Технические характеристики светодиодов для светильников. Светодиодная лампа

В отличие от прозрачных ламп накаливания, основное устройство светодиодной лампы скрыто под непрозрачным корпусом. Чтобы узнать, что скрывается внутри экономичного осветительного прибора, его потребуется разобрать, приложив небольшие усилия.

Эксперименты показали, что устройства светодиодных лампочек на 220В от разных производителей имеют незначительные отличия. Поэтому весь ассортимент LED-ламп с цоколем Е14 и Е27 можно разделить на три группы: фирменные, низкокачественные китайские и филаментные.

Фирменные изделия

Конструкция LED-лампы на 220В от производителей светодиодной продукции с мировым именем аналогична ниже представленному фото. Среди огромной массы лампочек на российском рынке внешне такой образец имеет одно явное отличие – объемный радиатор. Он может быть с ребристой или гладкой поверхностью; металлического цвета или покрыт белым полимером. Но в любом случае такая лампа имеет больший вес в сравнении с дешёвым, некачественным аналогом.

Верхняя часть изделия (рассеиватель) выполняется из стекла или матового пластика в форме полусферы. Как правило, он закреплен на радиатор при помощи специальных защелок или герметика. Под рассеивателем находится печатная плата с SMD светодиодами, которая надёжно закреплена на радиаторе. Ниже размещается ещё одна плата с радиоэлементами драйвера. Надёжный драйвер – это блок с гальванической развязкой и функцией стабилизации выходного тока. Вся схема драйвера имеет высокую плотность монтажа и состоит из импульсного трансформатор, микросхем, нескольких полярных конденсаторов и множества планарных элементов.

Блок драйвера расположен внутри корпуса, который, в свою очередь, соединяет цоколь и радиатор. Электрический контакт между блоком драйвера и платой со светодиодами может быть обеспечен с помощью пайки или коннектора.

Низкокачественные китайские лампочки

Ниже представлена светодиодная лампа в разобранном виде от неизвестного китайского изготовителя.

В отличие от предыдущего образца, в данном устройстве отсутствует радиатор и драйвер. Вместо драйвера установлен простой блок питания на основе неполярного конденсатора, который не способен надежно стабилизировать выходной ток. Размещается блок питания в центре платы со светодиодами. С одной стороны – это диодный мост с резисторами.

С другой – два конденсатора.

В результате простоты такой конструкции стоимость изделия имеет гораздо меньшую стоимость.

Функцию охлаждения в таких лампочках выполняют небольшие отверстия в корпусе. Их эффективность крайне мала, что подтверждено перегоранием кристаллов светоизлучающих диодов. Плата крепится к пластиковому корпусу при помощи защелок. Электрически плата соединяется с цоколем двумя запаянными проводами. Простота такой конструкции не надежна и не способна обеспечить долгосрочную работоспособность устройства.

Filament лампы

Разнообразие лампочек на светодиодах с цоколем Е14 и Е27 не перестаёт расширяться. Очередным ноу-хау стали, так светодиодные лампы филамент (от англ. filament – нить), которые внешне очень схожи с лампами накаливания. Ученым удалось на практике реализовать светодиодный конструктив, визуально напоминающий нить накала и не требующий дополнительного теплоотвода. Использование филамент лампы (ФЛ) в быту, как правило, основывается на эстетических соображениях.

В устройстве светодиодной лампы filament основным элементом являются светодиодные нити, от количества которых зависит суммарная мощность изделия. Каждый отдельный филамент – это тонкий стеклянный стержень, поверхность которого равномерно покрыта электрически связанными SMD светодиодами. Сверху по всей длине нанесён слой люминофора, что придаёт нити жёлтый оттенок. Отвод тепла в ФЛ происходит через тонкую стеклянную колбу, внутренний объём которой заполнен газовой смесью.

Зачастую нехватка места для драйвера вынуждает производителей устанавливать модуль питания низкого качества непосредственно в цоколе осветительного прибора. Результат такого подхода – чрезмерно высокий , негативно воздействующий на зрение. Чтобы избавиться от вредного мерцания и составить конкуренцию обычным LED лампам, фирмы-изготовители модернизировали конструкцию ФЛ. Между цоколем и колбой стали делать вставку в виде пластикового кольца, за которым скрывается высококачественный драйвер.

Каждый из рассмотренных образцов пользуется спросом на потребительском рынке, а значит, будет развиваться дальше. Возможно, вскоре в устройстве светодиодной лампы на 220В появятся новые функциональные блоки, о назначении которых мы обязательно расскажем в своих статьях.

Читайте так же

Ремонт светодиодных ламп на 220 вольт, при желании, можно сделать в домашних условиях, но для этого непременно нужно иметь в наличии паяльник и мультиметр.

Светодиодные лампы такого типа на английском называются “LL-CORN”, что в переводе означает (лампа-кукуруза), по внешнему виду действительно похоже на початок кукурузы. Такие “початки” выпускаются в множестве видов. Выбрать действительно качественную продукцию сложно. Большинство подобных лампочек производится в Китае и являются подделками, но данная статья будет не о борьбе с поддельной продукцией, а поговорим на тему: ремонт светодиодных ламп кукуруза.

Лампы такого типа как на фотографии выпускают на 24, 30, 36, 48, 56, 69, 72 светодиода. В настоящее время эти лампы оснащают светодиодами SMD5730 или SMD5733. Их данные:

SMD5730 – размеры указаны в названии 5.7 мм. на 3.0 мм. Мощность – 0.5 ватта. Напряжение 3.4 вольта. Ток 150 мА. Световой поток 30 – 45 люмен.

SMD5733 – размеры указаны в названии 5.7 мм. на 3.3 Мощность – 0.5 ватта. Напряжение 3.4 вольта. Ток 150 мА. Световой поток 35 – 50 люмен. Но нужно сказать, что светодиоды, выпущенные в Китае, часто не соответствуют заявленным характеристикам.

Если светодиодная лампа перестала светить, то её не нужно сразу выбрасывать, ремонт такой лампы не сложен и может быть сделан практически любым человеком, кто умеет держать в руках паяльник. Но до ремонта лампы нужно убедиться, что лампа получала питание в месте, где она стояла. Это значит, что на место выкрученной лампы нужно вкрутить другую и убедиться, что не работает именно лампа, а не сам светильник.

Для ремонта, нужно добраться до внутренностей, и тут возникает вопрос как вскрыть светодиодную лампу? Ответ прост – при помощи обыкновенного кухонного ножа. Нужно нож вставить в место где соединяется корпус лампы с защитным прозрачным кожухом и повернуть до выхода паза кожуха из выступа корпуса.



Кожух выскочит с лёгким щелчком.



Перед нами открывается вся “начинка” лампы. Первым делом осматриваем всё внутри и убеждаемся, что пайка деталей качественная (если нет, то пропаиваем сомнительные места). Если есть почерневшие детали, то меняем их на аналогичные.

Для определения номиналов деталей, в статье ниже приведена общая схема для подобных ламп и дано перечисление номиналов деталей, в зависимости от мощности лампы. Если есть почерневшие светодиоды, то они однозначно подлежат замене на точно такие же. При замене светодиодов, обязательно обращайте внимание на полярность. Если перепутаете плюс с минусом, то он работать не будет.

Если у Вас мощный паяльник, то для пайки маленьких светодиодов, нужно намотать на жало паяльника кусок медной проволоки подходящего диаметра и паять при её помощи.

Вздутый конденсатор – меняем. Есть трещина на детали – меняем. Трещина на печатной плате – припаиваем перемычку на дорожки схемы или зачищаем лак по обеим сторонам трещины и наносим паяльником каплю олова. Если нет подходящих деталей, то эту сгоревшую лампочку оставляем как донора для будущих ремонтов.

Бывает, что внешний вид детали нормальный, но у неё есть внутренние повреждения. В этом случае без мультиметра не обойтись. Конденсаторы проверяем на пробой, а резисторы на обрыв. В схеме светодиодных ламп деталей мало и проверить их все не составляет большого труда.



Исключение составляют лампы, где питание реализовано на драйверах из микросхем. Ремонт драйвера светодиодной лампы, состоящего из микро компонентов в домашних условиях можно сделать, но ограниченно и это под силу только профессионалам. В нашей лампе схема простая.



У всех лампочек серии, которую мы рассматриваем, схема одинакова. Отличается только количество светодиодов и номиналы некоторых элементов. Для ремонта важно знать принцип работы схемы и какую роль выполняют детали. Начнём сначала.

Конденсатор C1, является гасящим и заменяться может точно таким же, как в лампе, рассчитанным на 400 вольт.

Для лампы с 24 светодиодами он 0.56 микрофарад. Для лампы 30 светодиодов – 0.68 мкф. 36 – 48 светодиодов – 0.82 мкф. 56 – 69 светодиодов – 1.2 мкф. Обозначается 564J400v, 684J400v, 824J400v, L105J400v, соответственно.

Конденсатор C2 служит для сглаживания пульсаций выпрямленного диодной сборкой тока и может быть заменён любым полярным конденсатором от 2.2 до 10 микро фарад напряжением от 100 до 400 вольт. Но эти номиналы лучше взять по максимуму. Чем больше номинал, тем меньше будет мерцание светодиодов. Проведите эксперимент с фотокамерой телефона, наставив объектив на включенную светодиодную лампочку.

Резисторы R1 и R2 служат для разряда конденсаторов, параллельно которым они подключены, и могут быть заменены любыми от 500 кило ом до 1.5 мега ом.

Диодная сборка используется MB6S и может быть заменёна любой подобной или можно использовать четыре диода, например 1N4007 или любые подобные, включенные по схеме моста.

Резистор R3 ограничивает ток светодиодов и его номинал зависит от количества их в лампе. 24 – 30 светодиодов – 33 ома. 36 светодиодов – 36 ом. 48 светодиодов – два параллельно подключенных по 100 ом, получается 50 ом. 56 светодиодов – 100 ом. 69 светодиодов – два параллельных по 390. Заменять можно такими же по мощности или больше. От сопротивления этого резистора зависит ток, который проходит через светодиоды и, значит яркость их свечения. Если номинал резистора взять меньше, то свечение повысится, но срок службы светодиода существенно понизится и наоборот.

Теперь Вы сами сможете сделать ремонт светодиодных ламп на 220 своими руками.

Удачи Вам в Ваших делах.

Небольшая лабораторка на тему «какой драйвер лучше?» Электронный или на конденсаторах в роли балласта? Думаю, что у каждого есть своя ниша. Постараюсь рассмотреть все плюсы и минусы и тех и других схем. Напомню формулу расчёта балластных драйверов. Может кому интересно?

Свой обзор построю по простому принципу. Сначала рассмотрю драйверы на конденсаторах в роли балласта. Затем посмотрю на их электронных собратьев. Ну а в конце сравнительный вывод.
А теперь перейдём к делу.
Берём стандартную китайскую лампочку. Вот её схема (немного усовершенствованная). Почему усовершенствованная? Эта схема подойдёт к любой дешёвой китайской лампочке. Отличие будет только в номиналах радиодеталей и отсутствии некоторых сопротивлений (в целях экономии).



Бывают лампочки с отсутствующим С2 (очень редко, но бывает). В таких лампочках коэффициент пульсаций 100%. Очень редко ставят R4. Хотя сопротивление R4 просто необходимо. Оно будет вместо предохранителя, а также смягчит пусковой ток. Если в схеме отсутствует, лучше поставить. Ток через светодиоды определяет номинал ёмкости С1. В зависимости от того, какой ток мы хотим пропустить через светодиоды (для самодельщиков), можно рассчитать его ёмкость по формуле (1).



Эту формулу я писАл много раз. Повторюсь.
Формула (2) позволяет сделать обратное. С её помощью можно посчитать ток через светодиоды, а затем и мощность лампочки, не имея Ваттметра. Для расчётов мощности нам ещё необходимо знать падение напряжения на светодиодах. Можно вольтметром измерить, можно просто посчитать (без вольтметра). Вычисляется просто. Светодиод ведёт себя в схеме как стабилитрон с напряжением стабилизации около 3В (есть исключения, но очень редкие). При последовательном подключении светодиодов падение напряжения на них равно количеству светодиодов, умноженному на 3В (если 5 светодиодов, то 15В, если 10 - 30В и т.д.). Всё просто. Бывает, что схемы собраны из светодиодов в несколько параллелей. Тогда надо будет учитывать количество светодиодов только в одной параллели.
Допустим, мы хотим сделать лампочку на десяти светодиодах 5730smd. По паспортным данным максимальный ток 150мА. Рассчитаем лампочку на 100мА. Будет запас по мощности. По формуле (1) получаем: С=3,18*100/(220-30)=1,67мкФ. Такой ёмкости промышленность не выпускает, даже китайская. Берём ближайшую удобную (у нас 1,5мкФ) и пересчитываем ток по формуле (2).
(220-30)*1,5/3,18=90мА. 90мА*30В=2,7Вт. Это и есть расчетная мощность лампочки. Всё просто. В жизни конечно будет отличаться, но не намного. Всё зависит от реального напряжения в сети (это первый минус драйвера), от точной ёмкости балласта, реального падения напряжения на светодиодах и т.д. При помощи формулы (2) вы можете рассчитать мощность уже купленных лампочек (уже упоминал). Падением напряжения на R2 и R4 можно пренебречь, оно незначительно. Можно подключить последовательно достаточно много светодиодов, но общее падение напряжения не должно превышать половины напряжения сети (110В). При превышении этого напряжения лампочка болезненно реагирует на все изменения напряжения. Чем больше превышает, тем болезненнее реагирует (это дружеский совет). Тем более, за этими пределами формула работает неточно. Точно уже не рассчитать.
Вот появился очень большой плюс у этих драйверов. Мощность лампочки можно подгонять под нужный результат подбором ёмкости С1 (как самодельных, так и уже купленных). Но тут же появился и второй минус. Схема не имеет гальванической развязки с сетью. Если ткнуть в любое место включенной лампочки отвёрткой-индикатором, она покажет наличие фазы. Трогать руками (включенную в сеть лампочку) категорически запрещено.
Такой драйвер имеет практически 100%-ный КПД. Потери только на диодах и двух сопротивлениях.
Его можно изготовить в течение получаса (по-быстрому). Даже плату травить необязательно.
Конденсаторы заказывал эти:


Диоды вот эти:







Но у этих схем есть ещё один серьёзный недостаток. Это пульсации. Пульсации частотой 100Гц, результат выпрямления сетевого напряжения.



У различных лампочек форма незначительно будет отличаться. Всё зависит от величины фильтрующей ёмкости С2. Чем больше ёмкость, тем меньше горбы, тем меньше пульсации. Необходимо смотреть ГОСТ Р 54945-2012. А там чёрным по белому написано, что пульсации частотой до 300Гц вредны для здоровья. Там же формула для расчёта (приложение Г).

Но это не всё. Необходимо смотреть Санитарные нормы СНиП 23-05-95 «ЕСТЕСТВЕННОЕ И ИСКУССТВЕННОЕ ОСВЕЩЕНИЕ». В зависимости от предназначения помещения максимально допустимые пульсации от 10 до 20%.
В жизни ничего просто так не бывает. Результат простоты и дешевизны лампочек налицо.
Пора переходить к электронным драйверам. Здесь тоже не всё так безоблачно.
Вот такой драйвер я заказывал. Это ссылка именно на него в начале обзора.



Почему заказал именно такой? Объясню. Хотел сам «колхозить» светильники на 1-3Вт-ных светодиодах. Подбирал по цене и характеристикам. Меня устроил бы драйвер на 3-4 светодиода с током до 700мА. Драйвер должен иметь в своём составе ключевой транзистор, что позволит разгрузить микросхему управления драйвером. Для уменьшения ВЧ пульсаций по выходу должен стоять конденсатор. Первый минус. Стоимость подобных драйверов (US $13.75 /10 штук) отличается в бОльшую сторону от балластных. Но тут же плюс. Токи стабилизации подобных драйверов 300мА, 600мА и выше. Балластным драйверам такое и не снилось (более 200мА не рекомендую).
Посмотрим на характеристики от продавца:

ac85-265v" that everyday household appliances."
load after 10-15v; can drive 3-4 3w led lamp beads series
600ma
А вот диапазон выходных напряжений маловат (тоже минус). Максимум, можно подцепить последовательно пять светодиодов. Параллельно можно подцеплять сколько угодно. Светодиодная мощность считается по формуле: Ток драйвера умножить на падение напряжения на светодиодах [количество светодиодов (от трёх до пяти) и умножить на падение напряжения на светодиоде (около 3В)].
Ещё один большой недостаток этих драйверов – большие ВЧ помехи. Некоторые экземпляры слышит не только ФМ радио, но и пропадает приём цифровых каналов ТВ при их работе. Частота преобразования составляет несколько десятков кГц. А вот защиты, как правило, никакой (от помех).



Под трансформатором что-то типа «экрана». Должно уменьшить помехи. Именно Этот драйвер почти не фонит.
Почему они фонят, становится ясно, если посмотреть на осциллограмму напряжения на светодиодах. Без конденсаторов ёлочка куда серьёзнее!



На выходе драйвера должен стоять не только электролит, но и керамика для подавления ВЧ помех. Высказал своё мнение. Обычно стоит либо то либо другое. Бывает, что ничего не стоит. Это бывает в дешёвых лампочках. Драйвер спрятан внутри, предъявить претензию будет сложно.
Посмотрим схему. Но предупрежу, она ознакомительная. Нанёс только основные элементы, которые необходимы нам для творчества (для понимания «что к чему»).



Погрешность в расчётах присутствует. Кстати, на мелких мощностях приборчик тоже подвирает.
А теперь посчитаем пульсации (теория в начале обзора). Посмотрим, что же видит наш глаз. К осциллографу подключаю фотодиод. Два снимка объединил в один для удобства восприятия. Слева лампочка выключена. Справа – лампочка включена. Смотрим ГОСТ Р 54945-2012. А там чёрным по белому написано, что пульсации частотой до 300Гц вредны для здоровья. А у нас около 100Гц. Для глаз вредно.



У меня получилось 20%. Необходимо смотреть Санитарные нормы СНиП 23-05-95 «ЕСТЕСТВЕННОЕ И ИСКУССТВЕННОЕ ОСВЕЩЕНИЕ». Использовать можно, но не в спальне. А у меня коридор. Можно СНиП и не смотреть.
А теперь посмотрим другой вариант подключения светодиодов. Это схема подключения к электронному драйверу.



Итого 3 параллели по 4 светодиода.
Вот, что показывает Ваттметр. 7,1Вт активной мощности.



Посмотрим, сколько доходит до светодиодов. Подключил к выходу драйвера амперметр и вольтметр.



Посчитаем чисто светодиодную мощность. Р=0,49А*12,1В=5,93Вт. Всё, что не хватает, взял на себя драйвер.
Теперь посмотрим, что же видит наш глаз. Слева лампочка выключена. Справа – лампочка включена. Частота повторения импульсов около 100кГц. Смотрим ГОСТ Р 54945-2012. А там чёрным по белому написано, что вредны для здоровья только пульсации частотой до 300Гц. А у нас около 100кГц. Для глаз безвредно.


Всё рассмотрел, всё измерил.
Теперь выделю плюсы и минусы этих схем:
Минусы лампочек с конденсатором в роли балласта по сравнению с электронными драйверами.
-Во время работы КАТЕГОРИЧЕСКИ нельзя касаться элементов схемы, они под фазой.
-Невозможно достичь высоких токов свечения светодиодов, т.к. при этом необходимы конденсаторы больших размеров. А увеличение ёмкости приводит к большим пусковым токам, портящим выключатели.
-Большие пульсации светового потока частотой 100Гц, требуют больших фильтрующих ёмкостей на выходе.
Плюсы лампочек с конденсатором в роли балласта по сравнению с электронными драйверами.
+Схема очень проста, не требует особых навыков при изготовлении.
+Диапазон выходных напряжений просто фантастический. Один и тот же драйвер будет работать и с одним и с сорока последовательно соединёнными светодиодами. У электронных драйверов выходные напряжения имеют намного более узкий диапазон.
+Низкая стоимость подобных драйверов, которая складывается буквально из стоимости двух конденсаторов и диодного моста.
+Можно изготовить и самому. Большинство деталей можно найти в любом сарае или гараже (старые телевизоры и т.д.).
+Можно регулировать ток через светодиоды подбором ёмкости балласта.
+Незаменимы как начальный светодиодный опыт, как первый шаг в освоении светодиодного освещения.
Есть ещё одно качество, которое можно отнести как к плюсам, так и к минусам. При использовании подобных схем с выключателями с подсветкой, светодиоды лампочки подсвечиваются. Лично для меня это скорее плюс, чем минус. Использую повсеместно как дежурное (ночное) освещение.
Умышленно не пишу, какие драйверы лучше, у каждого есть своя ниша.
Я выложил по максимуму всё, что знаю. Показал все плюсы и минусы этих схем. А выбор как всегда делать вам. Я лишь постарался помочь.
На этом всё!
Удачи всем.

Планирую купить +71 Добавить в избранное Обзор понравился +68 +157

Светодиодные лампы находят все более широкое применение в повседневной жизни. Они используются для освещения и подсветки, подчеркивают детали интерьера. Особое значение имеет схема светодиодной лампы на 220 В, технические характеристики которой значительно превосходят другие виды источников света.

Элементы светодиодной лампы

В состав стандартной светодиодной лампы входят следующие элементы:

  • Основные внешние детали - рассеиватель и цоколь.
  • Светодиоды, установленные на плате. Вся конструкция называется. кластером.
  • Радиатор.
  • Светодиодный источник питания - драйвер.

В большинстве ламп используются стандартные цоколи типа Е27. Его крепление к корпусу происходит точечными углублениями, наносимыми по окружности. Для снятия цоколя места углублений высверливаются или пропиливаются ножовкой.

К центральному контакту цоколя подключается провод красного цвета. Черный провод припаивается к резьбе. Оба проводника имеют очень короткую длину и в случае возможного ремонта лампы нужно иметь запас для наращивания. После снятия цоколя, в рассеивателе открывается отверстие, через которое хорошо заметно драйвер. Его крепление к корпусу выполняется силиконом, а его извлечение возможно только через рассеиватель.


Питание кластера, представляющего собой светодиодную плату, осуществляется с помощью драйвера. Под его действием происходит преобразование переменного напряжения 220 вольт в постоянный ток. У драйверов существуют такие параметры, как выходной ток и мощность.

Таким образом, взаимодействие всех элементов обеспечивает устойчивую и бесперебойную работу всей лампы. Выход из строя хотя бы одного из них вызовет отказ в работе всей системы.

Схемы светодиодных источников питания

Наиболее простая схема выполняется с использованием резистора, выполняющего функцию ограничителя светодиодного тока. Нормальная работа схемы в данном случае зависит лишь от правильного выбора сопротивления этого резистора. Такое питание в основном используется, когда нужно сделать светодиодную подсветку в выключателе.


Более сложные схемы выполняются с применением диодного моста. С его выхода происходит подача выпрямленного напряжения к светодиодам, включенным последовательно. Сглаживание пульсаций выпрямленного напряжения осуществляется с помощью электролитического , установленного на выходе диодного моста.

Главными преимуществами обеих схем является их низкая стоимость, небольшие размеры и довольно простой ремонт. Тем не менее, у них очень низкий коэффициент полезного действия и высокий коэффициент пульсаций.

Совершенные источники питания - драйверы

Самые новые светодиодные лампы комплектуются драйверами, основой которых является импульсный преобразователь. Они обладают высоким КПД и минимальным уровнем пульсаций. Однако их стоимость значительно выше, чем уже рассмотренные простые варианты.

Для крепления драйвера к корпусу используется силиконовая паста. Чтобы получить доступ к этому элементу, вначале отпиливается рассеиватель, а затем вынимается светодиодная плата. Подача питания на 220 вольт происходит с помощью проводов красного и черного цвета с цоколя лампы. На плату светодиодов питание подается бесцветными проводниками.

Драйвер может устойчиво работать при перепадах напряжения сети от 85 до 265 вольт. Кроме того, схема светодиодной лампы на 220 В предусматривает защиту от коротких замыканий, а также наличие электролитических конденсаторов, обеспечивающих работу при высокой температуре, вплоть до 105 градусов.

Для изготовления корпусов ламп используется алюминий и специальный пластик, хорошо рассеивающий тепло. Благодаря качественному теплоотведению, срок службы основных элементов лампы увеличивается до 40 тыс. часов. Более мощные лампы оборудуются радиаторами, прикрепляемыми к светодиодной плате слоем термопасты.

Сегодня в статье рассмотрим схему как передать энергосберегающую лампочку под светодиодную лампу работающую от сети 220 Вольт.

Итак, после разборки и извлечения из неё вполне работоспособного преобразователя детали которого ещё послужат нам для дальнейших конструкций - взять хотя-бы отличные высоковольтные транзисторы MJE13003,13001; симметричный динистор DB3 для регулятора мощности, или диоды IN4007 (700В 1А), мы имеем хороший корпус с цоколем и шестью отверстиями под... конечно же большие светодиоды Ф10мм. Именно их, а не стандартные 5мм я рекомендую для использования в светодиоднах лампах, фонариках и т.д. При цене несколько более высокой (0.5уе), чем у обычных светодиодов, они дают значительно большую яркость при том-же токе питания - около 20мА.

Все элементы светодиодной лампы монтируются на круге из двустороннего фольгированного стеклотекстолита. С одной стороны вырезаем резаком участки для припаивания цепочки светодиодов, а с другой для элементов бестрансформаторного источника питания 18В 25мА. Именно столько требуется этой светодиодной лампе.



Проще и быстрее не травить печатную плату, а прорезать дорожки резаком, сделанным из ножовочного полотна.Я так и сделал.Так как нужно тратить время еще и на ее вытравливание.Поступим как быстрее.


Для получения нужного напряжения питания светодиодов, можно использовать два варианта схем выпрямителя:


На этой, что попроще, сэкономив три диода мы теряем в токе почти в два раза. И для компенсации придётся увеличить ёмкость 0.47 до 1мкФ. Поэтому мной был сделан выбор в пользу вот такого бестрансформаторного выпрямителя:


Здесь резистор на 300 Ом защищает от бросков тока и одновременно выполняет роль плавкого предохранителя. Мощность его берём 0.25 ватт. Два стабилитрона Д814В включены последовательно и образуют один стабилитрон на напряжение около 20В. Если у вас есть готовый на 19-25В - вперёд, можете поставить его одного. Конденсатор 47мкф сглаживает мерцание и создаёт дополнительную защиту светодиодам от импульсных бросков тока при включении лампы. Резистором на 100 Ом окончательно выставляем общий ток через линейку светодиодов самодельной LED лампы для дома.


Закрепляем термоклеем круглую платку, закрываем крышку, чтоб светодиоды высовывались из неё наполовину, и всё - самодельная светодиодная лампа готова.Конечно она не может тягаться по яркости с КЛЛ. Но по своей экономичности она уделает экономичную энергосберегалку - как Белка Стрелку. При потреблении мощности 18В х 0.025А = 0.4 ватта в час, даже если её вообще никогда не выключать, она съест за год всего 0.4 х 24 х 365 = 4 кВт энергии. Стоит это на уровне одного проезда в городском транспорте. Поэтому если требуется постоянная подсветка коридора, рабочего места, дежурной подсобки и т.д., это будет идеальный вариант.