Температура вспышки, воспламенения, самовоспламенения, застыва­ния, плавления, размягчения. Определение температуры вспышки в закрытом тигле

ВСПЫШКА И ТЕМПЕРАТУРА ВСПЫШКИ . Горючие вещества, особенно жидкие, обнаруживают в зависимости от условий, в которых они находятся, три раздельных между собой типа сгорания: вспышку , воспламенение и возгорание ; как частный случай вспышки можно рассматривать взрыв . Вспышка представляет собой быстрое, но сравнительно спокойное и кратковременное сгорание смеси паров горючего вещества с кислородом или воздухом, происходящее от местного повышения температуры, которое м. б. вызвано электрической искрой или прикосновением к смеси горячего тела (твердого тела, жидкости, пламени). Явление вспышки - подобно взрыву, но, в отличие от последнего, оно происходит без сильного звука и не оказывает разрушительного действия. От воспламенения вспышка отличается своей кратковременностью. Воспламенение , возникая, как и вспышка, от местного повышения температуры, может длиться затем до исчерпания всего запаса горючего вещества, причем парообразование происходит за счет тепла, выделяющегося при сгорании. В свою очередь, воспламенение отлично от возгорания , поскольку это последнее не требует дополнительного местного повышения температуры.

Все типы сгорания связаны с распространением тепла из участка, где произошло сгорание, в прилежащие области горючей смеси. При вспышке тепловыделение в каждом участке достаточно для поджигания смежного участка уже готовой горючей смеси, но недостаточно для пополнения ее путем испарения новых количеств горючего; поэтому, истратив запас горючих паров, пламя гаснет, и вспышка на этом кончается, пока снова не накопятся горючие пары и не получат местного перегрева. При воспламенении парообразующее вещество бывает доведено до такой температуры, что теплоты от сгорания накопившихся паров оказывается достаточно для восстановления запаса горючей смеси. Начавшееся воспламенение, дойдя до поверхности горючего вещества, становится стационарным, пока горючее вещество не сгорит нацело; но, однако, будучи прекращено, воспламенение уже не возобновляется без приложенного извне местного перегрева. Наконец, при возгорании горючее вещество находится при температуре, достаточной не только для парообразования, но и для вспышки непрерывно образующейся горючей смеси, без дополнительного местного нагрева. В этом последнем случае горение, если бы оно было прекращено, например, пресечением свободного доступа кислорода, возникает самопроизвольно после устранения препятствующей причины: самопроизвольно происшедшая вспышка перейдет далее в воспламенение.

Возможность горения того или другого типа зависит прежде всего от химического состава горючей смеси, т. е. химической природы горючих паров, содержания кислорода в смеси, от содержания посторонних безразличных примесей, как: азот , водяные пары, углекислота, и от содержания примесей, активно противодействующих реакции горения, например, отрицательных катализаторов, глушителей и т. д. А так как все типы процесса горения начинаются со вспышки, то рассмотрение вспышки в ее зависимости от химического состава смеси имеет общее значение для всех случаев. Заранее очевидно, что при данных условиях давления и температуры смесь горючего пара или газа с кислородом (или воздухом) может подвергаться вспышке не в любой пропорции и что очень малое или, наоборот, слишком большое содержание горючего в смеси исключает вспышку. Кроме того, различные горючие пары требуют для своего сгорания различного количества кислорода, и потому «пределы вспышке» смесей из кислорода и горючих паров всегда зависят от рода горючего пара. Способ подсчета этих пределов для химически индивидуальных веществ был указан Торнтоном. Если обозначить через N число атомов кислорода, необходимого для полного сожжения М молекул горючего вещества в газо- или парообразном виде, то, по Торнтону, пределы смесей, сохраняющие способность вспышки, могут быть выражены:

Если в состав смеси входит не чистый кислород, а воздух, то необходимо учесть, что 1 объем кислорода содержится в 5 (точнее, в 4,85) объемах воздуха. Так, например, горение метана можно выразить уравнением:

так что для этого случая М = 1 и N = 4. Отсюда состав верхнего предела для смеси метана с кислородом определяется формулой:

отсюда легко подсчитать, что верхний предел вспышки для смеси метана с воздухом определяется отношением 1:5, т. е. при содержании в смеси 1/6 метана, или 16,7% (опыт дает 14,8%). Для нижнего предела аналогично имеем состав смеси СН 4 (1 объем) + 6 О (3 объема), что отвечает содержанию метана в смеси с воздухом 1/16, или 6,25% (опыт дает 5,6%). Аналогично для пентана, C 6 H 12 , получаем М = 1 и N = 16, откуда для верхнего предела вычисляется 1/21, или 4,75%, пентана в смеси с воздухом (опыт дает 4,5%), для нижнего же 1/76, или 1,35% (опыт дает 1,35%). Так как величины М и N в формулах Торнтона пропорциональны парциальным упругостям пара горючего вещества и кислорода, то, очевидно, вспышка возможна лишь в определенных пределах парциального давления паров, причем пределы ее изменяются с температурой. Очевидно также, что вспышка становится возможной, когда упругость насыщенного пара достигнет известного значения. Зная это значение и зависимость упругости пара от температуры, можно вычислить температуру, при которой возможна вспышка. Исследования Э. Макка, Ч. Э. Бурда и Г. Н. Боргема показали, что для большинства веществ наблюдается при нижнем пределе вспышке достаточно хорошее совпадение температуры вычисленной с температурой непосредственно наблюденной.

Смеси паров также в некоторых случаях подчиняются указанному способу определения температуры, при которой возможна вспышка. Если это - смесь нафтенов С n Н 2 n , то во всех гомологах отношение содержания С к Н одно и то же, так что средний молекулярный вес смеси дает возможность определить число групп СН 2 и, следовательно, количество потребного для сгорания их О. Кроме того, температура вспышки представляет здесь почти линейную функцию молекулярного веса и связанной с ним температурой кипения. Для смеси метановых углеводородов С n Н 2 n+2 (например, газолин) число N тоже вычисляется из среднего молекулярного веса. После вычитания из него 2 (для двух водородных атомов у конца цепи) и деления остатка на 14 (сумма атомных весов группы СН 2) получается число этих групп, отвечающее среднему молекулярному весу смеси. Если это число умножить на 3 и прибавить 1, для двух непринятых раньше во внимание атомов водорода, то получается N. Так, для газолина средний молекулярный вес 107 и поэтому:

С возрастанием давления смеси парциальная упругость горючего пара повышается, а потому повышается и температура вспышки. Увеличение давления на 1 мм повышает температуру вспышки погонов мексиканской нефти на 0,033°, как показал Ломан, исследовавший вспышку на разных высотах (по данным Гольде, работавшего с другими материалами, это изменение составляет 0,036°). Специально для керосина имеется поправочная таблица, позволяющая приводить температуру вспышки, найденную при любом барометрическом давлении, к нормальному. Кроме атмосферного давления, температура вспышки изменяет также влажность воздуха, поскольку парциальная упругость водяного пара понижает давление горючего компонента смеси.

Вспышка испаряющейся жидкости . Вспышка готовой смеси газов или паров представляет случай простейший. Более сложно протекает явление вспышки, когда вспыхивающая смесь возникает непрерывно от испарения тут же находящейся жидкости. Вспышка газовой смеси зависит также от многих условий опыта: увеличение ширины взрывной бюретки, перенесение взрывающей искры сверху вниз, увеличение емкости сосуда, удлинение искрового промежутка и т. д. - все это расширяет пределы возможной вспышки. Кроме того, некоторые, пока еще недостаточно исследованные, примеси могут существенно изменять эти пределы. Вопрос о вспышке тумана из распыленной горючей жидкости исследован Гидером и Вольфом. Нижний предел вспышки оказался тут тем же, что и для смеси с соответственным паром; но скорость распространения взрыва в тумане меньше, а потребление кислорода больше, чем в случае паров. Состояние поверхности жидкости, объем ее, расстояние до зажигающего пламени, быстрота обмена наружного воздуха и образующихся паров, быстрота испарения, а, следовательно, мощность нагревающего жидкость источника тепла, теплопроводность стенок сосуда, теплопроводность и вязкость самой жидкости, потеря сосудом тепла через лучеиспускание и т. д. - все это может значительно изменить наблюдаемую температуру вспышки и помимо факторов, указанных при обсуждении вспышки газовой смеси. Поэтому о вспышке, как о константе, можно говорить только условно, ведя опыт лишь в точно определенных условиях. Для химически индивидуальных веществ Орманди и Кревен установили пропорциональность температур вспышки и кипения (в абсолютных градусах):

где коэффициент k для нижнего предела вспышки равен 0,736, а для верхнего 0,800; Т° кип. должна быть определяема по начальному показанию термометра. Формула Орманди и Кревена до известной степени распространяется также на очень узкие фракции разного рода смесей. Однако для тех горючих жидкостей, с которыми в большинстве случаев приходится иметь дело на практике, т. е. для сложных смесей, простых зависимостей, определяющих температуру вспышки, пока не найдено. Даже двойные смеси не подчиняются в отношении вспышки правилу смешения, и низко вспыхивающий компонент значительно понижает вспышку другого, высоко вспыхивающего, тогда как этот последний мало повышает вспышку первого. Так, например, смесь равных количеств фракций (бензинового и керосинового компонентов) удельного веса 0,774 со вспышкой при 6,5° и удельным весом 0,861 со вспышкой при 130° обладают температурой вспышки не при 68,2°, как следовало бы ожидать по правилу смешения, а при 12°. При 68,2° вспыхивает смесь, содержащая лишь около 5% более легкого компонента, так что эта небольшая примесь понижает температуру вспышки более тяжелого компонента на 61,8°. Впрочем, результат испытания подобных смесей в открытом тигле, где не могут накопляться пары летучего компонента, не так искажается от примесей, особенно если разница вспышек в обоих компонентах значительна. В некоторых случаях такие смеси могут давать двойную вспышку при разных температурах.

Воспламенение . Температура воспламенения превышает температуру вспышки тем значительнее, чем выше сама температура вспышки. Как показали Кюнклер и М. В. Бородулин, при нагревании нефтяных продуктов от вспышки до воспламенения испытуемое вещество теряет около 3% своего веса, причем эта потеря относится к более легким погонам. Поэтому присутствие небольших количеств (не более 3%) легких погонов, существенно искажающее температуру вспышки вещества, не мешает точному измерению температуры воспламенения. Наоборот, присутствие в масле более 10% бензина делает температуру воспламенения неопределенной.

Самовозгорание , или самовоспламенение, смеси горючих паров происходит тогда, когда тепловыделение окисляющейся системы уравнивается с теплопотерей, и потому даже ничтожное ускорение реакции ведет к бурному процессу. Очевидно, граница температурного равновесия изменяется при том же составе смеси в зависимости от массы ее, теплопроводности и теплоиспускающей способности оболочки, содержащей горючую смесь, от температуры окружающей среды, присутствия катализаторов в смеси и целого ряда других условий, так что температура самовозгорания имеет определенное значение лишь при строго определенных условиях. Зависимость температуры самовозгорания от присутствия или отсутствия катализирующей платины доказывается, например, данными Э. Констана и Шлёнфера (табл. 1).

Зависимость температуры самовозгорания от присутствия в смеси кислорода или воздуха показана данными тех же исследователей (табл. 2).

Исследование С. Гвоздева над самовозгоранием различных веществ в кварцевых и железных трубках в атмосфере кислорода и воздуха дало результаты, которые сопоставлены в табл. 3.

В отношении к самовозгоранию опытом установлены некоторые общие положения, а именно: 1) давление понижает температуру самовозгорания; 2) присутствие влаги тоже понижает температуру самовозгорания; 3) в воздухе температура самовозгорания выше, чем в кислороде; 4) температура самовозгорания в открытой трубке выше, чем в закрытом пространстве; 5) температура самовозгорания углеводородов циклогексанового ряда ниже, чем у ароматических, и близка к температуре самовозгорания предельных углеводородов; 6) для ароматических углеводородов температуры самовозгорания в воздухе и кислороде близки между собой; 7) некоторые вещества (скипидар, спирты) дают при последовательном ряде испытаний весьма колеблющиеся значения температуры самовозгорания (особенно скипидар). Особый случай самовозгорания представляют волокнистые материалы (хлопок, начески, шерсть, тряпье), пропитанные маслами; легкость самовозгорания в таких случаях связана с температурой самовозгорания соответственных масел. Явления этого рода имеют столь существенное практическое значение, что разработаны специальные методы и приборы для испытания способности масел к самовозгоранию в присутствии хлопка.

Измерение температур вспышки и воспламенения . Находясь в тесной связи с молекулярным весом и температурой кипения, вспышка и воспламенение косвенно связаны с этими константами и потому характеризуют данное вещество. Им принадлежит еще большее значение на практике, при суждении о степени огнеопасности вещества в данных условиях пользования им и, следовательно, для установления предупредительных мер, - обстоятельство, особенно важное в промышленности (нефтяной, деревоперерабатывающей, спиртовой, лаковой, маслобойной) и вообще во всех случаях, где имеют дело с летучими растворителями.

Необходимость измерять температуры вспышки и воспламенения повела к конструкции многочисленных, нередко дорогих, специальных приборов и к разработке инструкций для работы с ними, причем в отдельных отраслях промышленности, применительно к отдельным классам веществ, даже родственных между собой, построены и стандартизованы различные приборы с различными инструкциями. Не имея под собой рациональных оснований, меняясь от страны к стране, от одной промышленной организации к другой и от одного класса веществ к другому, способы измерения вспышки и воспламенения дают результаты, согласуемые между собой лишь очень приблизительно. Главные типы приборов для измерения температуры вспышки бывают: а) с открытым сосудом, б) с закрытым сосудом.

а) Приборы с открытым сосудом . Измерение температуры вспышки первоначально производилось наливанием испытуемой жидкости на воду, содержащуюся в чашке; эта последняя затем подогревалась. Позднее вспышку в открытом сосуде стали производить гл. обр. в отношении трудно вспыхивающих веществ, например, смазочных масел, газовых каменноугольных смол, различных мастик и т. д. Таковы приборы Маркуссона, Бренкена, Кливленда, Мура, де-Граафа, Круппа, отличающиеся между собой главным образом размерами, формой и материалом тигля, конструкцией обогревающих частей и способом ведения нагрева. Подробности обращения с этими приборами можно найти в специальных руководствах. Следует отметить, что выступание ртутного столбика термометра за пределы тигля и нахождение его в среде с различными в разных местах температурами ведут к необходимости в значительной поправке, возрастающей с возрастанием температуры вспышки или воспламенения, - например, до 10-14°, когда температура вспышки 300°. Истинная температура вспышки вычисляется по формуле:

где θ - непосредственно наблюденная температура вспышки (или воспламенения), n - число градусов части ртутного столбика, находящейся вне испытуемой жидкости, a t" - температура, соответствующая середине выступающей части ртутного столбика; хотя t" м. б. вычислена, но обычно ее измеряют непосредственно, с помощью дополнительного термометра. Для быстрого нахождения этой поправки служит специальная таблица. Особая таблица служит также для поправок на барометрическое давление, особенно важных при определении температуры вспышки легко воспламеняющихся жидкостей (керосин); для последних обычно применяют приборы с закрытым сосудом.

б) Приборы с закрытым сосудом . Из различных приборов этого рода наиболее известны приборы Абеля и Мартенса (оба усовершенствованные Пенским), Эллиота (нью-йоркский), Таг. В СССР и некоторых других странах (Германия, Австрия) употребляется почти исключительно прибор Абеля-Пенского для низкокипящих жидкостей (керосин) и прибор Мартенса-Пенского - для высококипящих жидкостей (масла). Рабочая часть этих приборов состоит из строго нормированного тигля, плотно прикрытого крышкой, в которой через определенные промежутки времени открывают окошечко для введения в тигель маленького пламени. В тигле имеется термометр и мешалка. Обогрев тигля, а в некоторых случаях, наоборот, охлаждение, ведется в строго определенных условиях, при помощи специальных бань. Приборы, принятые в разных странах для испытания керосина, и нормальные температуры вспышки при соответствующих испытаниях сопоставлены в табл. 4.

Показания различных приборов в определении температуры вспышки всегда расходятся между собой, причем определение вспышки в открытом сосуде всегда дает температуру более высокую, чем в закрытом приборе. Обусловливается это тем обстоятельством, что в закрытых приборах пары постепенно накопляются в приборе, тогда как в открытом сосуде они все время диффундируют в окружающую атмосферу. О размерах этих расхождений можно судить на основании данных табл. 5.

Из этой таблицы видно также, что разница между температурой вспышки в закрытом и открытом приборах увеличивается с повышением температуры вспышки, а также, как показывают последние два примера, - с увеличением неоднородности продукта. В связи с этим наличие большой разницы в температуре вспышки для одного и того же вещества при определении его вспышки в открытом и закрытом приборах указывает либо на примесь к тяжелому веществу, например, маслу, какого-либо легкого вещества (бензина, керосина) либо на некоторые дефекты перегонки (разложение с образованием легко летучих продуктов). Таким образом сопоставление температуры вспышки одного и того же вещества в открытом и закрытом приборах может служить для контроля правильности как употребления, так и производства смазочных масел.

Лабораторная работа №2

Определение температуры вспышки в открытом тигле (ГОСТ 4333-87)

Цель работы - э кспериментальное определение температуры вспышки в открытом тигле для горючих нефтепродуктов, в частности для дизельного топлива и мазута, и сравнение с показателями ГОСТа на товарные нефтепродукты.

Краткие теоретические сведения

Температуру вспышки измеряют в приборах закрытого и открытого типов.

Метод открытого тигля моделирует возгорание жидкости в открытых сосудах или при случайном разливе и применяется для нефтепродуктов с низким давлением насыщенных паров, обычно для минеральных масел и остаточных нефтепродуктов.

Величина температуры вспышки одного и того же продукта в аппаратах открытого типа всегда несколько выше, чем в аппаратах закрытого типа. Это объясняется тем, что в последних испарение продукта происходит в сосуде и давление паров, необходимое для создания воспламеняющейся при поднесении пламени смеси продукта с воздухом, достигается значительно раньше, чем в приборах открытого типа. В приборах открытого типа образующиеся пары имеют возможность свободно диффундировать в воздух, где значительная часть их рассеивается.

Подобная разность вспышек возрастает по мере увеличения вязкости продуктов. В случае тяжелых нефтепродуктов эта разница в величине температуры вспышки может доходить до 50 0 С, в случае маловязких масел она составляет от 3 до 8 0 С.

Методика определения

Сущность метода заключается в определении температуры, при которой пары нефтепродукта, нагреваемого в установленных настоящим стандартом условиях, образуют с окружающим воздухом смесь, вспыхивающую при поднесении к ней пламени.

Аппаратура, материалы и реактивы

Аппарат для определения температуры вспышки и воспламенения нефтепродуктов в открытом тигле (рис.1); щит из листовой кровельной стали, окрашенной с внутренней стороны черной краской, высотой 550-650 мм или экран, окрашенный с внутренней стороны черной краской, каждая секция которого имеет ширину (461) см и высоту 671) см; термометр типа ТН-2; секундомер любого типа; барометр; барометр-анероид; бензин-растворитель.

Рисунок 1 - Определение температуры вспышки в открытом тигле:

1- наружный тигель; 2- внутренний тигель; 3- термометр; 4- шаблон; 5- штатив; 6 - лампа Бартеля; 7-лучины; 8- песок.

Проведение испытания

Испытуемый образец продукта перед анализом перемешивают в течение 5 мин. встряхиванием в склянке, заполненной не более чем на 2/3 её вместимости.

Аппарат устанавливают на ровном устойчивом столе в таком месте, где нет заметного движения воздуха. Поверхность над тиглем предохраняют от попадания дневного света во избежание помех при определении температуры вспышки. Защищают аппарат от движения воздуха щитом или экраном.

Тигель 2 промывают бензином для удаления следов нефтепродуктов от предыдущего испытания. Углеродистые отложения удаляют металлической щеткой. После этого тигель промывают холодной дистиллированной водой и высушивают на открытом пламени или горячей плиткой с целью удаления следов растворителя и воды. Тигель 2 охлаждают до температуры 15-25°С и ставят в наружный тигель 1 аппарата с прокаленным песком так, чтобы песок был на высоте около 12 мм от края внутреннего тигля, а между дном этого тигля и наружным тиглем был песок, толщина слоя которого 5-8 мм, что может быть проверено при помощи шаблона 4. Испытуемый нефтепродукт наливают во внутренний тигель 2 так, чтобы уровень жидкости отстоял от края на 12 мм для нефтепродуктов со вспышкой до 210°С включительно и на 18 мм - нефтепродуктов со вспышкой выше 210°С. Правильность налива нефтепродукта проверяют шаблоном 4, налив нефтепродукта производят до соприкосновения поверхности нефтепродукта с острием указателя высоты уровня жидкости. При нагревании допускается разбрызгивания нефтепродукта и смачивания стенок внутреннего тигля выше уровня жидкости.

Во внутренний тигель с нефтепродуктом устанавливают термометр 3 строго вертикальном положении так, чтобы ртутный шарик находился в центре тигля приблизительно на одинаковом расстоянии от дна тигля и от уровня нефтепродукта и закрепляют термометр в таком положении в лапке штатива 5.

Наружный тигель аппарата нагревают пламенем газовой горелки или лампы Бартеля 5, или электрической плиткой так, чтобы испытуемый нефтепродукт нагревался на 10°С в 1 мин. За 40С до ожидаемой температуры вспышки нагрев ограничивают 4°С в 1 мин.

За 10°С до ожидаемой температуры вспышки проводят медленно по краю тигля на расстоянии 10-14 мм от поверхности испытуемого нефтепродукта и параллельно этой поверхности пламенем зажигательного приспособления (лучинки) 7. Длина пламени должна быть 3-4 мм. Время продвижения пламени от одной стороны тигля до другой 2-3 с. Такое испытание повторяют через 2°С подъема температуры.

За температуру вспышки принимают температуру, показываемую термометром при появлении первого синего пламени над частью или над всей поверхностью испытуемого нефтепродукта. В случае появления неясной вспышки она должна быть подтверждена последующей вспышкой через 2°С.

Расхождения между двумя последовательными определениями температуры вспышки не должны превышать следующих величин:

Температура вспышки Допускаемые расхождения

Свыше 150 6

За результат определения принимают среднее арифметическое двух последовательных определений. Вычисляют температуру вспышки с поправкой на барометрическое давление. Прибавляют поправку на барометрическое давление, если оно ниже 95,1 кПа (715 мм.рт.ст.) в соответствии со следующими данными:

Барометрическое давление кПа (мм.рт.ст.) Поправка, °С

от 95,3 до 88,7 (от 715 до 665) 2

от 88,6 до 81,3 (от 664 до 610) 4

от 81,2 до 73,3 (от 609 до 550) 6

Практическая часть

Испытуемый образец авиационное масло МС-8П t всп ≥150°С по ГОСТу.

152°С-нет вспышки

154°С-нет вспышки

168°С-нет вспышки

174°С-нет вспышки

177°С-нет вспышки

179°С-есть вспышка

Вывод: экспериментально определили температуру вспышки в открытом тигле для горючего нефтепродукта, в частности для авиационного масла МС-8П, и сравнили с показателями ГОСТа на товарные нефтепродукты. Испытуемое дизельное топливо соответствует ГОСТу. Авиационное масло МС-8П относится к горючим жидкостям.

Введение

Нефтеперерабатывающая и нефтехимическая промышленность вырабатывает самые разнообразные продукты: газообразное и жидкое топливо, смазочные и специальные масла, битумы, парафин, ароматические углеводороды, и многие другие технические и химические продукты. Требования ко всем этим продуктам разнообразны и диктуются изменяющимися условиями применения и эксплуатации того или иного нефтепродукта.

Основная задача технического анализа – наиболее полно и четко охарактеризовать необходимые химические, физические и эксплуатационные свойства конечных продуктов производства с учетом особенностей их назначения и применения.

В техническом анализе разнообразных продуктов применяются следующие способы, методы и приемы исследования: химические – использующие классические приемы качественного и количественного анализа, физические – определение плотности, температуры застывания, пенетрация, перегонка и др., физико-химические – спектроскопия, газовая и жидкостная хроматография, специальные – определение различных эксплуатационных свойств или состава анализируемого продукта. К этой группе относят методы определения свойств нефтепродуктов: октановое число, цетановое число, химической стабильности топлив и масел и др.

Целью изучения курса технического анализа нефтепродуктов является получение четких представлений о том, какие физико-химические и специальные показатели характеризуют тот или иной продукт.

Методические указания состоят из двух частей:

- первая часть включает следующие лабораторные работы: определение температуры вспышки нефтепродуктов в закрытом тигле, определение температуры вспышки нефтепродуктов в открытом тигле, определение давления насыщенных паров нефтепродуктов, определение фракционного состава нефтей, анализ нефтяных битумов, определение содержания минеральных примесей в нефтях.

- вторая часть включает следующие лабораторные работы: определение низкотемпературных свойств нефтепродуктов, определение кислотного числа нефтепродуктов, определение содержания ароматических углеводородов в нефтепродуктах, определение кинематической вязкости нефтепродуктов, определение условной вязкости нефтепродуктов, определение содержания серы и серосодержащих соединений, определение плотности нефтепродуктов, определение высоты некоптящего пламени нефтепродуктов.

Лабораторная работа № 1

В закрытом тигле

Температурой вспышки .

Методика определения температуры вспышки в закрытом тигле

Испытуемые нефтепродукты по заданию преподавателя.

Прибор состоит из металлического закрытого тигля 1,который помещается в чугунную ванну 2,а последняя в свою очередь окружена латунной рубашкой 3 (см. рис.1).Такое устройство предохраняет ванну от излишнего излучения тепла. Тигель с внутренней стороны имеет метку для указания уровня налива испытуемой жидкости. Крышка тигля снабжена заслонкой с двумя отверстиями, гнездом для термометра, зажигательным приспособлением 4,пружинным рычагом 6и мешалкой 5с гибкой передачей. Поворотом пружинного рычага открываются заслонки и наклоняется в паровое пространство тигля зажигательное приспособление. Нагрев осуществляется газовой горелкой или электрической спиралью.

Рис.1. Прибор для определения температуры вспышки в закрытом тигле: 1-тигль, 2-чугунная ванна, 3-латунная рубашка, 4-зажигательное устройство, 5-перемешивающее устройство, 6-пружинный рычаг.

Перед определением прибор устанавливают в помещении, где отсутствует резкое движение воздуха. Снимают с прибора термометр, крышку с мешалкой и вынимают тигель. Эти части, соприкасающиеся с нефтепродуктом, тщательно промывают керосином или бензином и сушат. Испытуемый нефтепродукт наливают в тигель до метки, устанавливают его на место и закрывают крышкой. В крышке укрепляют термометр, проверяют, работает ли мешалка, пружинный рычаг и зажигают фитиль зажигательного устройства.

С помощью электрической спирали при постоянном перемешивании нагревают прибор, повышая температуру на 5 - 8°С/мин для продукта с температурой вспышки от 30 до 150°С и на 10 - 12°С/мин для продукта с температурой вспышки выше 150°С. За 30°С до ожидаемой температуры вспышки скорость нагревания уменьшают до 2°С/мин. Когда нефтепродукт нагреется до температуры на 10°С ниже ожидаемой температуры вспышки, проводят испытание на вспыхивание через 1°С для продуктов с температурой вспышки до 150 °С и через 2°С для продуктов с температурой вспышки выше 150 о С. Для этого на 1с поворачивают пружинный рычаг и наблюдают за появлением синего быстро исчезающего пламени над поверхностью нефтепродукта. Отмечаемую при этом температуру фиксируют как температуру вспышки.

Получив первую вспышку, нагревание продолжают и через 1-2 о С повторяют зажигание. Если вспышки не происходит, испытание считают неправильным и повторяют его снова со свежей порцией нефтепродукта.

Если испытанию подвергается неизвестный нефтепродукт, то в этом случае нагревание ведут со скоростью 4 о С/мин при постоянном помешивании. Через каждые 4 о С проводят испытание на вспыхивание. Определив ориентировочную температуру вспышки, повторяют испытание со свежей порцией нефтепродукта по описанной выше методике. Расхождение между параллельными определениями при температуре вспышки до 50°С не должно превышать 1°С, выше 50°С - 2 о С.

Результаты работы представить в виде таблицы и вывода:

В выводе сопоставить полученные значения температур вспышки нефтепродуктов со значениями в соответствии с ГОСТ.

Лабораторная работа № 2

Определение температуры вспышки нефтепродуктов

В открытом тигле

Температурой вспышки называется температура, при которой пары нефтепродукта, нагреваемого в определенных условиях, образуют с окружающим воздухом смесь, вспыхивающую при поднесении к ней пламени. Температура вспышки характеризует огнеопасность любых нефтепродуктов. Впервые ее начали определять для керосинов, чтобы обнаружить в них примесь бензина, которая приводила к взрывам во время горения керосина. В настоящее время температура вспышки является нормируемым показателем смазочных масел, дизельных и котельных топлив, а также реактивных топлив Т-1, ТС-1, осветительных и тракторных керосинов и бензинов-растворителей. По температуре вспышки можно составить представление о характере углеводородов, входящих в его состав, а также о наличии примесей легко испаряющихся компонентов. Высококипящие углеводороды повышают температуру вспышки и, на­оборот, низкокипящие снижаютее. На температуру вспышки некоторое влияние оказывают атмосфер­ное давление и влажность воздуха. Чем выше атмосферное давление, тем выше и температура вспышки. Повышенная влажность воздуха увеличивает температуру вспыш­ки, таккак при этом в паро-воздушной смеси парциальное давление воздуха уменьшается за счет присутствия водяных паров.

Определение температуры вспышки нефтепродуктов необходимо проводить в вытяжном шкафу, так как они разлагается с выделением газообразных продуктов. В вытяжном шкафу не следует плотно закрывать дверцы, а держать их на рекомендуемом преподавателем уровне.Разрешается наблюдать за процессом только через стекло шкафа.


Похожая информация.


ГОСТ 4333-87

Группа Б09

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

НЕФТЕПРОДУКТЫ

Методы определения температур вспышки и воспламенения в открытом тигле

Petroleum products. Methods for determination of flash and ignition points in open crucible

МКС 75.080
ОКСТУ 0209

Дата введения 1988-07-01

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1. РАЗРАБОТАН И ВНЕСЕН Министерством нефтеперерабатывающей и нефтехимической промышленности СССР

2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 30.06.87 N 2911

3. Стандарт соответствует требованиям СТ СЭВ 5469-86 в части метода А

В стандарт введен международный стандарт ИСО 2592-73

4. ВЗАМЕН ГОСТ 4333-48

5. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Номер раздела

6. Ограничение срока действия снято по протоколу N 5-94 Межгосударственного совета по стандартизации, метрологии и сертификации (ИУС 11-12-94)

7. ИЗДАНИЕ (апрель 2005 г.) с Изменением N 1, утвержденным в декабре 1989 г. (ИУС 3-90)

Переиздание (по состоянию на апрель 2008 г.)


Настоящий стандарт устанавливает методы определения температур вспышки и воспламенения в открытом тигле по методам Кливленда (метод А) и Бренкена (метод Б).

При возникновении разногласий в оценке качества нефтепродукта определение проводят по методу Кливленда.

Сущность методов заключается в нагревании пробы нефтепродукта в открытом тигле с установленной скоростью до тех пор, пока не произойдет вспышка паров (температура вспышки) нефтепродукта над его поверхностью от зажигательного устройства и пока при дальнейшем нагревании не произойдет загорание продукта (температура воспламенения) с продолжительностью горения не менее 5 с.

Термины, применяемые в стандарте, и пояснения к ним приведены в приложении.

1. АППАРАТУРА, РЕАКТИВЫ И МАТЕРИАЛЫ

Аппараты для определения температур вспышки и воспламенения в открытом тигле типов ТВО (ТВ-2) или полуавтоматические и автоматические типа АТВО (АТВ-2), дающие результаты в пределах допускаемых расхождений по методу Кливленда.

При возникновении разногласий в оценке качества нефтепродукта определение проводят вручную.

Экран трехстворчатый, окрашенный с внутренней стороны черной краской, с секциями шириной (46±1) см и высотой (60±5) см или щит высотой 55-65 см из листовой кровельной стали, окрашенный с внутренней стороны черной краской.

Термометр типа ТН-2 по ГОСТ 400 .

Секундомер любого типа.

Барометр ртутный или барометр-анероид с погрешностью измерения не более 0,1 кПа.

Бумага фильтровальная лабораторная по ГОСТ 12026 .

Пипетка.

Щетка металлическая.

Бензин-растворитель с пределами выкипания от 50 до 170 °С или нефрас С50/170 по ГОСТ 8505 .

Осушающие реагенты (обезвоженные): натрий сернокислый безводный по ГОСТ 4166 или натрий сернокислый технический по ГОСТ 6318 , или кальций хлористый технический по ГОСТ 450 , или натрий хлористый по ГОСТ 4233 .

Вода дистиллированная.

Дополнительно для метода Б:

аппарат для определения температур вспышки и воспламенения в открытом тигле по методу Бренкена (типа ЛТВО).

Допускается применять импортную посуду, аппаратуру и реактивы по классу точности и квалификации не ниже предусмотренных стандартом.

(Измененная редакция, Изм. N 1).

2. МЕТОД А

2.1. Подготовка к испытанию

2.1.1. Подготовка пробы

2.1.1.1. Пробу тщательно и осторожно перемешивают.

2.1.1.2. Пробы твердых нефтепродуктов предварительно расплавляют.

Температура пробы после нагревания должна быть ниже предполагаемой температуры вспышки не менее чем на 56 °С.

2.1.1.3. Испытуемый нефтепродукт, содержащий воду, сушат встряхиванием с одним из осушающих реагентов при комнатной температуре. Нефтепродукты с температурой вспышки до 100 °С сушат при температуре не выше 20 °С. Вязкие нефтепродукты (вязкость при 100 °С свыше 16,5 мм/с) сушат при температуре не более 80 °С.

Затем пробы фильтруют и декантируют.

2.1.2. Подготовка аппарата

2.1.2.1. Аппарат устанавливают на горизонтальном столе в таком месте, где нет заметного движения воздуха и вспышка хорошо видна. Для защиты от движения воздуха аппарат с трех сторон окружают экраном или щитом. Перед проведением каждого испытания аппарат охлаждают.

2.1.2.2. При работе с токсичными продуктами или продуктами, содержащими ароматические углеводороды (продукты пиролиза), пары которых являются токсичными, аппарат помещают вместе с экраном или со щитом в вытяжной шкаф. При температуре на 56 °С ниже предполагаемой температуры вспышки движение воздуха в вытяжном шкафу следует поддерживать без создания сильных потоков над тиглем, для чего необходимо работать при закрытой верхней заслонке вентиляционного устройства вытяжного шкафа.

2.1.2.3. Перед каждым испытанием тигель промывают растворителем. Углеродистые отложения удаляют металлической щеткой. Затем тигель промывают холодной дистиллированной водой и высушивают на открытом пламени или горячей электроплитке. Тигель охлаждают до температуры не менее чем на 56 °С ниже предполагаемой температуры вспышки и помещают его в аппарат.

2.1.2.4. В тигель помещают термометр в строго вертикальном положении так, чтобы нижний конец термометра находился на расстоянии 6 мм от дна тигля и на равном расстоянии от центра и от стенок тигля.

2.1.2.5. Аппараты и правильность результатов определений рекомендуется проверять по государственным стандартным образцам ГСО ТОТ 4407-88 - ГСО ТОТ 4410-88.

Аппарат пригоден к испытанию нефтепродуктов и выдержаны условия испытания, если разность результатов определения температуры вспышки ГСО и аттестованной характеристикой ГСО не превышает значения абсолютной погрешности для данного аттестованного ГСО.

Порядок применения ГСО изложен в инструкции к свидетельству.

(Введен дополнительно, Изм. N 1).

2.2. Проведение испытания

2.2.1. Тигель заполняют нефтепродуктом так, чтобы верхний мениск точно совпадал с меткой. При наполнении тигля выше метки избыток нефтепродукта удаляют пипеткой или другим соответствующим приспособлением. Удаляют пузырьки воздуха с поверхности пробы. Не допускается смачивание стенок тигля выше уровня жидкости.

При попадании нефтепродукта на внешние стенки тигля тигель освобождают от нефтепродукта и обрабатывают по п.2.1.2.3.

2.2.2. Тигель с пробой нагревают пламенем газовой горелки или при помощи электрообогрева сначала со скоростью 14-17 °С в минуту. Когда температура пробы будет приблизительно на 56 °С ниже предполагаемой температуры вспышки, скорость подогрева регулируют так, чтобы последние 28 °С перед температурой вспышки нефтепродукт нагревался со скоростью 5-6 °С в минуту.

2.2.3. Зажигают пламя зажигательного устройства и регулируют его таким образом, чтобы размер диаметра пламени был примерно 4 мм. Его сравнивают с лекалом (шариком-шаблоном), вмонтированным в аппарат.

2.2.4. Начиная с температуры не менее чем на 28 °С ниже температуры вспышки, каждый раз применяют зажигательное устройство при повышении температуры пробы на 2 °С. Пламя зажигательного устройства перемещают в горизонтальном направлении, не останавливаясь над краем тигля, и проводят им над центром тигля в одном направлении в течение 1 с.

При последующем повышении температуры перемещают пламя зажигания в обратном направлении.

2.2.5. За температуру вспышки принимают температуру, показываемую термометром при появлении первого синего пламени над частью или над всей поверхностью испытуемого нефтепродукта.



Голубой круг (ореол), который иногда образуется вокруг пламени зажигания, во внимание не принимают.

2.2.6. Для определения температуры воспламенения продолжают нагрев пробы со скоростью 5-6 °С в минуту и повторяют испытание пламенем зажигательного приспособления через каждые 2 °С подъема температуры нефтепродукта.

2.2.7. За температуру воспламенения принимают температуру, показываемую термометром в тот момент, в который испытуемый нефтепродукт при поднесении к нему пламени зажигательного приспособления загорается и продолжает гореть не менее 5 с.

2.3. Обработка результатов

2.3.1. Если барометрическое давление во время испытания ниже чем 95,3 кПа (715 мм рт.ст.), то необходимо к полученным значениям температуры вспышки и температуры воспламенения ввести соответствующие поправки по табл.1.

Таблица 1

Барометрическое давление, кПа (мм рт.ст.)

Поправка, °С

От 95,3 до 88,7 (от 715 до 665)

" 88,6 " 81,3 ( " 664 " 610)

" 81,2 " 73,3 ( " 609 " 550)

2.3.2. За результат испытания принимают среднеарифметическое значение результатов двух определений, округленное до целого числа и выраженное в градусах Цельсия.

2.4. Точность метода

2.4.1. Сходимость

Два результата испытаний, полученные одним исполнителем, признаются достоверными (с 95%-ной доверительной вероятностью), если расхождение между ними не превышает значений, указанных в табл.2.

Таблица 2

Наименование показателя

Сходимость, °С

Воспроизводимость, °С

Температура вспышки

Температура воспламенения

2.4.2. Воспроизводимость

Два результата испытаний, полученные в двух разных лабораториях, признаются достоверными (с 95%-ной доверительной вероятностью), если расхождение между ними не превышает значений, указанных в табл.2.

3. МЕТОД Б

3.1. Подготовка к испытанию

Подготовка к испытанию проводится по пп.2.1-2.1.2.3.

3.2. Проведение испытания

3.2.1. Тигель охлаждают до температуры 15-25 °С и ставят в наружный тигель аппарата с прокаленным песком так, чтобы песок был на высоте около 12 мм от края внутреннего тигля, а между дном этого тигля и наружным тиглем был песок, толщина слоя которого 5-8 мм, что проверяется шаблоном.

3.2.2. Во внутренний тигель с нефтепродуктом устанавливают термометр в строго вертикальном положении так, чтобы ртутный шарик находился в центре тигля приблизительно на одинаковом расстоянии от дна тигля и от уровня нефтепродукта, и закрепляют термометр в таком положении в лапке штатива.

3.2.3. Испытуемый нефтепродукт наливают во внутренний тигель так, чтобы уровень жидкости отстоял от края тигля на 12 мм для нефтепродуктов со вспышкой до 210 °С включительно и на 18 мм для нефтепродуктов со вспышкой выше 210 °С.

Правильность налива нефтепродукта проверяют шаблоном, налив нефтепродукта производят до соприкосновения поверхности нефтепродукта с острием указателя высоты уровня жидкости.

При наливе не допускается разбрызгивание нефтепродукта и смачивание стенок внутреннего тигля выше уровня жидкости.

3.2.4. Наружный тигель аппарата нагревают пламенем газовой горелки или лампы Бартеля или электрообогревом так, чтобы испытуемый нефтепродукт нагревался на 10 °С в 1 мин.

За 40 °С до предполагаемой температуры вспышки нагрев ограничивают до 4 °С в 1 мин.

3.2.5. За 10 °С до предполагаемой температуры вспышки проводят медленно по краю тигля на расстоянии 10-14 мм от поверхности испытуемого нефтепродукта и параллельно этой поверхности пламенем зажигательного приспособления. Длина пламени должна быть 3-4 мм. Время продвижения пламени от одной стороны тигля до другой 2-3 с.

Такое испытание повторяют через каждые 2 °С подъема температуры.

3.2.6. За температуру вспышки принимают температуру, показываемую термометром при появлении первого синего пламени над частью или над всей поверхностью испытуемого нефтепродукта.

В случае появления неясной вспышки она должна быть подтверждена последующей вспышкой через 2 °С.

Истинную вспышку не следует смешивать с отблеском от пламени зажигательного приспособления.

3.2.7. Для определения температуры воспламенения продолжают нагревание наружного тигля так, чтобы нефтепродукт нагревался со скоростью 4 °С в 1 мин и повторяют испытание пламенем зажигательного приспособления через каждые 2 °С подъема температуры нефтепродукта.

3.2.8. За температуру воспламенения принимают температуру, показываемую термометром в тот момент, в который испытуемый нефтепродукт при поднесении к нему пламени зажигательного приспособления загорается и продолжает гореть не менее 5 с.

3.3. Обработка результатов

Обработка результатов проводится по пп.2.3.1-2.3.2.

3.4. Точность метода

3.4.1. Сходимость

Два результата определений температуры вспышки, полученные одним исполнителем в одной лаборатории, признаются достоверными (с 95%-ной доверительной вероятностью), если расхождение между ними не превышает 4 °С.

Расхождение между двумя последовательными определениями температуры воспламенения не должно превышать 6 °С.

3.4.2. Воспроизводимость (для температуры вспышки)

Два результата испытаний, полученные в двух разных лабораториях, признаются достоверными (с 95%-ной доверительной вероятностью), если расхождение между ними не превышает 16 °С.

ПРИЛОЖЕНИЕ
Справочное

ПРИЛОЖЕНИЕ (справочное). ТЕРМИНЫ, ПРИМЕНЯЕМЫЕ В СТАНДАРТЕ, И ПОЯСНЕНИЯ К НИМ

Термин

Пояснение

Температура вспышки нефтепродукта в открытом тигле

Минимальная температура, при которой пары продукта, нагреваемого в условиях, установленных настоящим стандартом, образуют с окружающим воздухом смесь, вспыхивающую при поднесении к ней пламени

Температура воспламенения нефтепродукта

Минимальная температура, при которой продукт, нагреваемый в условиях, установленных настоящим стандартом, загорается при поднесении к нему пламени и горит не менее 5 с

Электронный текст документа
подготовлен АО "Кодекс" и сверен по:

официальное издание
М.: Стандартинформ, 2008

Владимир Хомутко

Время на чтение: 4 минуты

А А

Какова температура вспышки нефтепродуктов?

Температура вспышки нефтепродуктов (ТВНП) представляет собой такое значение, при котором из вещества, нагреваемого при стандартных условиях, выделяется количество паров, достаточное для образования в окружающем его воздухе горючей смеси, которая вспыхивает при контакте с огнем.

ТВНП и температура кипения нефтепродуктов, характеризующая степень их испаряемости, находятся в тесной взаимосвязи. Другими словами, чем нефтяная фракция легче, тем выше его испаряемость, а значит – ниже этот важный показатель.

К примеру, ТВНП бензиновых нефтяных фракций находится в отрицательном диапазоне значений (вплоть до минус 40 градусов Цельсия). Керосины образуют горючие воздушные смеси в диапазоне от 28-ми до 60-ти градусов, а различные виды дизельного топлива – от 50-ти до 80-ти градусов. Тяжелые масляные фракции вспыхивают в диапазоне от 130-ти до 325-ти °С. Если говорить о самой сырой нефти, то дня различных видов нефтей ТВНП может быть как отрицательной, так и положительной.

Также ТВНП сильно зависит от присутствия в конкретном продукте влаги, присутствие которой её снижает. Поэтому, для точного определения ТВНП в условиях измерительной лаборатории исследуемое вещество предварительно обезвоживают.

В настоящее время используют два основных метода определения ТВНП, имеющих государственные стандарты:

  • в открытом тигле (по ГОСТ-у 4333-87);
  • в закрытом тигле (по ГОСТ-у 6356-75).

Разница в результатах, получаемых этими методами, может составлять от 20-ти до 30-ти градусов. Это связано с тем, что в открытом тигле часть выделяемых продуктом паров улетучивается в атмосферу, поэтому накопление их количества, достаточного для возникновения горючей смеси, происходит несколько дольше, чем при использовании закрытого тигля. Соответственно, ТВНП, полученная с использованием открытого тигля, будет выше, чем при использовании тигля закрытого типа.

В основном открытый тигль используют для определения этого значения у тех нефтяных фракций, которых относятся к высококипящим. К таким продуктам относятся разные виды нефтяных масел и мазутов. ТВНП считается такая, при которой первое синее пламя на поверхности исследуемого вещества появляется – и сразу исчезает.

По значению этого параметра все нефтепродукты делят на две категории:

  • легковоспламеняющиеся;
  • горючие.

К первой категории относят все нефтяные вещества, у которых этот ТВНП составляет меньше 61-го градуса Цельсия при проверке в закрытом тигле, и не большее 66-ти – в открытом. Горючими считаются вещества, у которых ТВНП больше 61-го и 66-ти градусов соответственно методу исследования.

ТВНП является важнейшим показателем, по которому определяется взрывоопасность (другими словами, при каких условиях пары нефтяного вещества образуют с атмосферным воздухом взрывчатую смесь).

Взрываемость имеет два показателя – нижний предел и верхний предел.

Их суть заключается в том, что при концентрации выделяемых продуктом паров в паровоздушной смеси ниже, чем нижний предел, или выше, чем верхний предел – взрыва не будет. В первом случает это связано с тем, что выделяющееся тепло поглощается избытком воздуха, что не позволяет загореться остальным частям горючего. Во втором случае для взрыва в паровоздушной смеси просто недостаточно кислорода.

Другие показатели, важные для нефтепродуктов

К таким показателям относят температуры воспламенения, самовоспламенения и застывания.

Температура воспламенения нефтепродукта

Эта температура нефтепродуктов всегда выше описанной в первой части статьи. Если для определения значения вспышки появления первого пламени с последующим его затуханием, то для этого показателя необходим такой нагрев, при котором вещество будет гореть постоянно. Разница между этими двумя характеристиками при измерении может составлять от 30-ти до 50-ти градусов.

За температуру воспламенения берется минимальная, при которой вспышка вещества приводит не к моментальному затуханию пламени, а к процессу постоянного горения исследуемого продукта.

Если продолжить нагрев исследуемого нефтяного вещества, избегая его контакта с атмосферным воздухом, а при достижении высоких температурных значений создать такой контакт, то вещество способно самопроизвольно загореться. Минимальные показания прибора, при котором это происходит, и являются температурой его самовоспламенения.

Анализатор температуры вспышки по Пенски-Мартенсу PMA 5

Она находится в прямой зависимости от химического состава нефтепродукта. Самые высокие значения этого показателя характерны для углеводородов ароматической группы, за ними идут нафтеновые и парафиновые вещества.

Зависимость проста – чем легче нефтяная фракция, тем выше значение t самовоспламенения. Например, самовоспламенение бензиновых фракции может происходит в диапазоне от 400 до 450 градусов, а у газойлей – от 320-ти до 360-ти.

Знание этого значения очень важно, поскольку самовоспламенение является достаточно частой причиной возникновения пожаров на предприятиях нефтепереработки, когда любое нарушение герметичности в теплообменниках, трубопроводах или в ректификационных колоннах (например, из-за разгерметизации фланцевых соединений) приводит к самовозгоранию.

Следует помнить, что если на изоляционный материал попадает нефтепродукт, его нужно как можно быстрее заменить, так как каталитическое действие продукта способно вызвать самовозгорание при более низких t, чем температура самовоспламенения.

Определение температуры застывания необходимо для обеспечения нормальной транспортировки с помощью трубопроводов, а также при использовании нефтяных производных в условиях сильных морозов (например, в авиации, где использование быстро застывающего топлива невозможно). В этих сферах крайне важна такая характеристика, как подвижность нефтяных продуктов, от которой зависит степень их прокачиваемости.

ТВО-ЛАБ-11 Автоматический аппарат для определения температуры вспышки в открытом тигле

Температурой застывания считается та, при которой вещество, исследуемое в стандартных условиях, теряет свою подвижность.

Снижение подвижности и полная её потеря может объясняться следующими факторами.