на проектную отметку фундаментах. В отличие от первого типа форма оборудована винтами для установки не только по проектным осям, но и на проектную отметку. Процесс подливки и образования приямков состоит из следующих операций: установки звеном из двух монтажников 3, 4-го разряда во главе с геодезистом форм первого типа на заранее подлитые поверхности фундаментов или форм второго типа в тех случаях, когда фундаменты приняты без подливки на проектную отметку; смазки установленных форм техническим маслом; подачи на дно стакана бетона мелкой фракции и разравнивания штукатурной кельмой; выдержки бетона в течение 2-3 ч разборки форм.

После снятия форм на дне стакана фундамента остается приямок с очертанием опорного торца колонны. Благодаря защемлению в приямке нижняя часть колонн при выверке вертикальности не смещается с проектных осей, что часто имеет место и значительно задерживает монтаж, осуществляемый по обычной технологии. Весь процесс подливки дна фундамента, начиная с установки формы и кончая разборкой. по данным опыта занимает 20-30 мин.

Рис. 1. Схема опирания сборных железобетонных колонн в фундаменты стаканного типа: 1 - сборная железобетонная колон на; 2 - приямок в подливке дна стакана; 3 - фундамент

Проверка состояния конструкций

Проверку состояния конструкций производят с целью обеспечения правильной и быстрой установки их, соединения в проектном положении и надежности их работы в сооружении. Путем проверки сборных железобетонных конструкций устанавливают: наличие на них марок и штампов ОТК ; наличие паспортов; соответствие геометрических размеров конструкций рабочим чертежам; наличие на конструкции отметки о ее массе; отсутствие в бетоне трещин, выбоин и поверхностных раковин, превышающих допустимые размеры; отсутствие отклонений от геометрической формы (прямолинейность, горизонтальность опорных поверхностей); наличие и правильность расположения закладных деталей, отсутствие на них наплывов; наличие противокоррозионного покрытия на закладных деталях; наличие проектных и монтажных отверстий и их диаметр; чистота отверстий (отсутствие в них бетона); соответствие проекту выпусков арматуры и отсутствие в них трещин и недопустимых деформаций; соответствие проекту монтажных петель и отсутствие в них деформаций и трещин; наличие осевых рисок на тех элементах, у которых нет иных ориентиров, обеспечивающих возможность их правильной взаимной установки; наличие на односторонне армированных элементах знаков, указывающих на правильное положение элемента во время разгрузки и монтажа.

По геометрическим размерам и форме сборные железобетонные конструкции для зданий не должны иметь отклонений от проектных размеров более приведенных в СНиП I-B.5-62.

Укрупнительная сборка конструкций

В монтажные блоки укрупняют элементы колонн по длине, колонн с ригелями, ферм покрытий пролетами 30-36 м, доставляемых в виде двух половин, панелей стен, опускных колодцев, бункеров и других конструкций. Укрупнение выполняют на специальных стендах или в кондукторах. Элементы, подлежащие укрупнению, подают краном со склада и укладывают на опоры стенда таким образом, чтобы совпали их продольные оси. Затем производят подгонку торцов или выпусков арматуры для достижения соосности элементов или отдельных стержней. После установки дополнительных хомутов и сварки стержней устанавливают опалубку и производят бетонирование стыка. Марка бетона, которым бетонируется стык, и прочность его после твердения устанавливаются проектом. Обычно марку принимают такой же, как у соединяемых элементов, либо на одну марку выше.

Строповка конструкций

Строповку сборных конструкций производят при помощи стропов, захватов или траверс. Захватные приспособления для строповки должны обеспечивать удобные, быстрые и безопасные захват, подъем и установку конструкций в проектное положение и их расстроповку. Одним из важных требований к захватным приспособлениям является возможность расстро-повки с земли или непосредственно из кабины крана. Этому требованию в наибольшей степени удовлетворяют полуавтоматические захватные устройства.

Стропы (рис. 2, а, б) изготовляют из стальных канатов; бывают они двух основных видов - универсальные и облегченные. Универсальные стропы выполняют в виде замкнутой петли, облегченные - из куска каната с закрепленными на обоих концах крюками, петлями на коушах или карабинами. Стропы могут быть изготовлены с одной, двумя, четырьмя и более ветвями в зависимости от вида и массы поднимаемого элемента.

Рис. 2. Стропы: а - универсальный; б - облегченный с крюком и петлей; в - тросовый с двумя ветвями; г - то же, с четырьмя ветвями

Так как с увеличением угла а увеличиваются усилия в ветвях стропа, что может вызвать разрыв или выдергивание монтажных петель, а также увеличить сжимающие усилия в поднимаемом элементе, угол а принимают не более 50-60°.

Для монтажных работ чаще всего применяют стропы из стальных канатов диаметром от 12 до 30 мм с допускаемыми нагрузками на одну ветвь: универсальных стропов от 2,15 (диаметром 19,5 мм) до 5,25 тс (диаметром 30 мм); облегченных стропов от 0,65 (диаметром 12 мм) до 5,25 тс (диаметром 30 мм). При изготовлении стропов более чем с тремя ветвями следует соблюдать их равенство по длине, иначе нагрузка в ветвях окажется неравномерной. Равномерное распределение нагрузки на каждую из ветвей стропа обеспечивается в четырехветвевом стропе и в балансирном стропе. Балансирный строп состоит из ролика, закрепленного между двумя щеками, через который пропущен облегченный строп. Наличие ролика обеспечивает равномерное распределение нагрузки на оба конца стропа независимо от положения груза.

Рис. 3. Схема усилий в ветвях стропа

Рис. 4. Строповка колонн универсальным стропом: 1 - колонна; 2 -деревянные подкладки; 3 -строп

Во время работы стропы изнашиваются от смятия, истирания в узлах, перетирания проволок об углы конструкций, перекручивания и ударов. Срок службы стропов, обычно составляющий от 2 до 3 месяцев, может быть увеличен при условии их бережливой эксплуатации: применения деревянных или стальных прокладок между стропами и поднимаемой конструкцией и пр.

Строповку сборных железобетонных элементов во многих случаях производят за петли (скобы), закладываемые в бетон при изготовлении изделий. Недостаток этого способа заключается в необходимости затраты арматурной стали на устройство петель.

Захваты позволяют производить подъем многих железобетонных элементов (колонн, балок, ферм, плит) без устройства петель. Для этой цели применяют траверсные стропы, строп-захваты, полуавтоматические пальцевые фрикционные, клещевые, консольные, клиновые и другие захваты.

Траверсы, имеющие вид балок или треугольных ферм с подвешенными стропами, позволяют выполнить подвеску поднимаемого элемента за несколько точек. При подъеме грузов траверсами исключаются или уменьшаются сжимающие усилия в поднимаемых элементах, возникающие от их собственной массы при применении наклонных стропов. Строповку сборных железобетонных фундаментов под колонны производят за петли, заложенные в бетоне, двухветвевым или четырехветвевым стропом. Строповку колонн выполняют при помощи универсальных (рис. 4) и траверсных стропов (рис. 5), строп-захватов или полуавтоматических захватов. Строповку колонн универсальными стропами и строп-захватами производят в обхват. Траверсные стропы и захваты крепят при помощи круглого стержня (пальца), пропущенного через отверстие, оставленное в колонне при ее изготовлении. Недостаток строповки при помощи универсальных и траверсных стропов (обычных захватов): при расстроповке монтажник должен подниматься на устанавливаемую колонну. Чтобы избежать этого применяют строп-захваты или полуавтоматические захваты.

Рис. 5. Строповка колонн траверсным стропом

Рис. 6. Строп-захват для монтажа колонн: 1 - затяжная тросовая петля; 2 - подъемная тросовая пегля; 3 - за жимной барашек; 4, 5 - серьги; 6 - подъемная скоба; 7 - стакан с пружинным пальцем-фиксатором; 8 - тросик для расстроповки; 9 - прокладки

Строп-захват (рис. 6) обеспечивает строго вертикальное положение колонны во время монтажа, удобство строповки и расстроповки. Для колонн размером 40X40X600 см массой 3 т петли захвата изготовлены из троса диаметром 16 мм, подъемная скоба и серьги - из полосовой и листовой стали, прокладки - из разрезанных вдоль труб диаметром 2”. Пальцы точеные диаметром 25-30 мм. Строп-захват надевается на колонну, уложенную в штабель на прокладках, подъемная петля накидывается на крюк крана, колонна затягивается и барашки закрепляются. По окончании установки и закрепления колонны размыкается палец-фиксатор и захват свободно сходит с колонны.

Полуавтоматический захват (рис. 7) для монтажа колонн представляет собой раму П-образной формы с жестко приваренной к ней коробкой, на которой размещен электродвигатель с редуктором, приводящий во вращение винт. Гайка, двигаясь по винту, перемещает вдоль коробки запорный палец, который при этом входит в пространство между боковыми гранями рамы или выходит из него. Рама прикрепляется тросовыми тягами к балочной траверсе. Электродвигатель захватного устройства приводят в действие из кабины крановщика, куда протянут кабель, или от дублирующих кнопок управления, установленных на захватном устройстве. Для возможности быстрого отсоединения захватного устройства от крана в кабель вмонтирован штекерный разъем. Захватное устройство имеет набор запорных пальцев различного диаметра, легко сменяемых на монтажной площадке в зависимости от изменения массы поднимаемой колонны. Процесс строповки и расстроповки колонн с использованием захватных устройств, имеющих дистанционное управление, осуществляется следующим образом.

Раму захватного устройства наводят на подготовленную к монтажу колонну так, чтобы запорный палец находился против строповочного отверстия в колонне. Затем нажимают кнопку, включающую электродвигатель, запорный палец приводится в движение, входит в отверстие колонны, достигает противоположной боковой грани и останавливается при помощи

конечного выключателя. После подъема, установки и закрепления колонны нагрузка с захватного устройства снимается и крановщик, нажав кнопку в кабине, выводит запорный палец из отверстия колонны, освобождая таким образом захватное устройство без помощи монтажника.

Для подъема колонн массой до 10 г применяют фрикционный захват (рис. 8), удерживающий монтируемый элемент трением от собственной массы колонны. Расстроповку захвата производят путем опускания крюка крана после закрепления колонны на фундаменте; при этом захват несколько раскрывается и опускается вниз по колонне.

Строповку балок производят универсальными стропами в обхват (рис. 9), двухветвевыми стропами или траверсами (рис. 10) за петли, или через отверстия, оставленные в бетоне. Для строповки тяжелых балок и ригелей ба-лансирную траверсу посредством двух хомутов и четырех ветвей стропа подвешивают к кольцу, надеваемому на крюк крана. На концах траверсы переставными болтами закрепляются опорные хомуты с карабинами. Строповку ферм покрытий осуществляют при помощи решетчатых или балочных траверс универсальными стропами, стропами с полуавтоматическими механическими захватами (рис. 11) или электрическими захватными устройствами. Более совершенной является строповка ферм при помощи полуавтоматических захватных устройств. Строповку выполняют в обхват или через отверстия в верхнем поясе фермы.

Полуавтоматическое захватное устройство для подъема стропильных ферм (рис. 12) состоит из жесткой траверсы, к которой подвешиваются захваты с кабелем, аналогичные описанным выше, но с несменяемыми запорными пальцами. При строповке фермы пальцы наведенных на нее захватных устройств проходят под ее верхним поясом. После установки и закрепления фермы пальцы выводятся обратно в коробки захватных устройств, освобождая их и поддерживающую траверсу для следующих операций.

Строповку стеновых железобетонных панелей, находящихся до подъема в вертикальном положении, обычно выполняют двухветвевыми стропами или траверсами, зацепляя их за петли, заделанные в верхнем торце панели. Строповку плит перекрытий и покрытий производят четырехветвевыми стропами либо траверсами за петли, или через монтажные отверстия в бетоне, или при помощи консольных захватов.

Рис. 7. Полуавтоматический захват для монтажа колонн: 1 - рама; 2 - тросовые тяги; 3 - балочная траверса; 4 - штекерный разъем; 5 - кабель; 6 - электродвигатель; 7 -коробка; 8 - гайка; 9 - дублирующая кнопка управления; 10 - винт; 11 - запорный палец

Рис. 8. Фрикционный захват: 1 - траверса; 2 - нодвески; 3 - вилочные стяжки; 4 - упорные планки; 5 - защелки

Рис. 9. Строповка подкрановых балок универсальными стропами: 1 - балка; 2 - стальные подкладки; 3 - стропы

Рис. 10. Строповка железобетонных балок, прогонов и ригелей: а - легких балок; б - тяжелых балок, прогонов и ригелей; 1 - хомут; 2 - переставные болты; 3 - опорные хомуты; 4-стропы; 5 - балансир-ная траверса; 6 - карабин

Строповку плит выполняют за четыре (рис. 13, а) и более точек. Для строповки крупноразмерных железобетонных плит применяют трех-траверсные и трехблочные захватные приспособления с увеличенным числом точек подвеса, благодаря чему снижаются монтажные напряжения в поднимаемых элементах (рис. 13, б). Трехтраверсное приспособление может быть использовано также для подъема стеновых панелей, лестничных маршей, балок, колонн и других сборных элементов путем захвата их тремя, двумя или одной траверсой. Однако это приспособление металлоемко, громоздко и требует больших усилий рабочего при натяжении подвесок с траверсой во время зацепления конструкции за монтажные петли. Указанных выше недостатков не имеет трех-блочное приспособление (рис. 13, в), но оно требует большей высоты подъема крюка крана (примерно на 2 м), что может затруднить подбор монтажного крана для подъема плит перекрытий верхних этажей зданий. Крупноразмерные плиты поднимают также при помощи универсальных (рис. 14) или пространственных (рис. 15) траверс, или универсальных уравновешивающихся стропов (рис. 16). Универсальная траверса (рис. 14) состоит из несущих балок, изготовленных из двух швеллеров, в каждом из которых смонтированы направляющие ролики. На концевых кольцах каждой балки закреплен канат, который несет по три блока с крюками. Несущие балки соединены между собой двумя трубами с отверстиями для установки болта, которым фиксируется то или иное расстояние между несущими балками, в зависимости от ширины поднимаемой панели.

Универсальные уравновешивающиеся стропы, называемые также балансирными траверсами (рис. 16), состоят из двух пятитонных блоков, соединенных между собой общим кольцом, которое подвешивается на крюк крана.

Рис. 11. Схемы строповки железобетонных ферм: 7 -ферма; 2 -траверса; 3 - полуавтоматический механический захват; 4 - палец; 5 - верхний пояс фермы

Рис. 12. Полуавтоматическое захватное устройство для монтажа железобетонных ферм: 1 - захваты; 2 - жесткая траверса; 3 - кабель

Рис. 13. Строповка плит и панелей перекрытий: а - четырехветвевым стропом; б - трехтраверсным приспособлением е - трехблочным приспособлением

Через каждый из блоков перекинуты канаты толщиной 19,5 мм; к концам канатов подвешены карабины, а к концам канатов - двухтонные блоки с перекинутыми через них канатами толщиной 13 мм, заканчивающимися также карабинами. Блоки свободно надеваются на оси, благодаря чему обеспечиваются равномерное натяжение свешиваемых с них канатов и равномерное распределение нагрузок на все шесть карабинов захватного приспособления. При помощи такого приспособления панели перекрытий можно кантовать в горизонтальное положение, если их перевозили в вертикальном. Кантование производится на весу. Это приспособление применяют и для подъема стеновых панелей.

Плиты с монтажными отверстиями стропуют при помощи клиновых или других захватов. Клиновой захват (рис. 17) имеет вид скобы с ветвями, соединенными между собой стальными стержнями в трех местах; применяется для строповки панелей перекрытий. На нижний стержень, как на ось, насажен неравноплечий отрезок из стали квадратного сечения, который может вращаться. В свернутом положении ось отрезка (рис. 17, а) совпадает с осью скобы, а в развернутом занимает положение, перпендикулярное оси скобы (рис. 17, б). При использовании для подъема панели свернутый захват вставляют в ее монтажное отверстие, причем отрезок вследствие разного веса плеч будет стремиться повернуться на 180°; чтобы не допустить этого, захват приподнимают до соприкосновения отрезка с панелью и закрепляют клином.

Строповка железобетонных плит перекрытий при помощи консольных захватов, подвешенных к траверсе (рис. 18) не требует устройства монтажных петель в бетоне. Для лучшего использования грузоподъемности монтажных кранов целесообразно применять пространственные траверсы, при помощи которых одновременно поднимается пакет из нескольких плит. Траверса этого типа (рис. 19) состоит из стальной треугольной формы, по концам которой прикреплены две поперечные траверсные балки с подвешенными к ним стропами для захвата каждой плиты. Конструкция

траверсы позволяет последовательно зацеплять за монтажные петли три плиты. При таком способе подъема использование монтажного крана значительно улучшается. Панели сборных железобетонных оболочек поднимают при помощи траверс (рис. 20). Для монтажа конструкций вне зоны действия кранов применяют специальные консольные траверсы (рис. 21).

Подъем, наводка и установка на опоры, выверка и временное крепление конструкций

В процессе производства монтажных работ необходимо обращать особое внимание на соблюдение требуемой последовательности установки конструкций, временных и постоянных связей и их надежное закрепление. Монтаж каждого вышележащего яруса конструкций (подкрановых балок, балок покрытий, ферм, колонн, ригелей, плит перекрытий) можно начинать только после окончательного закрепления элементов нижележащего яруса и после достижения бетоном в стыках несущих конструкций 70% проектной прочности. В практике строительства известны случаи обрушения конструкций вследствие того, что не были поставлены некоторые элементы связей, не все элементы связей были надежно закреплены, нарушена последовательность установки элементов, не соблюдались другие действующие нормы и правила производства работ по монтажу конструкций.

Рис. 14. Универсальная травер са для монтажа крупноразмерных плит: 1 - несущие балки; 2-направляющие ролики; 3- блок однорольный-4 - канат; 5 - концевое кольцо; 6 - труба

Рис. 15. Пространственная тра верса для монтажа крупнораз мерных плит

Рис. 16. Универсальные уравновешивающиеся стропы: 1 - карабины; 2 - канаты толщиной 13 мм; Л- блоки грузоподъемностью 2 г; 4, 7- канаты толщиной 19,5 мм\ 5 - блоки грузоподъемностью 5 г; в - кольцо

Рис. 17. Клиновой захват для плит: а - в свернутом положении; б - в развернутом положении; 1 - нижний стержень; 2 - стальной отрезок; 3 - клин; в - толщина панели перекрытия

Рис. 18. Консольные захваты для подъема плит-настилов: 1 - фиксатор; 2 - петля

Рис. 19. Пространственная траверса для подъема плит пакетами

Рис. 22. Траверса для подъема тяжелых конструкций двумя кранами разной грузоподъемности

Сборные конструкции для подъема на строящийся объект следует подавать в необходимой последовательности непосредственно под крюк монтажного крана. Предварительная раскладка конструкций у мест подъема допускается лишь в отдельных случаях, так как она всегда связана с выполнением непроизводительных такелажных операций, загромождает строительную площадку и осложняет работу монтажного крана.

Железобетонные колонны в зависимости от их массы и длины, условий подачи, характеристики кранов поднимают способами: поступательного перемещения колонны краном, поворота колонны вокруг основания, поворота колонны вокруг основания и поступательного перемещения крана, поворота колонны и стрелы крана.

Тяжелые и высокие железобетонные колонны поднимают с перемещением нижнего конца на тележке (рис. 23) либо поворотом вокруг основания (рис. 24). В последнем случае применяют поворотный башмак. Такие способы подъема колонн позволяют передать часть нагрузки на тележку или башмак, что обеспечивает возможность работы крана в начале подъема на большем вылете стрелы, на котором грузоподъемность крана меньше массы колонны. Железобетонные рамы промышленных и других зданий и сооружений, изготовленные у мест установки или укрупненные из отдельных стоек и ригелей, поднимают методом поворота из горизонтального положения в вертикальное.

Рис. 23. Подъем тяжелой и высокой железобетонной колонны: а -положение колонны при подъеме; б - захват колонны; 1 - траверса; 2 стальной валик (палец)

Рис. 24. Схема подъема тяжелой железобетонной колонны на увеличенном вылете стрелы: 1 - траверсный строп; 2 - колонна-3 - распорка из бревна; 4 - поворотный стальной башмак; 5 - труба поворотного башмака; 6 - косынка-7 - швеллер; 8 - уголок

Рис. 25. Ориентиры для правильной установки железобетонной колонны: а - на стаканном фундаменте; б - на колонне; в - высотные отметки; 1 - риски на фундаменте; 2 - риски на колонне; 3 - оси подкрановых балок; Е - толщина слоя подливки стакана

Поворот осуществляется вокруг оснований стоек, располагаемых над стаканами фундаментов. Во избежание перемещения оснований стоек раму, застропованную за скобы в верхней грани ригеля или в обхват, поднимают с постепенным изменением положения крюка монтажного крана в плане. После приведения колонны или рамы в вертикальное положение ее наводят и опускают на фундамент либо на стыкуемую поверхность нижней колонны. Для контроля за правильной установкой на фундаменте и колонне наносят ориентиры. Такими ориентирами являются риски, нанесенные при помощи керна на стальные пластинки, заделанные в верхние грани фундамента (рис. 25, а) или канавки, оставляемые на этих гранях при изготовлении фундаментов, и риски на колоннах (рис. 25, б). Колонну устанавливают таким образом, чтобы риски на ней совпали с рисками на фундаменте. Удерживая колонну краном, производят выверку ее вертикальности и временное крепление. В случае применения специальных кондукторов окончательную выверку производят после временного крепления колонны кондуктором.

Рис. 20. Траверсы для монтажа панелей и оболочек: 1 - траверса; 2 - стропы; 3 - подвески; 4 - крюк крана; 5 - карабин

Рис. 21. Траверсы для монтажа конструкций вне зоны действия кранов: 1 - противовес; 2 - строп; 3 - балка; Q - масса поднимаемого груза: G - масса противовеса

Для обеспечения точности монтажа колонн и всего каркаса здания необходимо заранее подготовить опорные поверхности фундаментов путем подливки их раствором до проектной отметки либо устройством фиксированных приямков в сочетании с изготовлением опорных торцов колонны с точностью +5 мм, или применить специальную оснастку, при которой не требуется подготовки опорных поверхностей.

Одним из таких решений, обеспечивающих фиксированную установку железобетонных колонн в стаканы фундаментов, может быть применение оснастки, состоящей из металлической рамы с четырьмя фиксирующими пальцами, устанавливаемой на фундамент, и монтажных уголков, закрепляемых стяжными болтами на колонне. При использовании такой оснастки колонна фиксируется на раме при помощи пальцев, вводимых в отверстия монтажных столиков и уголков.

Последовательность выполнения работ при монтаже колонн при помощи оснастки, проверенной пока экспериментально, следующая.

Раму выверяют на фундаменте. Ее риски приводят к положению разбивочных осей, плоскость - к горизонтальному уровню. Базовой является поверхность, в которой находятся верхние точки пальцев, введенные в отверстия опорных столиков. Вначале на необходимый уровень выводится один (принятый в качестве маячного) фиксирующий палец. Затем на этот же уровень выводятся остальные. Выверяют раму домкратами при помощи треугольника, уложенного на поверхности трех пальцев, включая маячный, и водяного уровня. Домкраты вращаются специальными торцовыми ключами, входящими в комплект оснастки. В горизонтальное положение рама приводится двумя домкратами. При этом первый- маячный - остается неподвижным, четвертый - свободный - не должен касаться поверхности фундамента. После приведения к горизонтальному положению поверхностей пальцев этот последний домкрат ввинчивается до опи-рания на фундамент. Рама фиксируется в выверенном положении крючьями. Гайки на крючьях завинчиваются с усилием. На колонну надеваются и закрепляются стяжными болтами монтажные уголки. Гайки на болтах завинчиваются с усилием. Из отверстий опорных столиков вынимают фиксирующие пальцы. Колонну вводят краном в раму. В момент совмещения отверстий монтажных уголков с отверстиями монтажных столиков вводят фиксирующие пальцы. Пальцы следует вводить попарно, по одной грани колонны, не допуская их установки по диагонали. Один из монтажных уголков должен быть прижат к щекам столиков. В зазор между другим уголком и щеками столиков вводятся клиновые шайбы. Место их установки определяется специальным знаком на столиках.

Рис. 26. Схемы выверки рамы: а - на фундаменте; б - колонны; 1 - риски кондуктора; 2 - опорный маячный домкрат; 3 - маячный вал; 4 - вывинченный домкрат; 5 - домкраты, устанавливающие валы на требуемый уровень; 6 - валы, выводимые на уровень маячного вала; 7 - колонна

Если после установки колонны раствор, залитый в стакан и выдавленный колонной, не дошел до верхнего обреза фундамента, в зазоры между колонной и фундаментом добавляют раствор. После приобретения раствором (бетоном) прочности 25 кгс/см2 оснастку снимают для повторного использования. Монтажная оснастка (рама, монтажные уголки, средства фиксации), выполненная и установленная с заданной проектом точностью, обеспечивает колонне проектное положение без дополнительной выверки. Правильность установки смонтированных колонн проверяют путем контрольных промеров: относительно разбивочных осей здания - одним промером на каждые пять колонн; относительно отметок опорных поверхностей - одним промером на каждые 50 м2 площади сооружений; по вертикали - одним промером на каждые 200 м2 площади сооружения. Отклонения смонтированных железобетонных конструкций от их проектного положения не должны превышать допусков, приведенных в СНиП III -B. 3-62*.

Временное крепление колонн. Установленную в стакан фундамента колонну выверяют и временно закрепляют при помощи клиньев, разводных клиньев, клиновых вкладышей, расчалок или подкосов, кондукторов. Железобетонные колонны высотой до 12 м можно временно закреплять путем забивки бетонных, железобетонных, стальных или дубовых клиньев в зазоры между боковыми гранями колонны и стенками стакана. Наиболее целесообразно применять бетонные или железобетонные клинья, которые оставляют в фундаментных стаканах. Однако такими клиньями невозможно рихтовать колонны; поэтому их применяют после установки колонны в проектное положение, а при рихтовке пользуются инвентарными металлическими клиньями. Деревянные клинья должны быть сухими, иначе при их усушке может произоити отклонение колонны от вертикали. Деревянные клинья не следует также оставлять в стаканах длительное время во избежание их разбухания от атмосферных воздействий и возможного повреждения конструкции. Длину клиньев принимают равной не менее 250 мм со скосом одной грани на 1/10, после забивки их верхняя часть должна выступать из стакана примерно на 120 мм. Для закрепления колонны у каждой ее грани шириной до 400 мм необходимо ставить по одному клину, а у граней большей ширины по два. Внизу между гранями колонны и стенками стакана должен быть зазор не менее 2-3 см для возможности заполнения его бетонной смесью. Более эффективно применение инвентарных разводных клиньев или клиновых вкладышей.

Разводной клин состоит из щек, шар-нирно соединенных между собой на одном конце; щека плоская, щека имеет форму рав-ноблочной призмы. На другом конце щеки соединяются посредством разводного винта, проходящего сквозь гайку в щеке и соединяющегося с щекой при помощи головки. Последняя входит в прорезь швеллера, приваренного к плоской щеке. К щеке прикрепляется шарнирно-накладной кронштейн с фиксатором, при помощи которого посредством прижимного винта устройство крепится к стенке стакана фундамента.

До установки колонны на обрезе фундамента наносят риски, обозначающие положение граней колонны. Затем по двум смежным сторонам стакана устанавливают два разводных клина, чтобы щека упиралась ребром в стенку стакана фундамента, а плоская щека проходила по плоскости будущего положения грани колонны. Клинья устанавливают при помощи дюралевой уголковой линейки. После установки пары разводных клиньев колонна заводится в стакан так, что ее грани прижимаются к наружным граням плоских щек, закрепленных клиньями. Далее устанавливают по свободным граням колонны еще два разводных клина и производят рихтовку и временное закрепление колонны. При вращении прижимного винта щека поворачивается вокруг опорного ребра и нижним концом прижимает колонну к ранее установленным разводным клиньям, что обеспечивает выверку положения колонны в плане. Вращением разводных винтов производят рихтовку и выверку колонны по вертикали. Действием винтов клиньев осуществляют защемление колонны при помощи плоских щек на уровне расположения разводных винтов.

Рис. 27. Разводной клин для рихтовки и временного закрепления колонн в фундаментном стакане: 7,2 - щеки; 3 - швеллер; 4 - гайка; 5 - разводной винт; 6 - шарннр-но-накладной кронштейн; 7 - прижимной винт

Рис. 28. Схема клинового вкладыша: 1 - корпус; 2 - грани колонны; 3 - винт; 4 - ручка; 5 - стенка стакана; 6 - клин; 7-прокладка; 8 - бобышка; 9 - опора для извлечения клинового вкладыша; 10-гайка; 11- ключ-трещотка

Высоту разводного клина принимают равной трети глубины стакана фундамента, чтобы можно было осуществлять заделку стыка колонны с фундаментом бетонной смесью в два приема; сначала до низа клиньев, затем после извлечения их из стакана при достижении бетоном 25% проектной прочности. Клиновой вкладыш (рис. 28) состоит из Г-образного стального корпуса высотой 250 мм и шириной 55 мм, стального клина, винта и бобышки. Клин подвешен шарнирно к горизонтальному плечу корпуса. Ось шарнира свободно вращается и движется в продольных пазах, имеющихся на внутренних гранях горизонтального плеча корпуса. Винт вращается по втулке с винтовой нарезкой, приваренной к корпусу. К нижнему концу винта подвижно прикреплена бобышка. При завинчивании винта бобышка опускается вдоль вертикальной части корпуса и отжимает клин. Для удобства переноса и установки вкладыш снабжен ручкой. Весит клиновой вкладыш 6,4 кг. Инвентарные клиновые вкладыши устанавливают во время выверки в зазоры между стенками стакана фундамента и колонны. При этом винт должен быть вывинчен настолько, чтобы вкладыш свободно входил в зазор. Клиновой вкладыш опирается горизонтальным плечом на стенку стакана. После установки приспособления вращают винт ключом-трещоткой, бобышка при этом опускается, отжимая клин к стенке стакана, а корпус - к грани колонны. Одновременно закрепляют два клиновых вкладыша, располагая их на противоположных гранях колонны.

По данным ЦНИИОМТП , при использовании вкладышей продолжительность установки колонн и работы крана сокращается примерно на 15%, снижается расход стали, повышается точность монтажа по сравнению с забиваемыми стальными клиньями.

Тяжелые колонны большой длины для устойчивости необходимо, кроме клиньев, укреплять расчалками или жесткими подкосами. Верхние элементы сборных железобетонных колонн временно крепят к нижним монтажной сваркой. Для обеспечения устойчивости верхнего элемента колонны сваривают арматурные выпуски или накладки, расположенные по углам колонны, и после этого производят расстроповку элемента. Таким же способом осуществляют временное крепление колонн на фундаментах в стыках с трубой или железобетонным зубом. Для установки и выверки железобетонных колонн разработаны и применяются одиночные и групповые кондукторы. Одиночные кондукторы можно разделить на два типа: свободно опираемые на фундамент и закрепленные к фундаменту.

Кондукторы первого типа не воспринимают нагрузки от массы колонны. Они предназначены для расширения базы колонны до размеров, обеспечивающих устойчивость ее от опрокидывания при свободном опирании на фундамент. При использовании таких кондукторов невозможно выверить положение колонны в плане, и для ее рихтовки приходится применять горизонтальные домкраты, закрепляемые на верхней части стакана фундамента. Такие кондукторы можно применять только для установки легких колонн (массой до 5 г). Кондукторы второго типа закрепляются в фундаментах винтами, воспринимают массу колонн и снабжаются приспособлениями для выверки. Кондуктор-фиксатор этого типа треста Уралстальконструкдия закрепляется на фундаменте четырьмя винтами-упорами и воспринимает массу колонны через опорные цапфы двух вертикальных винтов, для чего в колонну при ее изготовлении закладывается стальной валик в точно выверенном положении. Цапфы и концы валика располагаются в разрезах между ограничителями. Установив колонну на дно стакана фундамента, приподнимают ее на 10-15 мм с тем, чтобы она легко вращалась в цапфах. Затем выверяют ее положение по вертикали кремальерами в поперечном направлении и винтами - в продольном. При помощи такого кондуктора устанавливались железобетонные колонны массой 15-20 г. Для временного крепления и выверки высоких колонн применяют групповые кондукторы, прикрепляемые к фундаментам винтами. Эти кондукторы обеспечивают устойчивость одновременно двух колонн вдоль и поперек ряда. Общими недостатками кондукторов являются сложность их конструкции, большая масса и значительные затраты времени на установку и выверку колонн (до 1 ч). Совершенствование кондукторов возможно путем применения алюминиевых сплавов для их изготовления, повышения качества узловых соединений и выверочных устройств, упрощения конструкций. Многоярусные сборные железобетонные колонны каркасных зданий большой высоты стыкуют между собой посредством сварки стальных закладных частей и замоноличивания стыков. Временное крепление их в пределах каждого этажа или яруса осуществляют монтажной сваркой (прихватками) накладок или выпусков арматуры, расчалками с натяжными муфтами или кондукторами. Верхние концы расчалок закрепляют за хомуты, надетые на колонны примерно посредине, нижние концы - за петли панелей перекрытия, над которым монтируют колонну.

Временное крепление первой поднятой рамы производят расчалками или подкосами (рис. 31), а последующие соединяют с ранее установленными посредством двух наклонных оттяжек и двух горизонтальных распорок. Стойки рам временно закрепляют клиньями, одиночными кондукторами или монтажной сваркой. Временное крепление рам выполняют также при помощи пространственных кондукторов.

Рис. 29. Временное крепление выверка железобетонных ко лонн кондуктором-фиксатором 1 - винт-упор; 2 -кремальер; 3 - ограничитель; 4 - опорная цапфа; 5 -монтируемая колонна; 6- стальной валик; 7 - фундамент колонны 8 -- винт

Рис. 30. Временное крепление железобетонных рам при их установке: 1 - подкос; 2- наклонная оттяжка; 3 - горизонтальная распорка

Для временного крепления и выверки многоярусных колонн многоэтажных промышленных зданий применяют одиночные кондукторы. Кондуктор (рис. 32) имеет уголковые стойки, зажимное и регулировочные приспособления. Нижним зажимным приспособлением кондуктор крепится к оголовку ранее установленной колонны. Регулировочные приспособления размещаются в средней и верхней частях стоек. Регулировочное приспособление состоит из четырех балочек, регулировочных винтов и шарниров. В трех балочках имеется по одному винту, а в четвертой два винта, что дает возможность поворачивать колонну вокруг ее вертикальной оси.

Более совершенной конструкцией отличается кондуктор с автоматическими рычажными захватами, предназначенный для временного крепления и выверки железобетонных колонн многоэтажных зданий. Кондуктор устанавливают на смонтированную ранее-, колонну нижнего яруса. Перед установкой монтируемой колонны в прижимные каретки автоматические рычажные захваты разводятся в стороны пружинами. При опускании колонна раздвигает рычаги, которые совместно с прижимными каретками обеспечивают центровку и надежный захват колонны. Кондуктор оснащен двумя горизонтальными винтовыми домкратами, установленными на верхнем поясе. Горизонтальные винты связаны с автоматическими захватами подшипниковыми опорами. Верхний пояс крепится к верхним концам четырех винтовых вертикальных домкратов. В момент захвата колонны автоматически включаются в работу шарнирные опоры нижнего пояса, представляющего собой раму-обвязку. К ней шарнирно крепятся опоры-захваты нижнего пояса, на которых установлены вертикальные домкраты. Шарнирное решение нижнего пояса с применением замка и зацепов способствует тому, что предварительная фиксация кондуктора на нижестоящей колонне, его установка по высоте и в горизонтальной плоскости выполняются просто и быстро, без специальной выверки.

Колонну выверяют по высоте и вертикали при помощи трех вертикальных домкратов, штоки которых могут подниматься на одну и ту же высоту (поиск высотной отметки) или же на разную высоту (поиск вертикальности колонны). Затем колонну выверяют в плоскости узкой грани путем вращения горизонтальных винтовых домкратов.

После окончательной выверки и закрепления сопрягаемых частей колонны кондуктор переставляют краном на следующий сборный элемент.

Кроме одиночных кондукторов, для монтажа сборных железобетонных конструкций многоэтажных зданий применяют кондукторы: групповые на две колонны; групповые пространственные для монтажа четырех колонн; пространственные для монтажа рам; объемные (рамно-шарнирные индикаторы) и другие. Групповой пространственный кондуктор применяют в комплекте с двумя одиночными для крепления и выверки колонн промышленных зданий. В этом случае процесс монтажа четырех колонн осуществляют в такой последовательности. На оголовках двух колонн закрепляют одиночные кондукторы. В них устанавливают колонны и выверяют при помощи этих кондукторов н теодолита. Затем при помощи одиночных кондукторов временно закрепляют следующие две колонны. Для их выверки на верхушки четырех колонн устанавливают групповой пространственный кондуктор. Последний представляет собой жесткую металлическую сварную раму из уголка и газовых труб. Рама в плане соответствует размерам одной ячейки колонн 6X6 м. По углам расположены колпа-ки-наколонники, сваренные из листовой стали. Каждый колпак снабжен четырьмя регулировочными прижимными винтами. В верхних стенках наколонников находятся отверстия - окна с вмонтированными визирными осями. На уровне нижнего пояса рамы сделан деревянный настил, на котором работают монтажники. По периметру рамы расположено ограждение из троса. К верхним поясам раскосных ферм приварены четыре строповочные петли для перемещения кондуктора башенным краном. Масса группового кондуктора 900-1000 кг. Для временного крепления колонн служит одиночный кондуктор, представляющий собой жесткую пространственную конструкцию - П-образную раму с откидной дверцей, с крепежными и регулировочными винтами. Крепежными винтами кондуктор закрепляют на оголовке ранее установленной колонны. При помощи регулировочных винтов его ставят в вертикальное положение, после чего принимают колонну.

Рис. 31. Кондуктор для установки и выверки колонн многоэтажных промышленных зданий: а - разрез; б - схема установки кондуктора; в - регулировочное приспособление; г - зажимное приспособление; 1 - колонна; 2- уголковая стойка; 3 - стык колонн; 4 - ранее установленная колонна; 5 - монтируемая колонна; 6 - кондуктор; 7 - междуэтажные перекрытия; 8 - балочка; 9- шарнир; 10 - регулировочный винт

Рис. 32. Схема кондуктора: 1 - прижимная каретка; 2 - автоматический рычажной захват; 3 - пружины; 4 - горизонтальный винтовой домкрат; 5-верхний пояс; 6 - подшипниковая опора; 7 - вертикальный винтовой домкрат; 8 - шарнирная опора нижнего пояса; 9- замок; 10- зацепы; 11 - колонна

Рис. 33. Схема кондуктора для монтажа рам: а - вид сверху; 6 - вид спереди; в - вид сбоку

Монтируемую колонну заводят в кондуктор не сверху, как обычно, а в боковую дверцу, и таким образом, конструкция массой около 5 г во лремя монтажа не находится над головой монтажника, чем обеспечивается безопасность работы и более быстрая установка колонны в проектное положение.

Рис. 34. Последовательность установки кондуктора и сборных элементов: 1, 2 - стоянки крана; 3, 4 - позиция кондуктора; 5-10, И-16 - последовательность установки элементов

Групповой кондуктор обеспечивает точность установки в проектное положение одновременно двух колонн, от чего зависит качество дальнейшего монтажа каркаса - ригелей, плит перекрытий и покрытий. В результате применения такого метода монтажа сокращаются на ‘/з время выверки колонн и почти в 3 раза - затраты труда.

При помощи пространственных кондукторов устанавливают несколько рам. Один из таких кондукторов представляет собой пространственную конструкцию размером 12Х5,50Х Х3,6 м и массой около 2 т, сваренную из уголковой стали (рис. 33). Длина кондуктора может быть уменьшена до 9 или 6 м. Верхняя рабочая площадка кондуктора покрыта дощатым настилом для работы монтажников. К кондуктору закреплены струбцины для временного крепления четырех рам с одной позиции. В процессе монтажа рамы удерживаются в вертикальной плоскости одной струбциной, закрепляемой на ригеле. После выверки и закрепления рам, кондуктор краном переносят на новое рабочее место (рис. 34). Рамно-шарнирные индикаторы (РШИ ), предложенные С. Я. Дейчем, представляют собой комплексное устройство, состоящее из пространственных решетчатых подмостей, на которых устроена шарнирная (плавающая) рама с уголковыми упорами для крепления в верхнем положении сразу четырех колонн, выдвижных и поворотных люлек для монтажников и сварщиков.

Рис. 35. Разрезы рамно-шарнирного индикатора: а - поперечный; б-продольный; 1 - деревянная подкладка; 2-пространственные кольцевые подмости; 3, 7 - выдвижные поворотные люльки; 4 - шарнирный индикатор; 5 - ограждение; 5-шариковые опоры; S - разъемный фланцевый стык; 9 - лестница

РШИ могут быть изготовлены на одну (4 колонны), две (8 колонн) или три (12 колонн) ячейки, на один или два этажа по высоте. РШИ устанавливают через ячейку здания и связывают калибровочными тягами. Масса РШИ на одну ячейку - 4-5 т, стоимость 2-3 тыс. руб.

РШИ устанавливают краном и выверяют теодолитом. После выверки (примерно 1 ч на две ячейки) устанавливают колонны, каждую из которых закрепляют угловыми упорами.

Рис. 36. Схема рамно-шарннр-ного индикатора (план): 1 - продольная тяга; 2- прижимной трос хомута; 3- натяжное устройство хомута; 4 - поворотный хоиут; 5 - поперечная тяга; 6, 15 - тормозные узлы крепления рамы; 7, 14 - продольные балки; 8, 10, 13 - механизмы передвижения; 9 - откидной хомут; 11 - тормозные узлы крепления рамы; 12, 16 - поперечные балки

Временное крепление балок. Железобетонные балки при отношении их высоты к ширине до 4:1 укладывают на горизонтальные опоры без временного крепления; при большем отношении высоты к ширине монтируемые балки скрепляют распорками и стяжками с другими прочно установленными конструкциями. Для временного крепления устанавливаемых на колонны балок покрытия предложено специальное приспособление, представленное на рис. 37. Тяги с фаркопфами стягивают захват, закрепленный на верху торца балки, с болтом, пропущенным через отверстие вверху колонны, а стальные кронштейны фиксируют положение болта.

Рис. 37. Приспособление для установки балок покрытия на колонны: 1 -болт; 2 -стальные кронштейны; 3 - тяги с фаркопфами; 4 - захват

В конструкциях колонн устраивают постоянные анкера на опорах, что значительно упрощает крепление к ним балок покрытия. Временное крепление ферм. При установке железобетонных ферм совмещают их оси с рисками на колоннах и закрепляют на анкерных болтах. Первую ферму крепят расчалками, привязывая смежные с коньком узлы верхнего пояса к неподвижным частям сооружения или к специальным якорям; последующие фермы скрепляют по коньку инвентарной винтовой распоркой с ранее установленными распорками в узлах примыкания раскосов к верхнему поясу. Временные крепления ферм снимают после создания жесткой системы из группы ферм и уложенных на них элементов покрытия. Разборка временных креплений. Временные крепления сборных железобетонных конструкций (клинья, подкосы, расчалки, распорки, кондукторы и др.) разрешается снимать после приобретения бетоном в стыках 70% проектной прочности.

Постоянное крепление конструкций

Постоянное (проектное) крепление конструкций осуществляют путем сварки арматуры в стыках и последующего их замоноличивания. До замоноличивания стыков выполняют антикоррозионную защиту сварных соединений. Сварка арматуры в стыках железобетонных конструкций в зависимости от пространственного положения стержней или швов, диаметра свариваемых стержней и типа соединений бывает нескольких видов: полуавтоматическая ванная под флюсом (стыковые горизонтальные и вертикальные соединения), ручная ванная (стыковые горизонтальные соединения), полуавтоматическая дуговая и ручная дуговая (стыковые, нахлесточные и крестовые вертикальные и горизонтальные соединения). Сваривать соединения из малоуглеродистых сталей (класс А-I, марка Ст.З) можно при температуре воздуха не ниже -30°С, а из сред-неуглеродистых (класс А-II, марка Ст.5 и 18Г2С) и низколегированных сталей не ниже - 20 °С. При более низких температурах принимают меры для поддерживания на рабочем месте сварщика температуры воздуха не ниже указанных пределов.

С целью снижения влияния сварочных напряжений на прочность железобетонных конструкций арматурные выпуски сваривают в определенной последовательности (рис. 39). Контроль качества сварки включает: контроль предварительный, в процессе сварки, контроль качества сварных соединений. Предварительно проверяют соответствие основных и сварочных материалов требованиям технических условий, качество подготовки стыкуемых элементов под сварку, настройку аппаратуры на заданный режим. В процессе сварки следят за сохранением требуемых режима и технологии сварки. Контроль качества сварных соединений включает внешний осмотр, испытание образцов на прочность, просвечивание гамма-лучами и др. Допускаемые отклонения в размерах сварных соединений приведены в СНиП III -B. 3-62*.

Антикоррозионную защиту сварных соединений сборных железобетонных конструкций выполняют путем нанесения на стальные закладные детали, соединения арматуры в стыках и детали крепления ограждающих конструкций металлизационных, полимерных или комбинированных покрытий: металлизационно-поли-мерных или металлизационно-лакокрасочных. Для металлизационных покрытий применяют главным образом цинк. Металлизационно-по-лимерные покрытия состоят из цинка или цин-коалюминиевого сплава и полимеров (полиэтилен, полипропилен и др.). В металлизационно-лакокрасочных покрытиях используют цинк, грунты (фенольный, поливинилбутирильный, эпоксидный), краски (этинолевые), лаки (би-тумно-смоляные, перхлорвиниловые, эпоксидные, кремнийорганические, пентофталевые). Антикоррозионное покрытие наносят дважды: в заводских условиях, перед установкой закладных деталей в конструкции, и после монтажа конструкций на сварные швы и на отдельные места покрытий, поврежденные при сварке деталей.

На строительной площадке различные покрытия наносят несколькими способами: цинковые - газопламенным напылением или электрометаллизацией; цинко-полимерные и полимерные - газопламенным напылением; лакокрасочные - нанесением цинкового подслоя, по которому лакокрасочные материалы наносят пистолетами-краскораспылителями или вручную.

Рис. 38. Последовательность сварки стыков: а - колонны с фундаментом двумя сварщиками; б -то же, одним сварщиком; в - ригеля с колонной; г - продольных связей

Цинковые покрытия газопламенным напылением наносят в один слой, электрометаллизацией в 2-3 слоя (при толщине 0,1-0,15 мм) и 3-4 слоя (при толщине покрытия 0,15- 0,2 мм). Цинко-полимерное покрытие в два слоя - сначала цинковый подслой, затем слой полимера. Полимер можно наносить сразу за нанесением цинка. Полимерное покрытие также образуется в два слоя. В комбинированных цинко-лакокрасочных покрытиях сначала наносят цинковый подслой, а затем в 2-3 слоя лакокрасочные материалы. Каждый слой лакокрасочного покрытия необходимо просушить при положительной температуре в течение нескольких часов и даже суток (в зависимости от вида материала), что является недостатком в условиях монтажных работ. Поэтому вместо красок в комбинированных покрытиях лучше применять полимеры.

Антикоррозионные покрытия наносят сразу же после сварки элементов и подготовки поверхностей, не допуская перерывов продолжительностью более 4 ч.

Поверхность не должна иметь жировых пятен, следов влаги и ржавчины. После нанесения покрытия проверяют прочность сцепления его с основанием, толщину покрытия, наличие или отсутствие вспучивания и трещин. Замоноличивание стыков. Заделку стыков и швов раствором или бетонной смесью производят только после выверки правильности установки элементов конструкций, приемки сварных соединений и выполнения антикоррозионной защиты металлических закладных деталей. При замоноличивании необходимо учитывать, что бетон (раствор) в стыках железобетонных конструкций воспринимает или не воспринимает расчетные нагрузки. Так, в стыках колонн с фундаментами, не имеющих закладных частей, а также в стыках, в которых соединение сборных элементов выполняют путем сварки выпусков арматурных етержней, бетон монолитно связывает элементы и воспринимает нагрузку.

В стыках с закладными стальными частями бетонная (растворная) заделка является заполнением между сборными элементами, предохраняет закладные части от коррозии, но не воспринимает нагрузки, действующие на конструкцию.

Прочность и устойчивость сборных конструкций со стыками, в которых бетон воспринимает расчетные нагрузки, зависят от прочности бетона в заделке и от сцепления бетона заделки с прочностью сборной конструкции; шероховатость стыкуемой поверхности значительно повышает сцепление бетона в стыке. При заделке железобетонных колонн в стаканах фундаментов, а также других монолитных стыков, воспринимающих расчетные нагрузки, для ускорения твердения и обеспечения прочности соединения применяют жесткие бетонные смеси более высокой марки, чем бетон основной конструкции (на 20% и более). Целесообразно применять бетонную смесь на расширяющемся цементе, который отличается быстрым схватыванием и твердением, не дает усадки, что весьма важно для плотности заделки, или напрягающем цементе. Применяют портландцемент марки не ниже 400. Песок используют кварцевый средне- или крупнозернистый. Щебень для бетонной смеси выбирают гранитный мелкий с тем, чтобы обеспечить лучшее заполнение стыков, крупность до 20 мм. Для повышения пластичности бетонной смеси при малом водоцементном отношении (0,4- 0,45) в состав вводят сульфитно-спиртовую барду, а для увеличения плотности бетона - алюминиевую пудру.

Наиболее часто применяют следующие составы сухих растворных или бетонных смесей (по массе): 1:1,5; 1:3; 1:3,5; 1:1,5:1,5; 1:1,5:2. С целью активизации твердения раствора (бетона) в составы вводят добавки: 3% полуводного гипса, 2% хлористого натрия, до 10% нитрита натрия, 10-15% поташа от массы цемента или применяют бетонные смеси, предварительно разогретые электрическим током. Поташ следует добавлять при температурах до + 15°, так как при более высоких температурах его применение неэффективно. Для замоноличивания стыков сборных железобетонных конструкций применяют также высокопрочные полимеррастворы и пластбетоны, твердеющие при температуре не ниже +16°С. Поэтому в случае их использования при более низких температурах раствор (бетон) в зоне стыка прогревают электронагревателями. Стыки колонн бетонируют в стальной опалубке. Она состоит из четырех стальных щитов толщиной 1,5 мм, соединенных между собой при помощи болтов. Вверху каждого щита сделаны карманы для заполнения и уплотнения бетонной смеси. Опалубка удерживается на стыкуемых колоннах при помощи деревянных упоров, опирающихся на перекрытие. Трудоемкость сборки такой опалубки составляет 0,16 чел.-ч., бетонирования одного стыка - 0,75 чел.-ч. Опалубку снимают через 4 ч после бетонирования, а в случае применения быстро-твердеющих бетонов ее снимают раньше. Подобную опалубку применяют для бетонирования стыков ригелей с колоннами. Стыки заполняют раствором (бетоном) механизированным способом при помощи растворо-насосов, пневмонагнетателей, цемент-пушек, шприц-машин и другого оборудования. Пневматические нагнетатели и шприц-машины пригодны для заделки стыков как бетонной смесью, так и раствором; растворонасосы и цемент-пушки - только раствором. Для создания влажного режима твердения бетона замоноличенные стыки укрывают мешковиной, опилками и систематически увлажняют в течение 3 суток.

Замоноличивание стыков в зимних условиях. В зимних условиях при замоноличивании стыков бетоном, воспринимающим расчетные усилия, необходимо: отогревать стыкуемые поверхности до положительной температуры (+ 5-8 °С); укладывать бетонную смесь подогретой до 30-40 °С; выдерживать или прогревать уложенную смесь при температуре до 45°С, пока бетон приобретет не менее 70% проектной прочности.

Поверхности стыка колонны с фундаментом можно отогревать различными способами: паром низкого давления; водой (водой заполняют полость стыка и затем нагревают ее паром, подаваемым через шланг); стержневыми электродами при токе низкого напряжения; электронагревательными приборами. При отогреве водой необходимо следить за тем, чтобы после отогрева вода была полностью удалена из полости стыка.

Рис. 39. График определения прочности бетона в зависимости от температуры и времени прогрева. Бетон на портландцементе

Бетонную смесь, укладываемую в стык, приготовляют с прогревом составляющих либо разогревают в бункерах электрическим током до 60-80°. Наряду с прогревом и электроразогревом, при температуре наружного воздуха до - 15 °С в бетонную смесь для заделки стыков можно вводить противоморозные добавки. Стыки, бетон которых не воспринимает расчетных усилий, при температуре наружного воздуха до -15 °С могут замоноличиваться бетонной смесью (раствором) только с противомо-розными добавками, поскольку такая смесь твердеет и при отрицательных температурах; при этом после укладки в стык смесь прогревать не нужно; в случае резкого понижения температуры наружного воздуха достаточно применить утепленную опалубку. В качестве противоморозных добавок рекомендуются растворы солей хлористого кальция СаС12; хлористого кальция СаСЬ с поваренной солью NaCl; хлористого кальция СаС12 с поваренной солью NaCl и хлористым аммонием NH4C1; нитрита натрия NaN02 и др.

Рис. 40. Замоноличивание стыка колонны с фундаментом в зимних условиях: а - схема электропрогрева бетона стыка электродами; б - отогрев поверхности стыка электроцилиндрами; в - прогрев замоноличенного стыка электропечами; г - то же. при помощи тепляка; 1 - фундамент; 2 - колонна; 3 - электрод; 4 - трансформатор; 5 - рубильник; 6 - софиты; 7 - электроды

Запрещается применение противоморозных химических добавок хлористых солей при заделке стыков с металлическими закладными частями и арматурой.

Для повышения пластичности и водонепроницаемости бетона в стыке в бетонную смесь с противоморозными добавками вводят суль-фитно-спиртовую барду в количестве до 0,15% от массы цемента.

Если необходимо получение высокой прочности заделки в короткий срок (одни сутки и меньше), бетоны, приготовленные с противоморозными добавками, могут быть подвергнуты искусственному прогреву.

При замоноличивании стыков бетонной смесью без противоморозных добавок необходим предварительный отогрев сопрягаемых элементов стыка и прогрев бетона до приобретения им требуемой прочности; расчетные стыки, загружаемые проектной нагрузкой в зимнее время, необходимо прогревать до получения 100%-ной проектной прочности бетона в стыке и до получения 70%-ной прочности в остальных случаях. Прочность бетона, приготовленного на портландцементе, в зависимости от температуры и времени прогрева ориентировочно может быть определена по графику.

Рис. 41. Отогрев и прогрев стыков многоярусных колонн и стыков плит перекрытия с прогонами при замоноличивании в зимних условиях: а - при помощи термоактивной опалубки; б - посредством ТЭН ; 1, 2 - стальные листы; 3- теплоизоляционный слой; 4 - три слоя электроизоляционного полотна с нихромо-вой проволокой в середине; 5 - спираль в слое опилок, смачиваемых раствором поваренной соли; 6- слой песка; 7- трубчатый электронагреватель; 8 - брезент; 9 - хомут

Наиболее часто прогрев производят электрическим током, а также паром. Для электропрогрева применяют электроды (рис. 40, а), трубчатые электронагреватели или электроцилиндры с наконечниками, вводимыми в полость стыка (рис. 40, б), термоактивную опалубку, греющие кассеты, отражательные электропечи (рис. 40, в) или электротепляки (рис. 40, г), электродные панели. Отогрев и прогрев стыков многоярусных колонн, а также балок целесообразно осуществлять при помощи термоактивной опалубки (рис. 41). В полость двойной опалубки, состоящей из внутреннего и наружного стальных листов, помещают либо три слоя электроизоляционного полотна с нихромовой проволокой на среднем слое, либо слой из раствора с заделанной стальной проволокой и теплоизоляционный слой из минеральной ваты. Эту опалубку изготовляют в соответствии с размерами стыкуемых элементов и удерживают на них при помощи хомута. Бетонная смесь с осадкой конуса 10-12 см загружается в стык через воронку, встроенную в опалубку. Трубчатые электронагреватели (ТЭН ) могут быть использованы для прогрева многих стыков как непосредственно (рис. 41, б) так и в качестве греющих элементов кассет (термощитов) (рис. 42), отражательных печей и других устройств. Трубчатый электронагревательный элемент представляет собой металлическую полую трубку, в которую запрессована спираль из нихромовой проволоки. Наполнителем служит плавленая окись магния или кварцевый песок. Наполнитель выполняет роль электрической изоляции.

Рис. 42. Греющие кассеты: a - схема набора кассет для прогрева стыка колонны; б - схема кассет; в - трубчатый электронагреватель; 1 - трубчатый электронагреватель; 2 - отражатель; 3 - корпус; 4 - изоляционная втулка; 5 - заполнитель; 6 - спираль; 7 - заливка

На рис. 41, б показан отогрев стыка плиты перекрытия с прогоном (или балкой) при помощи трубчатого электронагревателя, который закрывают брезентом.

После отогрева, продолжающегося примерно 4-5 ч, снимают брезент и ТЭН , бетонируют стык, покрывают его шлаком или песком и снова закладывают ТЭН .

Для замоноличивания вертикальных стыков колонн применяют универсальную греющую опалубку с автоматическим регулированием режима термообработки. Она состоит из металлического корпуса, греющих кассет, блока питания и управления. Корпус опалубки служит для укладки бетона в стык и выполнен из двух половин, скрепляемых между собой болтами. Каждая половина изготовлена из листовой стали и имеет направляющие пластины для крепления греющих кассет и блока питания и управления. Половины взаимозаменяемые, каждая имеет загрузочное окно. Греющие кассеты представляют собой плоские металлические теплоизоляционные ящики с вмонтированными в них трубчатыми электронагревателями мощностью 0,5 кет на напряжение 220 в. Рабочая температура поверхности нагревателя равна 600-700 °С. Между ТЭН и стенкой, примыкающей к бетону, имеется воздушный зазор. Под нагревателем установлена отражательная пластина из белой жести. По данным опыта, применение ТЭН вместо спиралей повышает надежность греющего устройства, увеличивая срок службы его до 5000 ч, а также позволяет вести инфракрасный прогрев. Три типа греющих кассет в различных комбинациях обеспечивают термообработку стыка любого сечения колонны. Набор греющих кассет вставляется по направляющим металлической опалубки и охватывает стык с четырех сторон.

Установку греющей опалубки на стык колонны производят вручную из половин с установленными на них греющими кассетами или поэлементно. Масса отдельного элемента греющей кассеты 5,5-9 кг; масса всей опалубки для колонны сечением 250X500 мм составляет 70 кг.

Кассеты включают в сеть до бетонирования стыка. После предварительного двухчасового обогрева полости стыка кассеты отключаются для укладки бетона. Последующая тепловая обработка бетона стыка - нагрев до 50°С и изотермический прогрев при данной температуре периодическим включением и выключением тока. Расход электроэнергии при автоматическом регулировании и температуре наружного воздуха до -15 °С равен 35 квт-ч на один стык. При ручном регулировании он равен 50 квт-ч на стык.

Конструкция стыка ригеля и плит перекрытий позволяет производить только односторонний периферийный обогрев. Для этой цели применяют отражательные печи. Печь представляет собой инвентарный короб длиной 1300 мм, выполненный из двух вальцованных металлических листов, между которыми уложена теплоизоляция из минеральной ваты толщиной 50 мм. Внутренний лист является одновременно параболическим отражателем, вдоль фокусной оси которого расположены два трубчатых электронагревателя мощностью по 0,8 кет с напряжением сети 220 в. Каждый короб имеет кабельный вывод, оканчивающийся вилкой трехфазного штепсельного разъема, один из штырей которого заземляющий. Масса короба 50 кг. Для уменьшения потерь тепла и влаги короб по периметру засыпают опилками. Расход электроэнергии при температуре наружного воздуха -15°, температуре нагрева + 50° и автоматическом ее регулировании равен 25 квт-ч на стык.

Для автоматического поддержания заданной постоянной температуры обработки бетона служит блок питания и управления. Он состоит из питающего кабеля, терморегулятора и коробки управления. В металлическом ящике коробки управления смонтированы: магнитный пускатель, переключатель, сигнальная лампа и клеммник для подсоединения выводов греющих кассет. Коробка управления вставляется в направляющие металлической опалубки стыка. Терморегулятор имеет одну пару нормально замкнутых контактов, которые размыкаются при повышении температуры выше заданной. Терморегулятор включается в сеть с напряжением 220 в. Использование его позволяет автоматизировать все виды тепловой обработки бетона на монтаже.

Рис. 43. Схемы отражательной печи (а) и электродной панели (б): 1 - корпус; 2 - трубчатый нагреватель; 3 - кабельный вывод со штепсельным разъемом; 4 - защитная полоса; 5-пароизоляция; 6 - клеммы; 7 - конусные -штыри; 8 - стальные шины

Для обогрева стыкуемых элементов применяют также электродные панели. На панели смонтированы три стальные шины, служащие электродами, с конусными штырями, улучшающими соприкосновение электродов с бетоном.

К атегория: - Монтаж строительных конструкций

В зависимости от степени укрупнения применяют следующие методы монтажа конструкций: конструктивными элементами или их частями; линейными, плоскими или пространственными блоками; конструктивно-технологическими блоками, состоящими из строительных (обычно стальных) конструкций и встроенного в них технологического оборудования; сооружениями в целом виде (опоры линий электропередач, стальные дымовые трубы и др.). В сельскохозяйственном строительстве наиболее распро­странен монтаж конструктивными элементами. При монтаже блоками конструкции укрупняют до установки их в проектное положение. Благодаря этому уменьшается число подъемов и трудоемкость верхолазных работ, сокращается число монтаж­ных элементов и стыков, повышается технологичность и надеж­ность укрупненной конструкции.

По принятой последовательности установки конструкции в пролете одноэтажных или на этаже многоэтажных зданий разли­чают дифференцированный (раздельный), комплексный (сосре­доточенный) и комбинированный (смешанный) методы монтажа.

При дифференцированном методе в пределах пролета или этажа конструкции устанавливают отдельными монтажными комплектами (ярусами). Так, в одноэтажных сель­скохозяйственных зданиях со стоечно-балочным каркасом снача­ла монтируют фундаменты, затем колонны, а после замоноличивания стыков - балки (или фермы), плиты покрытия, стеновые панели. Такой метод обеспечивает ритмичную работу крана на монтаже однотипных конструкций с использованием постоян­ной оснастки, что способствует повышению производительности труда. При конструкциях, значительно отличающихся своей мас­сой, применяют несколько кранов, что позволяет более эффек­тивно использовать их грузоподъемность. Однако общее число проходок и стоянок монтажных кранов при этом методе возрастает, начало послемонтажных работ задерживается. Диф­ференцированный метод применяют при использовании мобиль­ных кранов для монтажа железобетонных, металлических и деревянных конструкций.

При комплексном методе устанавливают все кон­струкции в пределах одной ячейки здания, выверяют и закреп­ляют их. Число перемещений и стоянок крана сокращается, ускоряется начало послемонтажных работ, однако ухудшается использование грузоподъемности монтажных кранов в случае значительной разномассовости конструкций. Комплексный метод целесообразно применять при монтаже одноэтажных зданий тяжелого типа с большой насыщенностью технологического обо­рудования. В случае монтажа железобетонных конструкций не­обходимо для замоноличивания стыков применять быстротвердеющие цементы.

В практике сельскохозяйственного строительства осуществ­ляют комбинированный метод монтажа, сочетая дифференцированный метод с комплексным (монтаж колонн в пределах пролета, а балок или ферм и плит покрытия в пределах одной ячейки).

В зависимости от последовательности сборки конструкций по вертикали различают метод наращивания и подращивания. Метод наращивания заключается в последовательной сбор­ке конструкций снизу вверх. Это основной метод монтажа кон­струкций. Метод подращивания отличается тем, что монтаж ведут, начиная с верхних ярусов. На земле собирают самый верхний ярус сооружения, поднимают его, затем подво­дят нижний ярус, соединяют с верхним, поднимают оба яруса и т. д. Этот метод требует мощных подъемных средств и его можно применять лишь при определенных конструктивных реше­ниях зданий.

По способу наводки на опоры монтаж разделяют на свобод­ный и принудительный. При свободном монтаже наводку на опоры осуществляют с помощью гибких стропов без ограниче­ния перемещения элемента в пространстве. Точность монтажа обеспечивают визуальным контролем. Принудительный монтаж предусматривает установку монтируемых элементов в проект­ное положение с помощью специальной монтажной оснастки (кондукторов, манипуляторов), а также направленное движе­ние элемента в момент его установки, с применением ограни­чивающих устройств и самофиксирующих замковых сопряжений в стыках.

Выбор рационального метода монтажа - важнейшее реше­ние проекта производства работ. При этом учитывают особен­ности объемно-конструктивного решения данного объекта, кон­кретные условия строительной площадки и технико-экономичес­кие показатели рассматриваемых методов.

40. Монтаж сборных ж/б конструкций одноэтажных промышленных зданий.

По объемно планировочной структуре различают одноэтажные промышленные здания ячеистого типа с шедовыми или плоскими покрытиями или пролетно-равного типа с покрытиями в виде ферм, оболочек, складок. Для основных отраслей промышленности одноэтажные промышленные здания с жб каркасом проектируют на основе унифицированных типовых секции, пролетов, шагов колонн. При выборе того или иного метода монтажа промышленного здания следует учитывать конструктивную схему его, необходимую последовательность сдачи под монтаж технологического оборудования в отдельных пролетах здания, расположение будущих технологических линий. Для одноэтажных промышленных здании легкого типа с жб каркасом более рационален раздельный метод монтажа конструкции. При этом методе вслед за установкой конструкций и выверкой колонн замоноличивают стыки между колоннами и стаканами фундаментов. К началу монтажа подкрановых балок и конструкции покрытия бетон в опорном стояке должен набрать не менее 70% проектной прочности. Это условие и определяет длину монтажных участков. Одноэтажное промышленное здание тяжелого типа монтируют преимущественно комплексным методом. Но при этом необходимо принимать меры по укорению набора бетоном в стыках прочности.

По направлению различают продольный монтаж, при котором здание монтируют последовательно отдельными пролетами, и поперечный(секционный), когда кран движется поперек пролетов. Применяют и продолно-поперечный монтаж здания. В этом случае кран, двигаясь вдоль пролета, монтирует все колонны, а затем, перемещаясь поперек пролета, ведет секционный монтаж. Одноэтажные промышленные здания монтируют специализированными потоками, каждому из которых придаются комплект монтажных и транспортных машин и соответствующая монтажная оснастка. Например, однопролетное одноэтажное здание можно монтировать 2-мя потоками: монтаж колонн, конструкции покрытий и конструкции наружных ограждении. Одноэтажные многопролетные здания можно монтировать несколькими параллельными потоками.

Монтажу колонн должна предшествовать приемка фундаментов с геодезической проверкой положения их осей и высотных отметок. Перед монтажем колонн проверяют их размеры, допуская погрешности до 1 мм, и наносят риски, облегчающие установку колонны в стакан фундамента или на оголовки подколонников. Тяжелые колонны обычно монтируют с транспортных средств или предварительно раскладывают колоны основанием, обращенным к фундаментам. Колонны легкого типа как правило, предварительно доставляют в зону монтажа и раскладывают вершинами, обращенными к фундаменту. Тяжелые колонны поднимают и переводят в вертикальное положение способом поворота или скольжения. Колонны устанавливают в стаканы фундамента после того, как прочность этого раствора достигнет не менее 70% проектной. Колонну, установленную в стакан фундамента, центрируют до совпадения рисок с рисками на верхней плоскости фундамента. Для проверки вертикальности колонны два теоделита располагают под прямым углом к цифровой и буквенной осям здания. При этом визирную ось теодолита совмещают с рисками, нанесенными на стакане в нижней части колонны, а затем, плавно поднимают трубу теодолита, - с риской у верхнего торца колонны. Выверенные колонны закрепляют в стакане фундамента с помощью кондукторов или клиньев. Жб клиняя после выверки колонны оставляют в колонне. Колонны высотой более 12 метров дополнительно раскрепляют инвентарными расчалками в плоскости их наименьшей жесткости.

Подкрановые балки монтируют после того, как бетон в стыке между колонной и стенками стакана фундамента наберет не менее 70% проектной прочности. Подкрановые балки монтируют отдельным потоком или одновременно с конструкциями покрытия. Перед подъемом на булку навешивают приспособления подмости для ее временного закрепления в проектном положении, а также оттяжки для ее точной наводки. Оси подкрановых балок выверяют теодолитом, установленным по оси 1 подкрановой балки на специальном кронштейне, прикрепленном к первой колонне так, чтобы теоделит был расположен на высоте 500 мм над верхней плоскостью балки. При пролете не более 18 метров ось подкрановых балок выверяют путем измерения рулеткой пролета против каждой колонны. Подкрановые балки подкрановые рельсы нивелируют прибором, установленным в середине пролета здания на высоте 200 -300 мм от поверхности балки.

Фермы покрытия обычно монтируют с транспортных средств. В отдельных случаях, а также при необходимости укрупнения ферм у места монтажа их размещают в специальных кассетах, в монтируемом пролете. При этом фермы раскладывают таким образом, чтобы кран с каждой позиции мог без оттяжки устанавливать фермы и по возможности без передвижек укладывать плиты покрытии. Строительные фермы и балки покрытия монтируют после установки и закрепления всех нижерасположенных конструкций каркаса здания. При монтаже ферму поднимают, разворачивают с помощью оттяжки на 90 0 . Затем поднимают на высоту, на 0,5-0,7 метра превыщающую отметку опор, и опускают на опоры. Правильность установки балок и ферм контролируют путем совмещения соответствующих рисок. Для страховки ферм применяют траверсы с полуавтоматическими захватами, обеспечивающими дистанционную растроповку. После подъема, установки и выверки 1-ю ферму или балку раскрепляют расчалками, а последующие крепят специальными распорками из расчета не менее 2 для ферм пролетом 24-30 метров. Расчалки и распорки снимают только после установки и приварки панелей покрытия.

Плиты покрытии предварительно складируют в зоне действия монтажного крана. Число штабелей плит и их расположение определяют из условия покрятия ячеики между 2-мя фермами с одной стоянки крана. Плиты покрытия монтируют сразу после установки т постоянного крепления очередной фермы. Это обеспечивает жесткость собранной ячейки каркаса здания. Плиты следует монтировать с симметричной загрузкой фермы, приваривают их к закладным деталям и освобождают от стропов только после приварки в 3 точках. После установки плит замоноличивают стыки.

Монтаж стеновых панелей – трудоемкий процесс, при котором затраты труда могут составлять 30-40% трудовых затрат при монтаже надземной части здания. Монтаж стеновых панелей обычно ведут отдельным потоком сразу же после набора бетоном на данном участке необходимой прочности в стыках между колонными и фундаментами. Крупноразмерные стеновые панели длиной до 12 метров, как правило, монтируют с транспортных средств, используя для этого стеновые краны или специальные установщики в виде самоходных башенных агрегатов оборудованных самоподъемной монтажной площадкой.

42. Заделка стыков сборных ж/б констр-й. Производство монтажных работ в зимних условиях. Техника безопасности.

От качества заделки монтажных стыкав ЖБК зависит прочность конст-й их пространственная жесткость и устойчивость сооружения. Заделка стыка состоит из след. процессов: сварки и защиты закладных деталей от коррозии, замоноличивание стыков раствором или бетонной смесью, герметизация стыком (преимущественно для стеновых панелей).

Трудоемкость заделки стыков 75-80% общей трудоемкости монтажа плит перекрытий и стеновых панелей.

Сварка арматурных выпусков и закладных деталей. К сварке закладных деталей и выпусков арматуры стыковых соединений приступают после проверки правильности их расположения и тщательной очистки от грязи, ржавчины, льда.

Выпуски арматурных стержней в стыках и узлах сборных ЖБК сваривают в зависимости от диаметра арматуры внахлестку или с накладками для стержней диаметром от 8 до 20 мм, для стержней диаметром более 20 мм применяют полуавтоматическую ванную сварку на постоянном токе.

Поверхность сварных соединений должна быть гладкой, мелкочещуйчатой, не должно иметь подрезов, недоваров, пор и других видимых дефектов. Сварщик, ведущий сварку, ставит клеймо на заваренные им стыки и заносит данные о выполнении сварочных работ в журнал. В зависимости от типа соединения качества шва проверяют путем осмотра, сверления и травления кислотой дефектных участков швов с целью устранения непроровара корня шва. Внутренние дефекты шва могут быть обнаружены с помощью ультразвуковой или гамма-электроскопии.

Металлические части необходимо защищать от коррозии. Защищают электрохимическим способом.

Для уменьшения трудоемкости заделки стыков и повышения надежности узлов сопряжений колонн многоэтажных зданий является применение бессварных клеевых стыков. Наиболее технологичным яв-ся сотовые стыки.

В таких стыках арматурные выпуски монтируемых элементов колонн заводят с помощью специальных кондуктором в гнезда, имеющиеся в торцах ранее установленных колонн.

Замоноличивание стыков.

Замоноличивание стыков производят песчано-бетонной смесью или бетонной смесью, заполнителем в которой служит щебень. При большем объеме стыка применяют обычно бетонные смеси. Длительность процесса замоноличивания пространственных конструкций должна быть минимальной. Поэтому для замоноличивания швов применяют быстро твердеющие цементы. При замоноличивании стыков между наружными панелями крупнопанельных зданий или между навесными панелями производственных зданий выполняют герметизацию, исключающую проникание в помещение воздуха и влаги. Работы по герметизации стыков ведут с подвесных люлек или самоходных вышек в таком порядке:

Очищают зазоры стыков, покрываю зазоры стыка мастикой изол с применением спец. пневматического аппарата, заводят прокладки пороизола специальным роликом. При этом прокладки должны быть на 30-50% шире зазора.

Производство монтажных работ в зимних условиях.

При производстве монтажных работ в зимних условиях наиболее уязвимым местом яв-ся стык сборных ЖБК. При замоноличивании стыковых соединений в зимних условиях должны приниматься меры, исключающие замораживание бетона в стыке до достижения им критической прочности, значение которой зависит от вида конструкции и сроков ее ввода в эксплуатацию. Для достижения раствором или бетоном до замораживания критической или проектной прочности следует предварительно нагревать полость стыка и укладывать подогретый до тем-ры не менее 20 градусов бетон или раствор с последующим поддержание необходимой тем-ры изотермического прогрева.

Закладные детали и выпуски арматуры в стыках сваривают при тем-ре наружного воздуха не ниже -30 град.

Способы заделки стыков:

Замораживанием, - введение в бетон противоморозных добавок, - тепловая обработка бетона.

Наличие отрицательных тем-х наружного воздуха накладывает определенные ограничения и на процесс герметизации стыков. Так, герметизация стыков мастиками допускается при тем-х не ниже -20 град.

Техника безопасности.

Требования правил ТБ необходимо учитывать уже на стадии проектирования объекта. Безопасное ведение монтажа следует предусматривать и на стадии разработки проекта производства монтажных работ. К монтажу констр-й и сопутствующих ему работ допускаю рабочих после проведения вводного инструктажа, в процессе которого их знакомят с правилами безопасного ведения работ с учетом специфических особенностей донного здания или сооружения.

К монтажным и сварочным работам на высоте допускаю специалистов, имеющих справку о медицинском освидетельствовании, которое они проходят два раза в год. К верхолазным работам допускают монтажников, имеющих разряд не ниже 4-го и стаж не менее одного года. Все рабочие должны носить каски; при работе на высоте они должны надевать предохранительные пояса. При переходе от узла к узлу монтируемой конструкции рабочие прикрепляют карабин пояса к натянутому стальному страховочному канату.

В целях создания безопасных условий на строй. площадке в монтируемом здании должны быть предупреждающие надписи, выделены опасные зоны, ограждены проемы, а рабочие места при производстве работ в вечернее и ночное время достаточно освещены.

Особые меры предосторожности следует принимать при ветреной погоде, при ветре более 6 баллов прекращают монтажные работы, связанные с применением кранов, а также на высоте и открытом месте.

Монтируемые конструкции удерживают от раскачивания и вращения с помощью оттяжек.

Большое внимание при монтаже должно быть уделено электросварочным работам, т.к. при выполнении их по мимо опасности поражения током существует и пожарная опасность. Запрещается вести сварку под дождем, во время грозы, сильного снегопада и ветра. Сварщик должен работать в спецодежде и с монтажным поясом.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

1. Технологическая часть

2. Механическая часть

2.3 Расчет толщины стенки обечайки

2.4 Расчет днища

2.5 Расчет и выбор фланцевого соединения

2.6 Расчет укрепления отверстий

3. Монтажная часть

3.1 Транспортировка оборудования, аппарат до места монтажа

3.3 Выбор опор

3.4 Проведение испытаний

4. Охрана труда

4.2 Пожарная безопасность

4.3 Охрана окружающей среды

5. Заключений

Список использованных источников

Введение

оборудование конструкционный монтаж материал

В условиях постоянного роста объемов промышленного, гражданского и жилищного строительства, осуществляемого в нашей стране, большую роль играет индустриальный метод строительства из сборных конструкций заводского изготовления. Индустриальное строительство позволяет превращать строительные площадки в монтажные , на которых осуществляется механизированная сборка зданий и сооружений из элементов, изготавливаемых на специализированных заводах. Оно является основой технического прогресса в этой отрасли народного хозяйства, снижает трудоемкость, сокращает продолжительность строительства, улучшает его качество и снижает стоимость, сокращает сроки ввода объектов в эксплуатацию. Удельный вес монтажных работ в строительстве увеличивается с каждым годом. Наряду с продолжающимся использованием сборных железобетонных конструкций в ближайшие годы предусматривается дальнейший рост применения металлических конструкций. Развитие монтажных работ как ведущего строительного процесса базируется на распространении комплексной механизации и автоматизации работ. Большую роль в этом играет совершенствование монтажных машин, парк которых постоянно растет, увеличение их грузоподъемности позволяет повышать массу монтируемых блоков.

Для развития монтажных процессов значительную роль играют эффективные материалы и конструкции. К числу таких материалов и изделий следует отнести: легкие бетоны, асбесто- и армоцементные изделия, синтетические материалы, герметики, пенопласта, алюминиевые сплавы и др. Развитию монтажных работ способствует применение железобетонных и металлических предварительно напряженных конструкций, конструкций из трубчатых элементов, вантовых, структурных, мембранных, сборных железобетонных оболочек, а также облегченных конструкций покрытий из профилированного штампованного настила и листа из алюминиевых сплавов, пространственных блоков. Совершенствуются технология и организация монтажных работ, широкое распространение получают методы монтажа, такие, как безвыверочный, принудительный монтаж, монтаж крупными строительно технологическими блоками и блоками полной готовности, конвейерный метод, позволяющие сокращать трудоемкость работ. Освоен и совершенствуется монтаж с транспортных средств. Большое внимание уделяется подготовительным работам и укрупнительной сборке, комплектации и максимальной готовности монтируемых конструкций и элементов зданий, приводящим к уменьшению трудоемкости вспомогательных процессов, сокращению объема работ на высоте и непроизводительному перемещению монтажников.

Тем не менее, в монтажном процессе остается еще большое количество ручных операций, главным образом по выверке и заделке стыков. Механизация и автоматизация таких работ являются неотложными задачами совершенствования монтажного процесса. Сокращение объема ручного труда на монтаже строительных конструкций должно базироваться на резком повышении уровня монтажной технологичности и осуществляться путем совершенствования монтажных машин, комплексной механизации, широкой автоматизации и роботизации строительного производства, повышения уровня заводской готовности монтируемых конструкций.

1. Технологическая часть

1.1 Литературный обзор существующих конструкций оборудования

Колонные аппараты-цилиндрические вертикальные сосуды постоянного или переменного сечения, оснащенными внутренними тепло- и массообменными устройствами (тарелками, насадками),а также вспомогательными узлами, обеспечивающие проведение технологического процесса (ректификации, абсорбции, экстрактивной ректификации, экстракции, прямого теплообмена между паром и жидкостью.

Рис. 1 Схема колонного аппарата

Классификация колонных аппаратов

Аппараты колонного типа могут быть классифицированы в зависимости от технологического назначения, рабочего давления и типа контактных (массообменных) устройств.

В зависимости от назначения каждый массообменный аппарат носит наименование конкретного, целенаправленного массообменного процесса: ректификационная колонна, абсорбер, адсорбер, экстрактор и т.д.

Ректификационная колонна - это аппарат, в котором происходит процесс ректификации, т.е. массообмен между жидкой и паровой фазами для четкого разделения компонентов (смеси двух взаимно растворимых жидкостей с получением целевых продуктов требуемой концентрации). Такое разделение обеспечивается в результате процесса ректификации, под которым понимают двусторонний массообмен между двумя фазами растворов, одна из которых паровая, другая - жидкая. Диффузионный процесс разделения жидкостей ректификацией возможен при условии, что температуры кипения жидкостей различны. Для осуществления диффузии пары и жидкости должны как можно лучше контактировать между собой, двигаясь в ректификационной колонне навстречу друг другу: жидкость под собственным весом сверху вниз, пары - снизу вверх.

Из свойств равновесной системы известно, что при контактировании неравновесных паровой и жидкой фаз система стремится к состоянию равновесия в результате массообмена и теплообмена между этими фазами. Следовательно, для протекания ректификации необходимо, чтобы контактируемые жидкость и пары при одном и том же давлении не были равновесными. Иными словами, нужно, чтобы температура жидкости была ниже температуры паров.

Ректификационные колонны широко применяются в различных отраслях промышленности, в частности, в нефтегазопереработке для разделения нефти и мазута на установках первичной перегонки нефти (АВТ), бензина на установках вторичной перегонки, углеводородных газов на газофракционирующих установках (ГФУ), продуктов реакций на установках

Рис. 2 Ректификационная колонна

Абсорбер - это аппарат для избирательного поглощения жидкостью (абсорбентом) целевых составных частей исходной газовой смеси.

Процесс абсорбции протекает тогда, когда парциальное давление или концентрация извлекаемого компонента в газовой смеси больше, чем в абсорбенте. Чем больше эта разность, тем интенсивнее переход компонента из газовой смеси в жидкость (абсорбент). Когда парциальное давление или концентрация компонента в жидкости больше, чем в газовой смеси, происходит десорбция - выделение растворенного газа из раствора.

Абсорберы и десорберы работают попарно. В некоторых случаях абсорбцию и десорбцию осуществляют последовательно в одном и том же аппарате. Абсорберы и десорберы обычно конструктивно не отличаются друг от друга.

Рис. 3 Абсорбер с регулярной насадкой Рис.4Абсорбер с комбинированными контактными устройствами

Адсорбер - аппарат, в котором протекает процесс адсорбции, т.е. массообмен между твердой и жидкой фазами для извлечении из смеси нужных компонентов.

Процесс адсорбции заключается в избирательном поглощении вещества поверхностью адсорбента - пористого твердого тела. Такое поглощение объясняется наличием сил взаимного притяжения между молекулами адсорбента и молекулами адсорбируемого вещества. Адсорбенты используют в виде зерен размером до 10 мм и в пылевидном состоянии. Применяют также молекулярные сита - синтетические цеолиты, имеющие поры одинаковых размеров.

Адсорбцию обычно применяют для разделения «бедных» смесей (содержащих незначительные количества поглощаемых веществ) и смесей, состоящих из трудноразделяемых компонентов. На нефтеперерабатывающих заводах путем адсорбции производят очистку масел и парафина, извлечение бензина из углеводородных газов, осушку газов, воздуха и т.п.

Поглощенное адсорбентом вещество выделяется из него десорбцией - процессом, обратным адсорбции. В результате десорбции и последующей обработки адсорбента он регенерируется и может быть использован вновь.

Десорбцию и регенерацию адсорбента проводят водяным паром и различными жидкостями, из которых затем извлекают целевые вещества. Нецелевые компоненты можно выжигать, если при этом регенерируемый адсорбент не потеряет присущих ему свойств.

В большинстве случаев адсорберы и десорберы - колонные аппараты. Наиболее сложны аппараты непрерывного действия - адсорберы с движущимся зернистым адсорбентом и адсорберы с кипящим слоем адсорбента.

Экстрактор - аппарат, в котором осуществляется процесс экстракции, т.е. массообмен между двумя жидкими фазами для удаления из смеси нежелательных компонентов и т.д.

Жидкостную экстракцию в нефтепереработке применяют для очистки масел, а также в производстве дизельного топлива и керосина. Процесс экстракции заключается в разделении смеси компонентов путем обработки твердой или жидкой фазы жидким избирательным растворителем. В качестве избирательных растворителей используют фурфурол, фенол, жидкий сернистый ангидрид, диэтиленгликоль, жидкий пропан и др.

Конструкции экстракторов должны обеспечить тщательное контактирование массообменивающихся фаз и их последующее разделение. Большинство экстракторов представляет собой колонны с тарелками или насадкой. В колоннах экстракция осуществляется контактированием в противотоке рафинатного и экстрактного растворов.

В зависимости от применяемого давления колонные аппараты подразделяются на атмосферные, вакуумные и колонны, работающие под избыточным давлением.

К атмосферным колоннам обычно относят колонны, в верхней части которых рабочее давление незначительно превышает атмосферное и определяется сопротивлением коммуникаций и аппаратуры, расположенных на потоке движения паров ректификата после колонны. Давление в нижней части колонны зависит в основном от сопротивления ее внутренних устройств и может значительно превышать атмосферное (например, колонна для разделения смеси этилбензола и ксилолов). В колоннах, работающих под избыточным давлением , величина последнего может значительно превышать атмосферное - давление может достигать 100 и более МПа.

Давление является одним из важных факторов эксплуатации колонн. Например, для процессов ректификации главной предпосылкой для его выбора является температурный режим процесса. Повышенное давление позволяет осуществить фракционирование при высоких температурах, что необходимо в случае разделения смесей, состоящих из компонентов с низкими температурами кипения (ректификация низкомолекулярных углеводородов).

В ректификационной колонне давление меняется по высоте аппарата в зависимости от гидравлических сопротивлений тарелок и отбойных устройств.

Для разделения компонентов с высокой температурой кипения ректификацию нужно проводить при низких температурах, чтобы избежать разложения высокомолекулярных углеводородов - при температуре их кипения. С этой целью ректификацию проводят в вакуумных колоннах, где температуры кипения искусственно снижают в зависимости от величины вакуума. Особенно распространены вакуумные колонны, применяемые на мазутоперегонных установках для получения масляных дистиллятов.

В вакуумных колоннах давление ниже атмосферного (создано разрежение), что позволяет снизить рабочую температуру процесса и избежать разложения продукта (разделение мазута, производство стирола, синтетических жирных, кислот и др.). Величина остаточного давления в колонне определяется физико-химическими свойствами разделяемых продуктов и главным образом допустимой максимальной температурой их нагрева без заметного разложения.

Массообменные контактные устройства

Для обеспечения эффективного контактирования фаз, как было сказано ранее, массообменные колонны снабжаются массообменными устройствами.

В настоящее время известно большое количество разнообразных массообменных устройств, при этом продолжается разработка новых прогрессивных. Это объясняется тем, что к массообменным устройствам предъявляется большое количество требований, многие из которых противоречат друг другу. Поэтому невозможно разработать универсальной конструкции массообменных устройств.

Области применения контактных устройств определяются свойствами разделяемых смесей, рабочим давлением в аппарате, нагрузками по пару (газу) и жидкости и т.п.

К конструкциям массообменных устройств предъявляются следующие основные требования: дешевизна, простота в обслуживании, высокая производительность, максимально развитая поверхность контакта между фазами и эффективность передачи массы вещества из одной фазы в другую, устойчивость режима в широком диапазоне нагрузок, максимальная пропускная способность по паровой (газовой) и жидкой фазе, минимальное гидравлическое сопротивление, прочность конструкции и долговечность и т.д.

В зависимости от способа организации контакта фаз массообменные устройства обычно подразделяют на тарельчатые, насадочные и роторные.

Около 60% изготавливаемых колонных аппаратов для абсорбции и ректификации представляют собой тарельчатые колонны, остальные насадочные. Последние при правильной организации гидродинамики процесса часто более экономичны, чем тарельчатые.

В колонные аппараты подразделяют на тарельчатые, насадочные и пленочные.

Роторные и пленочные из-за сложности изготовления и высокой стоимости мало используются в промышленности, поэтому здесь не рассматриваются.

Тарельчатые массообменные устройства

В нефтеперерабатывающей промышленности наибольшее распространение находят тарельчатые колонные аппараты. В тарельчатой колонне процесс массообмена осуществляется путем многократного ступенчатого контактирования двух фаз. Для этой цели она и снабжается специальными устройствами - тарелками, на которых в основном и происходит массообмен, если не считать незначительного массообмена в свободном объеме колонны. Тарелки монтируют горизонтально внутри колонны.

В ректификационных колоннах применяются тарелки различных конструкций, существенно различающиеся по своим рабочим характеристикам и технико-экономическим данным.

При оценке конструкций тарелок обычно принимают во внимание следующие показатели:

1. производительность;

2. гидравлическое сопротивление;

3. эффективность при разных рабочих нагрузках;

4. диапазон рабочих нагрузок в условиях достаточно высокой эффективности;

5. сопротивление одной теоретической тарелки при разных рабочих нагрузках;

6. возможность работы на средах, склонных к образованию инкрустаций, к полимеризации и т.п.;

7. простоту конструкции, проявляющуюся в трудоемкости изготовления, монтажа, ремонтов;

8. металлоемкость.

Тарелок универсальных конструкций, как и других массообменных устройств, не существует. В большинстве случаев для оценки достаточно иметь данные по показателям а, в и г ; если они различаются сравнительно слабо, то анализируют показатели е, ж и з. Показатели б и д имеют большое значение для вакуумных и многотарельчатых колонн, где решающую роль играет сопротивление аппарата. Поэтому в целом ряде случаев для вакуумных колонн может оказаться целесообразным применение тарелок, обладающих относительно низкой эффективностью и малым гидравлическим сопротивлением.

Основы классификации тарельчатых массообменных устройств

В настоящее время в промышленной практике известны сотни различных конструкций тарелок, многие из которых имеют лишь чисто познавательное значение. Другие конструкции, хотя и различаются отдельными элементами, в практической области имеют равноценные основные показатели. Вплоть до настоящего времени нет достаточно стройной классификации тарельчатых устройств, хотя попытки в этом направлении делались неоднократно. Поэтому здесь будут приведены лишь общие принципы, которые позволят ориентироваться во всем многообразии имеющихся конструкций тарелок и производить их предварительную оценку

1.2 Описание и обоснование выбранной конструкции

Рис. 5 Ректификационная колонна

Ректификация известна с начала XIX века как один из важнейших технологических процессов главным образом спиртовой и нефтяной промышленности. В настоящее время ректификацию во всем мире применяют в самых различных областях химической технологии, где выделение компонентов в чистом виде имеет весьма важное значение. Ректификация -- это процесс многократного испарения и конденсации, в ходе которого исходная смесь разделяется на 2 или более компонентов, и паровая фаза насыщается легколетучим (низкокипящим) компонентом, а жидкая часть смеси насыщается тяжелолетучим (высококипящим) компонентом.

Ректификационная колонна -- цилиндрический вертикальный сосуд постоянного или переменного сечения, оснащенный внутренними тепло- и массообменными устройствами и вспомогательными узлами, предназначенный для разделения жидких смесей на фракции, каждая из которых содержит вещества с близкой температурой кипения. Классическая колонна представляет собой вертикальный цилиндр, внутри которого располагаются контактные устройства -- тарелки или насадки. Соответственно различают ректификационные 0колонны тарельчатые и насадочные.

Принцип работы колонны заключается в подаче исходной смеси, нагретой до температуры питания в паровой, парожидкостной или жидкой фазе, поступающей в колонну в качестве питания. Зону, в которую подаётся питание, называют эвапорационной, так как там происходит процесс эвапорации -- однократного отделения пара от жидкости. Пары поднимаются в верхнюю часть колонны, охлаждаются, конденсируются в холодильнике-конденсаторе и подаются обратно на верхнюю тарелку колонны в качестве орошения. Таким образом, в верхней части колонны (укрепляющей) противотоком движутся пары (снизу вверх) и стекает жидкость (сверху вниз). Стекая вниз по тарелкам, жидкость обогащается высококипящими компонентами, а пары, чем выше поднимаются вверх колонны, тем более обогащаются легкокипящими компонентами. Таким образом, отводимый с верха колонны продукт обогащен легкокипящим компонентом. Продукт, отводимый с верха колонны, называют дистиллятом. Часть дистиллята, сконденсированного в холодильнике и возвращённого обратно в колонну, называют орошением или флегмой. Отношение количества возвращаемой в колонну флегмы и количества отводимого дистиллята называется флегмовым числом. Для создания восходящего потока паров в кубовой (нижней, отгонной) части ректификационой колонны часть кубовой жидкости направляют в теплообменник, образовавшиеся пары подают обратно под нижнюю тарелку колонны.

Таким образом, в кубе колонны создается 2 потока:1 поток-жидкость, стекающая с верха (из зоны питания + орошение) 2 поток -пары, поднимающиеся с низа колонны.

Кубовая жидкость, стекая сверху вниз по тарелкам, обогащается высококипящим компонентам, а пары обогащаются легкокипящим компонентом.

В случае, если разгоняемый продукт состоит из двух компонентов, конечными продуктами являются дистиллят, выходящий из верхней части колонны и кубовый остаток. Ситуация усложняется, если необходимо разделить смесь состоящую из большого количества фракций.

Классификация ректификационных колонн

Применяемые в нефте- и газопереработке ректификационные колонны подразделяются:

1) по назначению:

Для атмосферной и вакуумной перегонки нефти и мазута;

Вторичной перегонки бензина;

Стабилизации нефти, газоконденсатов, нестабильных бензинов;

Фракционирования нефтезаводских, нефтяных и природных газов;

Отгонки растворителей в процессах очистки масел;

Разделения продуктов термодеструктивных и каталитических процессов переработки нефтяного сырья и газов

2) по способу межступенчатой передачи жидкости:

С переточными устройствами (с одним, двумя или более);

Без проточных устройств провального типа

3) по способу организации контакта парогазовой и жидкой фазы:

Тарельчатые

Насадочные

Роторные

По типу применяемых контактных устройств наибольшее распространение получили тарельчатые, а также насадочные ректификационные колонны.

В ректификационных колоннах применяются сотни различных конструкций контактных устройств, существенно различающихся по своим характеристикам и технико-экономическим показателям. При этом в эксплуатации находятся наряду с самыми современными конструкциями контактные устройства таких типов (например, желобчатые тарелки), которые, хотя и обеспечивают получение целевых продуктов, но не могут быть рекомендованы для современных и преспективных производств.

При выборе типа контактных устройств обычно руководствуются следующими основными показателями:

а) производительностью;

б) гидравлическим сопротивлением;

в) коэффициентом полезного действия;

г) диапазоном рабочих нагрузок;

д) возможностью работы на средах, склонных к образованию смолистых или других отложнний;

е) материалоемкостью

ж) простотой конструкции, удобством изготовления, монтажа и ремонта

Промышленные ректификационные колонны могут достигать 80 метров в высоту и более 6,0 метров в диаметре. В ректификационных колоннах в качестве контактных устройств применяются тарелки, которые дали название химическому термину, и насадки. Насадка, заполняющая колонну, может представлять собой металлические, керамические, стеклянные и другие элементы различной формы.

Ректификационные установки по принципу действия делятся на периодические и непрерывные. В установках непрерывного действия разделяемая сырая смесь поступает в колонну и продукты разделения выводятся из неё непрерывно. В установках периодического действия разделяемую смесь загружают в куб одновременно и ректификацию проводят до получения продуктов заданного конечного состава.

В ректификационных и абсорбционных колоннах применяются тарелки различных конструкций (колпачковые, клапанные, струйные, провальные и т. п.), существенно различающиеся по своим рабочим характеристикам и технико-экономическим данным. При выборе конструкции контактного устройства учитывают как их гидродинамические и массообменные характеристики, так и экономические показатели работы колонны при использовании того или иного типа контактных устройств.

Ситчатые тарелки. Колонна с ситчатыми тарелками представляет собой вертикальный цилиндрический корпус с горизонтальными тарелками, в которых равномерно по всей поверхности просверлено значительное число отверстий диаметром 1-5 мм. Газ проходи сквозь отверстия тарелки и распределяется в жидкости в виде мелких струек и пузырьков сетчатые тарелки отличаются простотой устройства, легкостью монтажа, осмотра и ремонта. Гидравлическое сопротивление этих тарелок невелико. Сетчатые тарелки устойчиво работают в довольно широком интервале скоростей газа, причем в определенном нагрузок по газу и жидкости эти тарелки обладают высокой эффективностью. Вместе с тем ситчатые тарелки чувствительны к загрязнителям и осадкам, которые забивают отверстия тарелок.

Колпачковые тарелки. Менее чувствительны к загрязнениям, чем ситчатые, и отличаются более высоким интервалом устойчивой работы колонны с колпачковыми тарелками. Газ на тарелку поступает по патрубкам, разбиваясь затем прорезями колпачка на большое число отдельных струй. Далее газ проходит через слой жидкости, перетекающей по тарелке от одного сливного устройства к другому. При движении через слой значительная часть мелких струй распадается и газ распределяется в жидкости в виде пузырьков. Интенсивность образования пены и брызг на колпачковых тарелках зависит от скорости движения газа и глубины погружения колпачка в жидкость. Колпачковые тарелки изготовляют с радиальным или диаметральным переливами жидкости. Колпачковые тарелки устойчиво работают при значительных изменениях нагрузок по газу и жидкости. К их недостаткам следует отнести сложность устройства и высокую стоимость, низки предельные нагрузки ею газу, относительно высоко гидравлическое сопротивление, трудность очистки.

Клапанные тарелки. Принцип действия клапанных тарелок состоят в том, что свободно лежащий что свободно лежащий над отверстием в тарелке круглый клапан с изменением расхода газа своим весом автоматически регулирует величину площади зазора между клапаном и плоскостью тарелки для прохода газа и тем самым поддерживает постоянной скорость газа при его истечении в барботажный слой.

1.3 Выбор грузоподъемного оборудования

Рис. 6 Расчетная схема

Определяем требуемую грузоподъемность крана

Gтр - масса груза, т

Lцм - расстояние от основания до центра массы, м

Lc - расстояние от основания до места строповки, м

Lc = H0 - при строповке за вершину оборудования, м

N k - количество кранов участвующих в подъеме оборудования, шт

Определение высоты подъема крюка для подъема оборудования

где h ф - высота фундамента, м

h 0 - высота оборудования до места строповки, м

h c - длинна стропа соединяющего груз с крюком крана, м

Выбираем монтажный кран марки СКГ 160 с длинной стрелы 30м, грузоподъемностью 82т и вылетом крюка 50м.

Рис. 7 Грузовысотная характеристика крана СКГ-160

2.2 Расчет системы дотяжки

Рис. 8 Расчетная схема дотяжки

Определяем усилие в дотяжке

где G 0 - масса оборудования, т

Усилие, действующее на крюке подвижного блока полиспаста

Усилие на неподвижном блоке

Подбираем подвижный и неподвижный блоки по большему значению усилия

Грузоподъемность - 1000 кН

Количество роликов в блоке - 5 шт. (общее количество роликов 10 шт.)

Диаметр роликов 750 мм

Масса блока - 1760 кг (общая масса 3520 кг)

Длинна полиспаста в стянутом виде - 3500 мм

Усилие в сбегающей нити полиспаста

где m n - общее количество рабочих роликов без учета отводных, шт

Коэффициент полезного действия полиспаста с учетом отводных блоков

Рассчитываем разрывное усилие в канате

где S - усилие в канате, кН

k з - коэффициент запаса прочности каната

Выбираем канат для полиспаста марки ЛК-РО

6х36(1+7+7/7+14)+1о.с.

Диаметр каната - 23.5 мм

Разрывное усилие - 338 кН

Масса 1000м - 2130 кг

Определяем длину каната для полиспаста

где m - общее число роликов

H - длинна полиспаста в растянутом виде, м

h 1 - величина сокращения полиспаста, м

h 2 - длинна полиспаста в стянутом виде, м

D р - диаметр ролика, м

l 1 - длинна сбегающей нити полиспаста, м

l 2 - длинна запаса каната, м

Суммарная масса полиспаста

где G б - масса обоих блоков полиспаста, кг

G к - масса каната для полиспаста, кг

G 1000м - масса 1000 м каната, кг

Усилие, действующее на канат, закрепляющий неподвижный блок полиспаста, работающего под наклоном (при сбегающей ветви каната с подвижного блока)

Разрывное усилие каната для закрепления неподвижного блока

где m - число ветвей в стропе, шт

Выбираем канат для закрепления неподвижного блока марки ЛК-РО

6х36(1+7+7/7+14)+1о.с.

Маркировочная группа - 1960 МПа

Диаметр каната - 25.5 мм

Разрывное усилие - 383 кН

Масса 1000м каната - 2495 кг

Подбираем лебедку по усилию S n

Тип лебедки ЛМН-12

Тяговое усилие - 125 кН

Канатоемкость - 800 м

Диаметр барабана - 750 мм

Масса лебедки с канатом - 5643 кг

Определяем требуемую массу якоря для закрепления лебедки

Рис. 9 Расчетная схема якоря

N 1 - горизонтальная составляющая нагрузки

N 2 - вертикальная составляющая нагрузки

б - угол наклона тяги якоря к горизонту

k y - коэффициент устойчивости якоря от сдвига

G л - масса лебедки, кг

Определяем требуемое число бетонных блоков для якоря

где q б - масса одного блока, шт

Таблица 1

Блоки бетонные

Масса якоря

где m - число блоков, шт

Проверка якоря на опрокидывание

где b - плечо удерживающего момента

a - плече опрокидывающего момента от усилия в тяге

1.4 Описание технологической установки

Рис. 10 Принципиальная схема блока атмосферной перегонки нефти установки ЭЛОУ-АВТ-6:1-отбензинивающая колонна;2- атмосферная печь; I-нефть с ЭЛОУ; II-легкий бензин; III-газ

Блок атмосферной перегонки нефти высокопроизводительной, наиболее распространенной в нашей стране установки ЭЛОУ-АВТ-6 функционирует по схеме двухкратного испарения и двухкратной ректификации.

Обезвоженная и обессоленная на ЭЛОУ нефть дополнительно подогревается в теплообменниках и поступает на разделение в колонну частичного отбензинивания 1. Уходящие с верха этой колонны углеводородный газ и легкий бензин конденсируются и охлаждаются в аппаратах воздушного и водяного охлаждения и поступает в емкость орошения. Часть конденсата возвращается на верх колонны 1 в качестве острого орошения. Отбензиненная нефть с низа колонны 1 подается в трубчатую печь, где нагревается до требуемой температуры и поступает в атмосферную печь. Часть отбензиненной нефти из печи возвращается в низ колонны в качестве горячей струи.

2. Механическая часть

2.1 Выбор конструкционных материалов

Для корпуса аппарата выбираем по рекомендациям листовую сталь марки 16 ГС по ГОСТ 10885-5, для которой технические требования по ГОСТ 10885-5; рабочие условия: tR = 240°С; р=0,5 МПа. Виды испытаний и требования по ГОСТ 10885-5 (испытания проводятся на заводе-поставщике металла по требованию заказчика). При выборе материала было учтено следующее: коррозионные свойства среды. При заданных рабочих параметрах скорость коррозии составляет менее 0,1 мм/год. технологические свойства используемого материала: свариваемость, пластичность и другие. влияние конструкционного материала на качество исходной смеси и продуктов разделения. технико-экономические соображения: нержавеющая сталь широко применяется в химическом машиностроении и других отраслях промышленности. Сварка автоматическая. Тип электрода по ГОСТ 10052-5 -Э-04Х20Н9. Опоры цилиндрические. Материал деталей опор должен выбираться из условий эксплуатации и в соответствии с техническими требованиями ОСТ 26-91-4.

2.2 Определение расчетных параметров

Рабочая и расчетная температура

Расчетная температура T R - это температура для определения физико-механических характеристик конструкционного материала и допускаемых напряжений. Она определяется на основании теплового расчета или результатов испытаний. Если при эксплуатации температура элемента аппарата может повысится до температуры соприкасающейся с ним среды, расчетная температура принимается равной рабочей, но не менее 20 °С. Проектируемый аппарат снабжен изоляцией препятствующей охлаждению или нагреванию элементов аппаратов внешней средой.

Рабочая температура аппарата Т=240 °С.

Расчетная температура Т Р =240°С.

Рабочее, расчетное и условное давление

Рабочее давление P - максимальное избыточное давление среды в аппарате при нормальном протекании технологического процесса без учета допускаемого кратковременного повышения давления во время действия предохранительного устройства P=0,5МПа.

Расчетное давление P R - максимальное допускаемое рабочее давление, на которое производится расчет на прочность и устойчивость элементов аппарата при максимальной их температуре. Как правило, расчетное давление может равняться рабочему давлению.

Расчетное давление может быть выше рабочего в следующих случаях: если во время действия предохранительных устройств давление в аппарате может повыситься более чем на 10% от рабочего, то расчетное давление должно быть равно 90% давления в аппарате при полном открытии предохранительного устройства; если на элемент действует гидростатическое давление от столба жидкости в аппарате, значение которого свыше 5% расчетного, то расчетное давление для этого элемента соответственно повышается на значение гидростатического давления.

2.3 Определяем толщину стенки цилиндрической обечайки аппарата

работающего под внутренним избыточным давлением и определяем величину пробного давления при гидроиспытаниях, допускаемое внутреннее давление в рабочих условиях и в условиях гидроиспытаний.

Исходные данные для расчета:

D-внутренний диаметр обечайки, мм;

Н-высота обечайки, мм;

Р раб - рабочее давление, МПа;

Т раб - температура среды в резервуаре, єС;

П- скорость коррозии, мм/год;

Материал аппарата-16ГС

Среда- нетоксичная, некоррозионная

1.Определяем расчетную температуру стенки аппарата:

При Т>20єС,Т расч =Т раб =240 єС (23)

2. Определяем допускаемое напряжение для материала аппарата в рабочих условиях и в условиях гидроиспытаний:

а)в рабочих условиях

[?]=?·? * , (24)

где? * -определяем по табл.

Поправочный коэффициент для литых аппаратов равен 0,7-0,8 для сварных равен 1;

б)в условиях гидроиспытаний

[?] и =? т 20 /1,1, (25)

где? т 20 -определяем по таблице.

3.Опрделяем расчетное значение внутреннего избыточного давления в рабочих условиях:

Р расч =Р раб +Р г (26)

где Р г =p·g·Н-гидростатистическое

где p-плотность среды, кг/м 3 ;

g-ускорение свободного падения,м/с 2 ;

Н-высота столба жидкой среды в аппарате, м.

Если Р г составляет менее 5% от

Р раб,то Р расч =Р раб

Р г =1000·9,81·7,26=71220,6Па=0,712 МПа

Так как 0,712 МПа>0,0025 МПа, то Р расч =0,5+0,712=1,212 Мпа

4.Определяем пробное давление при гидроиспытаниях:

для сварных аппаратов

Р пр =maх{1,25·Р расч; Р расч +0,3}; (27)

где [?] 20 =?·? *

где? * -определяем по табл.для материала аппарата при 20 єС

1,25·Р расч =1,25·1,212·=1,91 МПа

Р рас +0,3=1,212+0,3=1,512 МПа

Р пр =max{1,91;1.512}=1.91 Мпа

5.Определяем расчетную и исполнительную толщину стенки аппарата:

S рас =max (28)

S рас =max{2,09;2,1,59}=2,09 мм

с=с 1 +с 2 +с 3

с=2+0,1+0,3=2,4 мм

S=2,09+2,4=4,49 мм

Принимаем S=5мм

6.Определяем допускаемое внутреннее давление:

а)в рабочем состоянии

0.75>1.1-условие выполняется

[P] и >Р пр

1,5>1,91-не выполняется

Толщину стенки увеличиваем для выполнения условия прочности

Принимаем S=7 мм

1,3>0,5-условие выполняется

2,7>1,91-условие выполняется

7.Проверяем условие применимости формулы:

Определяем толщину стенки эллиптического днища аппарата, работающего под внутренним избыточным давлением и проверяем условия прочности.

1. Определяем расчетную температуру стенки аппарата:

при Т>20єС,Т р =Т=240єС (31)

2.Определяем допускаемое напряжение для материала аппарата в рабочих условиях:

3.Определяем расчетную толщину стенки по формуле:

4.Определяем исполнительную толщину стенки

c=c 1 +c 2 +c №

c=2+0,03+0,1=2,13

S=2+2,13=4,13мм

5.Определяем допускаемое внутреннее избыточное давление по формуле:

Применимость формулы проверяем по условию:

6.Проверяем условие прочности:

[Р]> Р в.р (35)

Выбор фланцевого соединения при заданных рабочих параметрах, подбор крепежных деталей и определение расчетной болтовой нагрузки на фланец.

1.Выбор фланцевого соединения

Тип фланцевого соединения выбирается в зависимости от рабочего давления и диаметра условного прохода штуцера

Назначение фланцев- Для труб и трубной арматуры

Тип фланцев- Стальные плоские приварные с выступом и впадиной

Стандарт ГОСТ 12828-67

Основные геометрические размеры фланцев для труб и трубной арматуры-D y =200мм; D ф =315 мм; D Б =280 мм; D 1 =258 мм; D 2 =250 мм; D 4 =222 мм; D 6 =225 мм; h=19 мм; h 1 =18 мм; h 2 =18 мм;d=18 мм;z=8

Материал фланцев и крепежных деталей как корпус аппарата 16ГС

Тип прокладки выбирается в зависимости от формы сопрягаемой поверхности выбранного фланцевого соединения

Конструкция прокладки- плоская неметаллическая.

Материал прокладки выбирается в зависимости от рабочего давления, температуры и свойств среды-паронит

2. Расчет болтовой нагрузки фланцевого соединения:

2.1 Определяем нагрузку на болты фланцевого соединения, находящегося под давлением среды:

Q б 1 =·(d в +(2b/3)) 3 ·Р раб +р·D c ·b 0 ·m· Р раб, (36)

где d в - внутренний диаметр прокладки, мм;

b=(D- d в)/2-ширина прокладки, мм;

D c = d в + b-средний диаметр прокладки, мм;

b 0 -расчетная ширина прокладки, мм; Определяется в зависимости от конструкции прокладки; для плоской прокладки b 0 = b при b<0,012 м, при b>0,012 м b 0 =1,1v b; для прокладки овального сечения b 0 = b/4;

m-коэффициент удельного давления на прокладку.

b= мм=0,018 м

D c =222+18=240 мм=0,240 м

Q б 1 = 3 ·0,5+3,14·0,240·0,018·2,5·0,5=0,017 МПа

Определяем нагрузку на болты фланцевого соединения, не находящегося под давлением среды, обеспечивающую смятие прокладки для надежной герметичности:

Q б 2 =р· D c · · b 0 ·q пр, (37)

q пр - давление на поверхность прокладки, МПа.

Q б 2 =3,14·0,240·0,005·20=0,075 Мпа

Выбираем максимальное значение:

Q б =max{ Q б 1 ; Q б 2 } (38)

Q б =max{0,087;0,075}=0,087 Мпа

Определяем нагрузку, приходящуюся на один болт:

где n б - число болтов

Определяем внутренний диаметр резьбы:

где [?] б -допускаемое напряжение для материала болта при рабочей температуре, Мпа

Определяем уточненное значение нагрузки на один болт:

Определяем минимальную нагрузку на болты:

Q min =n·q б 1 (42)

Q min =8·0,367=2,936 Мпа

Параметры фланца (толщину диска, сварные швы) рассчитаем по расчетной нагрузке:

Q p ==1,51 Мпа

Расчет отверстия не требующего укрепления, проверка укрепления выреза утолщением стенки цилиндрической обечайки и патрубка штуцера, определение геометрических размеров укрепляющего кольца.

1. Определяем расчетный диаметр отверстия в стенке обечайки:

d p =d+2c 5 (44)

d p =200+2·2=204 мм=0,204 м

2. Определяем наибольший диаметр одиночного отверстия, не требующего укрепления, при наличии избыточной толщины стенки обечайки:

где S p -расчетная толщина стенки обечайки, мм.

D p -расчетный внутренний диаметр укрепляемого элемента. Для отверстия, расположенного на обечайки и стандартном эллиптическом днище, у которого Н=0,25 D, D р =D

Расчетный диаметр одиночного отверстия удовлетворяет условию d p < d 0

0,204<0,2101-условие выполняется

3. Монтажная часть

3.1 Транспортировка ректификационной колонны, аппарат до места монтажа

Транспортировка -- процесс перемещения груза/объекта в место назначения, посредством тех или иных транспортных средств.

Негабаритный груз -- это такой груз, весогабаритные параметры которого превышают допустимые при транспортировке размеры и установленные правилами дорожного движения нормы. Другими словами, негабаритный размер -- это такой размер груза, который невозможно поместить в стандартное транспортное средство.

В нашем случае грузом является ректификационная колонна. Её параметры:

Транспортировка колонны будет осуществляться с помощью автотранспорта.

Основные документы, регулирующие перевозку негабаритных грузов автомобильным транспортом в Российской Федерации:

1. Правила дорожного движения

2. Правила перевозок грузов автомобильным транспортом

3. Правила обеспечения безопасности перевозок пассажиров и грузов автомобильным транспортом и городским наземным электрическим транспортом.

Согласно правилам дорожного движения (ПДД) и правилам перевозок грузов автомобильным транспортом, перевозка негабаритных грузов должна производиться транспортным средством с размерами, не превышающими 2,55 м в ширину, 20 м в длину (включая прицеп) и 4 м в высоту от проезжей части с учётом груза.

Параметры автопоезда с грузом превышает допустимые, поэтому для проезда такого автопоезда требуется специальное разрешение и специальный пропуск.

Перевозка негабаритного груза представляет собой сложный и в некоторых случаях опасный процесс, поэтому:

· груз должен быть размещён таким образом, чтобы не ухудшать и не ограничивать обзор водителя

· груз не должен негативно влиять на устойчивость используемого транспортного средства, то есть должен быть закреплён по всем правилам безопасности и не должен провоцировать опрокидывание транспорта во время передвижения

· груз не должен затруднять управление транспортным средством

· груз не должен препятствовать восприятию сигналов, подаваемых водителю участниками дорожного движения, не должен загораживать светоотражатели, опознавательные знаки, осветительные устройства и другие приборы

· груз не должен производить шумы и другие звуковые помехи, не должен поднимать пыль при транспортировке, вредить дорожному покрытию и окружающей среде

· во время движения водитель обязательно должен осуществлять контроль размещения, крепления и состояния перевозимого груза.

3.2 Описание способов монтажа. Монтаж оборудования

Подъем аппарата методом поворота вокруг шарнира выполняется в следующей последовательности:

1) произвести пробный отрыв верха аппарата от опор на 200-300 мм с выдержкой в течение 15 мин и проверкой состояния оснастки и грузоподъемных средств;

2) работая грузоподъемными средствами, в соответствии с циклограммой подъема повернуть аппарат на угол, не доходящий на 5-10 ° до положения неустойчивого равновесия;

3) включить в работу тормозную оттяжку, создав в ней нагрузку, равную 20-30% расчетной

4) с помощью грузоподъемных средств перевести аппарат через положение неустойчивого равновесия, передав нагрузку на тормозную оттяжку;

5) попуская тормозную оттяжку (систему) и ослабляя полиспасты грузоподъемного средства, опустить аппарат в проектное положение.

1.2 Поворот вокруг шарнира с дотягиванием является разновидностью метода поворота вокруг шарнира и принимается в случае, когда грузоподъемные средства не имеют достаточных грузовысотных характеристик для вывода аппарата в проектное положение. При этом рационально использовать метод поворота вокруг шарнира о дотягиванием при угле подъема аппарата не менее 70°

1.3 При подъеме аппарата методом поворота с дотягиванием работа выполняется в следующей последовательности:

1) по п.1.1, подпункт 1;

2) поднять аппарат до предельного угла, обусловленного возможностями грузоподъемного сродства, используя указания п.1.1, подпункт 2;

3) включить в работу дотягивающую систему и передать на нее нагрузку от грузоподъемного средства;

4) допуская тормозную оттяжку, довернуть аппарат с помощью дотягивающей системы на угол, не доходящий на 5-10° до положения неустойчивого равновесия;

5) по п. 1.1, подпункт 3;

6) с помощью дотягивающей системы перевести аппарат через положение неустойчивого равновесия, передав нагрузку на тормозную систему;

7) по п. 1.1, подпункт 5;

3.3 Выбор опор

3.4 Проведение испытаний

Для крупногабаритных аппаратов значительной высоты, устанавливаемых на фундамент, выполняют пневматические испытания воздухом или инертным газом. Перед испытаниями аппарат подвергают тщательному осмотру, проверяя разъемные и сварочные соединения. Просвечивают все сварные швы. При пневматических испытаниях запрещается обстукивать аппарат. Плотность швов и разъемных соединений проверяют с помощью мыльного раствора. Порядок повышения и снижения пробного давления зависит от давления. Например, при давлении до 2 МПа продолжительность снижения давления -- 30 мин, при давлении от 5 до 10 МПа -- 90 мин.

Особенность испытаний горизонтальных аппаратов заключается в том, чтобы нагрузки на стенки аппарата от опор были не больше, чем расчетные. При укладке аппаратов на песчаные подушки необходимо обкапывать сварные швы, чтобы можно было наблюдать за ними.

После завершения всех строительно-монтажных работ производители работ готовят объект к сдаче заказчику. Оборудование должно вводиться в эксплуатацию опробованным и в состоянии полной готовности к нормальной работе.

4. Охрана труда

4.1 Меры безопасности при монтаже

При подготовке технологических аппаратов колонного типа к монтажу и перед их подъемом производители работ проверяют соответствие проекту производства работ грузоподъемных механизмов, канатов стропов, якорей, а так же соответствие их всех поднимаемых грузов.

Перед подъемом необходимо убедиться в надежности установленных площадок, лестниц и обвязывающих аппарат трубопроводов, а также в том, что выступающие части аппаратов и сами аппараты не задевают за конструкции подъемных механизмов и сооружений, расположенных вблизи.

Колонны, масса которых близка к грузоподъемности механизма, следует поднимать в два приема. Сначала груз поднимают на высоту 20..30 см и таком положении проверяют подвеску и устойчивость аппарата. Затем осуществляют основной подъем. Канат должен огибать захватное устройство, при этом отношение диаметра захватного устройства к диаметру каната при установке вант и полиспастов должно быть не менее 4. В противном случае используют коуши, подкладки или переходные устройства.

В процессе подъема контролируют отклонение полиспастов (угломерами)

Наклон мачт, подъемников, шевров (угломером или теодолитом) высоту подъема и скорость ветра.

Работу прекращают при плохой видимости при скорости ветра более 9м/с. Аппараты следуют закреплять от раскачивания, самоопускания при вынужденной остановке подъема. Необходимо следить, чтобы аппарат не соприкасался с грузоподъемными средствами и близко расположенными конструкциями. Поднимают груз, поворачивают платформу и перемещают краны по сигналам такелажника. Сигнал «Стоп» выполняется немедленно. Расстроповку аппаратов производят после их надежного закрепления.

Запрещается открывать от грунта заземленный и примерзший груз, стаскивать, не приподнимая, оборудования с опорных конструкций, волочить или подтаскивать груз при косом положении полиспаста, выравнивать, поправлять стропы, оттягивать груз в проемы без применения специальных приемных площадок, вытаскивать стропы из - под аппарата с помощью крюка, поднимать аппараты вместе с людьми и поддерживать их руками

4.2 Пожарная безопасность

На монтажных площадках должны соблюдаться действующие правила, технические нормы и инструкции по пожарной охране.

Проходы и запасные выходы не должны загромождаться, доступ к установленным пожарным кранам шлангам огнетушителям и ящикам с песком должен быть свободным. В случае возникновения пожара необходимо немедленно вызвать пожарную охрану и принять меры по ликвидации огня, а так же предупредить его распространение всеми имеющими подручными средствами.

Воспламеняющиеся жидкие горючие вещества (бензин, керосин, д.р.) или промасленные материалы тушат пенным огнетушителям или песком.

При загорании электропроводки линию немедленно обесточивают, Горящие деревянные предметы, бумагу, спецодежду тушат водой из пожарных шлангов.

Запрещается пользование открытым огнем на расстоянии менее 20 м от места хранения легковоспламеняющихся веществ. Запрещается оставлять без надзора включенные электроприборы и механизмы.

При производстве газовой сварки и резки металлов руководствуются соответствующими разделами СНиП.

Расстояние между переносным генератором и местом обработки металла, а так же местоположением открытого огня должно быть не менее 10 м. На месте установки переносного генератора вывешивают предупредительные плакаты и надписи «Огнеопасно», «Не курить». Запрещается устанавливать ацетиленовые генераторы в помещениях, где имеются продукты, способные образовать с ацетиленом взрывчатое соединение, а также в эксплуатируемых котельных, кузницах и около мест всасывания воздуха компрессорами и вентиляторами. В случае возникновения пожара газогенераторном помещении для его тушения следует применять исключительно углекислотные огнетушители.

4.3 Охрана окружающей среды

Основные положения по технике безопасности. Правила техники безопасности, которыми руководствуются при монтаже оборудования, приведены в Строительных нормах и правилах (СНиП Ш-А. 11-70). Монтажные работы должны выполняться в соответствии с проектом производства работ. В проекте производства работ предусматривают создание условий для безопасного выполнения работ как на строительной площадке в целом, так и на отдельных рабочих местах.

Контроль за выполнением мероприятий по технике безопасности возлагается на генерального подрядчика; ответственность за безопасное ведение работ, выполняемых субподрядными организациями, возлагается на руководителей этих организаций.

Ответственность за соблюдением согласованных мероприятий по технике безопасности несет администрация монтажной организации и предприятия, на территории которого производятся строительно-монтажные работы.

Территорию монтажной площадки и рабочие места перед началом работ очищают от строительных материалов и мусора, а зимой -- от снега и льда.

Проезды, проходы и подкрановые пути следует содержать в чистоте и не загромождать.

...

Подобные документы

    Спецификация сборных железобетонных конструкций, технология монтажа. Выбор монтажных кранов по техническим параметрам. Подсчет эксплуатационной производительности крана и объемов земляных работ при обработке траншей. Выбор бульдозера для обратной засыпки.

    реферат , добавлен 09.12.2012

    Технология производства работ по возведению здания. Область применения технологической карты. Определение объемов работ при монтаже сборных конструкций, параметров монтажного крана. Подсчет трудовых ресурсов. Контроль качества работ, техника безопасности.

    курсовая работа , добавлен 11.09.2011

    Изучение комплексно-механизированного процесса сборки зданий и сооружений из элементов и конструктивных узлов заводского изготовления. Разработка технологической карты на монтаж сборных железобетонных конструкций одноэтажного промышленного здания.

    курсовая работа , добавлен 28.01.2014

    Климатологическая характеристика участка. Благоустройство и озеленение прилегающей территории. Определение нагрузок на здание, несущей способности свай. Расчет армирования железобетонных конструкций. Выбор оборудования для монтажа сборных элементов.

    курсовая работа , добавлен 22.03.2015

    Спецификация сборных железобетонных конструкций. Выбор грузоподъемных приспособлений. Определение монтажных характеристик крана. Технология и организация строительного процесса. Калькуляция затрат труда и заработной платы. Операционный контроль качества.

    курсовая работа , добавлен 08.11.2015

    Разработка технологической карты на каменную кладку сборных железобетонных конструкций с учетом численно-квалификационного состава бригады, калькуляции трудовых затрат, потребности в материалах. Составление календарного и генерального планов работ.

    курсовая работа , добавлен 26.01.2011

    Определение объемов производства работ и составление ведомостей расхода материалов, конструкций при монтаже каркаса здания. Выбор и расчет монтажных кранов по двум потоку, их технико-экономическое сравнение. Расчёт машин и оборудования производства работ.

    курсовая работа , добавлен 07.12.2012

    Спецификация сборных железобетонных конструкций. Сведения о заделке стыков и швов. Выбор методов монтажа, монтажных и грузозахватных приспособлений. Сменная эксплуатационная производительность кранов. Технология монтажа одноэтажных промышленных зданий.

    курсовая работа , добавлен 04.01.2014

    Расчет параметров зрительного зала кинотеатра, выбор кинотехнологического оборудования, его краткая характеристика. Расчет освещения помещений киноаппаратного комплекса, выбор электромонтажных материалов. Монтаж экрана и кинотехнического оборудования.

    курсовая работа , добавлен 25.09.2011

    Подсчет объемов работ и выбор метода при монтаже конструкций промышленного здания. Основные факторы, влияющие на выбор типа крана. Выбор грузозахватных и монтажных приспособлений. Контроль и оценка качества работ при производстве и приемке работ.