Тождественно равные выражения: определение, примеры. Значение слова тождество

Знак равенства используется в математике очень часто, и смысл, который придается этому знаку, далеко не всегда один и тот же. Так, часто мы соединяем знаком равенства два числа, например:

1370 = 3 2 ·5·31 (1) ;

(2) ;

(3) ;

(4)

Каждая такая запись представляет собой некоторое высказывание, которое может быть истинным или ложным. Среди приведенных выше четырех высказываний такого рода второе, третье и четвертое являются истинными, а первое - ложным.

Для того чтобы убедиться в истинности (или ложности) такого высказывания, нередко бывает нужно произвести те или иные действия: сложение дробей, разложение на множители, возведение суммы двух чисел в квадрат и т. п. Однако смысл знака равенства во всех этих случаях один и тот же: истинность такого высказывания означает, что слева и справа от знака равенства стоит одно и то-же число (только, может быть, записанное по-разному).

Высказывания такого вида мы будем называть числовыми равенствами. Если некоторое числовое равенство представляет собой истинное высказывание, то для краткости говорят: «это - верное равенство». Так, равенство (2) - верное. Если же некоторое числовое равенство представляет собой ложное высказывание, то для краткости говорят: «это-неверное равенство». Так, (1) -неверное равенство.

В ином смысле применяется знак =, когда идет речь о равенстве функций. Напомним, что две функции f (х) и g (х) считаются равными (т. е. совпадающими), если, во-первых, области определения этих двух функций совпадают и, во-вторых, для любого числа х 0 , принадлежащего общей области определения этих функций, значения функций в точке х 0 совпадают, т. е. верно числовое равенство f (х 0) = g(x 0). Равенство функций (х) и g(x) обычно выражают записью f(x) = g(x).

Например, мы пишем (х 2 + 1) 6 = х 3 + Зx 4 +. Зx 2 + 1, выражая этой записью тот факт, что слева и справа от знака = стоят равные функции (т. е. слева и справа стоит одна и та же функция, только, может быть, записанная по-разному).

В записи, выражающей равенство (т. е. совпадение) двух функций, вместо знака = часто используют знак, называемый знаком тождественного равенства.
Запись f(x)g(x) означает совпадение функций f(х) и g(x). Запись равенства двух функций (т. е. соотношение f(х) = g{x) или f(x)g(x)) называют также тождеством.

Подчеркнем еще раз: когда мы говорим, что f(x) = g(x) есть тождество, то это означает, что области определения функций f(х) и g(х) совпадают и при этом для любого х 0 , принадлежащего этой области определения, справедливо числовое равенство f(x 0) = g(x 0).

Примерами тождеств могут служить соотношения:

(x + 1) 2 = x 2 + 2x + 1,

log 2 2 х = х,

sin 2 x= 1 - cos 2 x.

Иногда при рассмотрении тождеств приходится ограничивать области определения функций. Именно, будем говорить, что равенство f(x) = g(x) является тождеством на множестве М, если, во-первых, множество М содержится в области определения каждой из функций f(x), g (х) и, во-вторых, для любого числа х 0 , принадлежащего множеству М, справедливо числовое равенство f(x 0) = g (x 0) В этом случае пишут:

f{x)g(х) на множестве М или f(x) = g{x) при хМ.

. Пример 1. Равенствоявляется тождеством на множестве неотрицательных чисел, т. е.x при х0.

Заметим, что обе функции y=и y = х определены на множестве всех действительных чисел, но значения их совпадают лишь на множестве неотрицательных чисел. На множестве всех действительных чисел соотношениетождеством не является.

Пример 2. Рассмотрим равенство arcsin(sinx) =. Обе функции (стоящие в левой и правой частях равенства) определены на множестве всех действительных чисел. Однако написанное равенство является тождеством лишь на отрезке , т. е. arcsin(sin x) =при 0x Разумеется, при написании тождеств вовсе не обязательно обозначать аргумент функций буквой х. Можно аргумент обозначить буквой z, буквой а или любым другим символом.

Так, соотношения

(z + 7) 2 = z 2 - 14z + 49,

(а - 1)(а 2 + а + 1) = а 3 - 1

являются тождествами на множестве всех действительных чисел (или даже на множестве всех комплексных чисел), Можно также рассматривать функции, зависящие от двух или большего числа аргументов, и писать тождества для таких функций. Конечно, и в этом случае надо указывать, при каких значениях аргументов написанное равенство является тождеством.

Например, равенство log 2 a b = b log 2 a является тождеством при а > 0 и любом действительном b; равенство

является тождеством при x+k, y+n, x + y+m, где k, n m -любые целые числа, и т. д.

Мы рассмотрели два случая использования знака = в алгебре: для записи числовых равенств и для записи тождеств (в последнем случае он иногда заменяется знаком?. В совершенно ином смысле используется знак = при рассмотрении уравнений. Уравнение с одним неизвестным х в общем случае записывается в виде

f(x) = g(x), (5)

где f(х) и g(x) - произвольные функции, Таким образом, по внешнему виду уравнение выглядит так же, как и тождество: две функции, соединенные знаком равенства. Но когда мы говорим, что соотношение (5) есть уравнение, то это показывает наше отношение к этому равенству. Именно, когда мы говорим, что (5) есть уравнение, то это означает, что равенство (5) рассматривается как неопределенное высказывание (при одних значениях х истинное, при других-ложное), и мы интересуемся нахождением корней этого уравнения, т. е. таких значений х, при подстановке которых это неопределенное высказывание становится истинным. Более подробно, корнем (или решением) уравнения называется всякое число, при подстановке которого вместо неизвестного в обе части уравнения получается справедливое (верное) числовое равенство. Но что значит «получается справедливое числовое равенство»? Это означает, во-первых, что при подстановке этого числа вместо неизвестного все действия, обозначенные в левой и правой частях уравнения, оказываются выполнимыми и, во-вторых, в результате выполнения этих действий в левой и правой частях получается одно и то же число. Иначе говоря, число а называется корнем уравнения (5), если, во-первых, это число принадлежит как области определения функции f(x), так и области определения функции g(x) и, во-вторых, значения этих функций в точке а совпадают, т. е.
f(a) = g{a).

Итак, если сказано, что равенство (5) рассматривается как уравнение, то это означает, что мы интересуемся нахождением корней этого уравнения, т. е. тех значений, которые обращают соотношение (5) в верное числовое равенство.

Пример 3. Для уравнения (х - 1) 2 = х 2 - 2x + 1 любое действительное число b является корнем, так как равенство (b - 1) 2 = b 2 - 2b + 1 имеет место для любого действительного числа b.

Пример 4. Если рассматривать уравнение |х| = х на множестве всех действительных чисел, то всякое неотрицательное число является корнем этого уравнения (других корней нет).

Пример 5. Уравнение lgx = 1g(- х) не имеет решений, так как левая часть этого уравнения определена при положительных значениях х, а правая - при отрицательных, т. е. области определения левой и правой частей не имеют общих точек.

Пример 6 . Уравнение cosx = 2 не имеет решений на множестве действительных чисел, так как |cosx 0 |1 для любого действительного числа х 0 .

Пример 7. Уравнение х 2 = -1 не имеет решений намножестве действительных чисел и имеет два решения, x = i и х = -i., на множестве комплексных чисел.

Если найдена некоторая совокупность значений х, каждое из которых является корнем уравнения f (x)=g(x), то это еще не значит, что мы решили уравнение.

Решить уравнение - значит найти все его решения (или доказать, что уравнение не имеет решений).

Отметим, что бессмысленно ставить вопрос, «является ли равенство f(x) = g(x) тождеством или уравнением». Одно и то.же равенство f{x) = g(x) в различных условиях может рассматриваться и как тождество, и как уравнение. Если мы говорим, что f(х) = g(x) есть тождество», то непременно надо указывать, на каком множестве это равенство является тождеством. Фраза «f(x)=g(x) есть тождество на множестве М» есть некоторое утверждение, некоторое высказывание. Если же мы говорим, что рассматриваем уравнение f(x) = g(x), то мы, по существу, имеем дело с вопросительным предложением: мы ставим вопрос, каковы корни этого уравнения, т. е. каковы те значения х, которые обращают соотношение f(x) = g(x) в верное числовое равенство.

Пример 8. Равенствоможно рассматривать и как тождество, и как уравнение. Если мы относимся к этому равенству как к тождеству, то наиболее полной формулировкой будет следующая: равенствоявляется тождеством при x > 0. Если же мы относимся к этому равенству как к уравнению, то это означает, что мы рассматриваем задачу: решить уравнениет. е. ставим вопрос о том, каковы корни этого уравнения. Ответ будет таков: корнями уравненияявляются все неотрицательные числа и только они.

Пример 9. Бессмысленно ставить вопрос, является ли соотношение 0·x + 5 = 5 тождеством или уравнением. Мы можем сказать, что оно является тождеством на множестве всех действительных чисел. Но мы можем также рассматривать это соотношение как уравнение и тогда скажем, что корнями этого уравнения являются все действительные числа.

Замечание. Кроме рассмотренных выше случаев использования знака = в математике встречаются и другие. Так, выражение вида «рассмотрим функцию f(x) = x 3 - Зх 2 + 5x + 11» часто используется в качестве определения. В этом случае знак = имеет тот смысл, что всюду в проводимом рассуждении f (х) будет обозначать именно эту функцию.

Каждый школьник младших классов знает, что от перемены мест слагаемых сумма не изменяется, это утверждение верно и для множителей и произведения. То есть, согласно переместительному закону,
a + b = b + a и
a · b = b · a.

Сочетательный закон утверждает:
(a + b) + c = a + (b + c) и
(ab)c = a(bc).

А распределительный закон констатирует:
a(b + c) = ab + ac.

Мы вспомнили самые элементарные примеры применения данных математических законов, но все они распространяются на весьма широкие числовые области.

При любом значении переменной х значение выражений 10(х + 7) и 10х + 70 равны, так как для любых чисел выполняется распределительный закон умножения. О таких выражениях говорят, что они тождественно равны на множестве всех чисел.

Значения выражения 5х 2 /4а и 5х/4 в силу основного свойства дроби равны при любом значении х, кроме 0. Такие выражения называют тождественно равными на множестве всех чисел. Кроме 0.

Два выражения с одной переменной называются тождественно равными на множестве, если при любом значении переменной, принадлежащем этому множеству, их значения равны.

Аналогично определяют тождественное равенство выражений с двумя, трёмя и т.д. переменными на некотором множестве пар, троек и т.д. чисел.

Например, выражение 13аb и (13а)b тождественно равны на множестве всех пар чисел.

Выражение 7b 2 c/b и 7bc тождественно равны на множестве всех пар значений переменных b и c, в которых значение b не равно 0.

Равенства, в которых левая и правая части – выражения, тождественно равные на некотором множестве, называются тождествами на этом множестве.

Очевидно, что тождество на множестве обращается в истинное числовое равенство при всех значениях переменной (при всех парах, тройках и т.д. значений переменных), принадлежащих этому множеству.

Итак, тождество – это равенство с переменными, верное при любых значениях входящих в него переменных.

Например, равенство 10(х + 7) = 10х + 70 является тождеством на множестве всех чисел, оно обращается в истинное числовое равенство при любом значении х.

Истинные числовые равенства также называют тождествами. Например, равенство 3 2 + 4 2 = 5 2 – тождество.

В курсе математики приходится выполнять различные преобразования. Например, сумму 13х + 12х мы можем заменить выражением 25х. Произведение дробей 6а 2 /5 · 1/a заменим дробью 6а/5. Получается, что выражения 13х + 12х и 25х тождественно равны на множестве всех чисел, а выражения 6а 2 /5 · 1/a и 6а/5 тождественно равны на множестве всех чисел, кроме 0. Замену выражения другим выражением, тождественно равным ему на некотором множестве, называют тождественным преобразованием выражения на этом множестве.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Толковый словарь русского языка. С.И.Ожегов, Н.Ю.Шведова.

тождество

А и ТОЖЕСТВО. -а, ср.

    Полное сходство, совпадение. Г. взглядов.

    (тождество). В математике: равенство, справедливое при любых числовых значениях входящих в него величин. || прил. тождественный, -ая, -ое и тожественный, -ая, -ое (к 1 знач.). Тождественные алгебраические выражения. ТОЖЕ [не смешивать с сочетанием местоимения "то" и частицы "же"].

    1. нареч. Равным образом, так же, как и кто-что-н. Ты устал, я т.

      союз. То же, что также. Ты уезжаешь, а брат? - Т.

    частица. Выражает недоверчивое или отрицательное, ироническое отношение (прост.). *Т. умник нашелся! Он поэт. - Поэт т. (мне)!

Новый толково-словообразовательный словарь русского языка, Т. Ф. Ефремова.

тождество

    1. Абсолютное совпадение с кем-л., чем-л. как в своей сущности, так и во внешних признаках и проявлениях.

      Точное соответствие чего-л. чему-л.

  1. ср. Равенство, справедливое при всех числовых значениях входящих в него букв (в математике).

Энциклопедический словарь, 1998 г.

тождество

отношение между объектами (предметами реальности, восприятия, мысли), рассматриваемыми как "одно и то же"; "предельный" случай отношения равенства. В математике тождество - это уравнение, которое удовлетворяется тождественно, т.е. справедливо для любых допустимых значений входящих в него переменных.

Тождество

основное понятие логики, философии и математики; используется в языках научной теорий для формулировки определяющих соотношений, законов и теорем. В математике Т. ≈ это уравнение , которое удовлетворяется тождественно, то есть справедливо для любых допустимых значений входящих в него переменных. С логической точки зрения, Т. ≈ это предикат , изображаемый формулой х = у (читается: «х тождественно у», «х то же самое, что и y»), которому соответствует логическая функция, истинная, когда переменные х и у означают различные вхождения «одного и того же» предмета, и ложная в противном случае. С философской (гносеологической) точки зрения, Т. ≈ это отношение , основанное на представлениях или суждениях о том, что такое «один и тот же» предмет реальности, восприятия, мысли. Логические и философские аспекты Т. дополнительны: первый даёт формальную модель понятия Т., второй ≈ основания для применения этой модели. Первый аспект включает понятие об «одном и том же» предмете, но смысл формальной модели не зависит от содержания этого понятия: игнорируются процедуры отождествлений и зависимость результатов отождествлений от условий или способов отождествлений, от явно или неявно принимаемых при этом абстракций. Во втором (философском) аспекте рассмотрения основания для применения логических моделей Т. связываются с тем, как отождествляются предметы, по каким признакам, и уже зависят от точки зрения, от условий и средств отождествления. Различение логических и философских аспектов Т. восходит к известному положению, что суждение о тождественности предметов и Т. как понятие ≈ это не одно и то же (см. Платон, Соч., т. 2, М., 1970, с. 36). Существенно, однако, подчеркнуть независимость и непротиворечивость этих аспектов: понятие Т. исчерпывается смыслом соответствующей ему логической функции; оно не выводится из фактической тождественности предметов, «не извлекается» из неё, а является абстракцией, восполняемой в «подходящих» условиях опыта или, в теории, ≈ путём предположений (гипотез) о фактически допустимых отождествлениях; вместе с тем, при выполнении подстановочности (см. ниже аксиому 4) в соответствующем интервале абстракции отождествления, «внутри» этого интервала, фактическое Т. предметов в точности совпадает с Т. в логическом смысле. Важность понятия Т. обусловила потребность в специальных теориях Т. Самый распространённый способ построения этих теорий ≈ аксиоматический. В качестве аксиом можно указать, например, следующие (не обязательно все):

    х = у É у = х,

    x = y & y = z É x = z,

    А (х) É (х = у É А (у)),

    где А (х) ≈ произвольный предикат, содержащий х свободно и свободный для у, а А (х) и А (у) различаются только вхождениями (хотя бы одним) переменных х и y.

    Аксиома 1 постулирует свойство рефлексивности Т. В традиционной логике она считалась единственным логическим законом Т., к которому в качестве «нелогических постулатов» добавляли обычно (в арифметике, алгебре, геометрии) аксиомы 2 и З. Аксиому 1 можно считать гносеологически обоснованной, поскольку она является своего рода логическим выражением индивидуации, на котором, в свою очередь, основывается «данность» предметов в опыте, возможность их узнавания: чтобы говорить о предмете «как данном», необходимо как-то выделить его, отличить от др. предметов и в дальнейшем не путать с ними. В этом смысле Т., основанное на аксиоме 1, является особым отношением «самотождественности», которое связывает каждый предмет только с самим собой ≈ и ни с каким др. предметом.

    Аксиома 2 постулирует свойство симметричности Т. Она утверждает независимость результата отождествления от порядка в парах отождествляемых предметов. Эта аксиома также имеет известное оправдание в опыте. Например, порядок расположения гирь и товара на весах различен, если смотреть слева направо, для покупателя и продавца, обращенных лицом друг к другу, но результат ≈ в данном случае равновесие ≈ один и тот же для обоих.

    Аксиомы 1 и 2 совместно служат абстрактным выражением Т. как неразличимости, теории, в которой представление об «одном и том же» предмете основывается на фактах не наблюдаемости различий и существенно зависит от критериев различимости, от средств (приборов), отличающих один предмет от другого, в конечном счёте ≈ от абстракции неразличимости. Поскольку зависимость от «порога различимости» на практике принципиально неустранима, представление о Т., удовлетворяющем аксиомам 1 и 2, является единственным естественным результатом, который можно получить в эксперименте.

    Аксиома 3 постулирует транзитивность Т. Она утверждает, что суперпозиция Т. также есть Т. и является первым нетривиальным утверждением о тождественности предметов. Транзитивность Т. ≈ это либо «идеализация опыта» в условиях «убывающей точности», либо абстракция, восполняющая опыт и «создающая» новый, отличный от неразличимости, смысл Т.: неразличимость гарантирует только Т. в интервале абстракции неразличимости, а эта последняя не связана с выполнением аксиомы З. Аксиомы 1, 2 и 3 совместно служат абстрактным выражением теории Т. как эквивалентности.

    Аксиома 4 постулирует необходимым условием для Т. предметов совпадение их признаков. С логической точки зрения, эта аксиома очевидна: «одному и тому же» предмету принадлежат все его признаки. Но поскольку представление об «одном и том же» предмете неизбежно основывается на определённого рода допущениях или абстракциях, эта аксиома не является тривиальной. Её нельзя верифицировать «вообще» ≈ по всем мыслимым признакам, а только в определённых фиксированных интервалах абстракций отождествления или неразличимости. Именно так она и используется на практике: предметы сравниваются и отождествляются не по всем мыслимым признакам, а только по некоторым ≈ основным (исходным) признакам той теории, в которой хотят иметь понятие об «одном и том же» предмете, основанное на этих признаках и на аксиоме 4. В этих случаях схема аксиом 4 заменяется конечным списком её аллоформ ≈ конгруентных ей «содержательных» аксиом Т. Например, в аксиоматической теории множеств Цермело ≈ Френкеля ≈ аксиомами:

    4.1 z Î x É (x = y É z Î y),

    4.2 x Î z É (x = y É y Î z),

    определяющими, при условии, что универсум содержит только множества, интервал абстракции отождествления множеств по «членству в них» и по их «собственному членству», с обязательным добавлением аксиом 1≈3, определяющих Т. как эквивалентность.

    Перечисленные выше аксиомы 1≈4 относятся к так называемым законам Т. Из них, используя правила логики, можно вывести и многие др. законы, неизвестные в до математической логике. Различие между логическим и гносеологическим (философским) аспектами Т. не имеет значения, коль скоро речь идёт об общих абстрактных формулировках законов Т. Дело, однако, существенно меняется, когда эти законы используются для описания реалий. Определяя понятие «один и тот же» предмет, аксиоматики Т. необходимо влияют на формирование универсума «внутри» соответствующей аксиоматической теории.

    Лит.: Тарский А., Введение в логику и методологию дедуктивных наук, пер. с англ., М., 1948; Новоселов М., Тождество, в кн.: Философская энциклопедия, т. 5, М., 1970; его же, О некоторых понятиях теории отношений, в кн.: Кибернетика и современное научное познание, М., 1976; Шрейдер Ю. А., Равенство, сходство, порядок, М., 1971; Клини С. К., Математическая логика, пер. с англ., М., 1973; Frege G., Schriften zur Logik, B., 1973.

    М. М. Новосёлов.

Википедия

Тождество (математика)

То́ждество (в математике) - равенство , выполняющееся на всём множестве значений входящих в него переменных, например:

a  − b  = (a  + b )(a  − b ) (a  + b ) = a  + 2a b  + b

и т. п. Иногда называют тождеством также равенство, не содержащее никаких переменных; напр. 25 = 625.

Тождественное равенство, когда его хотят подчеркнуть особо, обозначается символом « ≡ ».

Тождество

То́ждество , тожде́ственность - многозначные термины.

  • Тождество - равенство, выполняющееся на всём множестве значений входящих в него переменных.
  • Тождество - полное совпадение свойств предметов.
  • Тождественность в физике - характеристика объектов, при которой замена одного из объектов другим не изменяет состояние системы при сохранении данных условий.
  • Закон тождества - один из законов логики.
  • Принцип тождественности - принцип квантовой механики, согласно которому состояния системы частиц, получающиеся друг из друга перестановкой тождественных частиц местами, нельзя различить ни в каком эксперименте, и такие состояния должны рассматриваться как одно физическое состояние.
  • «Тождественность и действительность» - книга Э. Мейерсона.

Тождество (философия)

Тождество - философская категория, выражающая равенство, одинаковость предмета, явления с самим собой или равенство нескольких предметов. О предметах А и В говорят, что они являются тождественными, одними и теми же, если и только если все свойства. Это означает, что тождество неразрывно связано с различием и является относительным. Всякое тождество вещей временно, преходяще, а их развитие, изменение абсолютно . В точных науках, однако, абстрактное, то есть отвлекающееся от развития вещей, тождество в соответствии с законом Лейбница, используется потому, что в процессе познания возможны и необходимы в известных условиях идеализация и упрощение действительности. С подобными ограничениями формулируется и логический закон тождества.

Тождество следует отличать от сходства, подобия и единства.

Сходными мы называем предметы, обладающие одним или несколькими общими свойствами; чем больше у предметов общих свойств, тем ближе их сходство подходит к тождеству. Два предмета считаются тождественными, если их качества совершенно сходны.

Однако, следует помнить, что в мире предметном тождества быть не может, так как два предмета, сколь бы ни были они сходны по качествам, всё же отличаются числом и занимаемым ими пространством; только там, где материальная природа возвышается до духовности, появляется возможность тождества.

Необходимое условие тождества - это единство: где нет единства, не может быть и тождества. Материальный мир, делимый до бесконечности, единством не обладает; единство появляется с жизнью, в особенности с духовной жизнью. Мы говорим о тождестве организма в том смысле, что его единая жизнь пребывает, несмотря на постоянную смену частиц, образующих организм; где есть жизнь, там есть единство, но в настоящем значении слова ещё нет тождества, поскольку жизнь убывает и прибывает, оставаясь неизменной лишь в идее.

То же самое можно сказать и о личности - высшем проявлении жизни и сознания; и в личности нами лишь предполагается тождество, в действительности же его нет, так как самое содержание личности постоянно меняется. Истинное тождество возможно только в мышлении; правильно образованное понятие имеет вечную ценность независимо от условий времени и пространства, в которых оно мыслится.

Лейбниц своим principium indiscernibilium установил мысль, что не могут существовать две вещи совершенно сходные в качественном и количественном отношениях, поскольку такое сходство было бы ни чем иным, как тождеством.

Философия тождества выступает центральной идеей в работах Фридриха Шеллинга.

Примеры употребления слова тождество в литературе.

Именно в том и заключается великая психологическая заслуга как древнего, так и средневекового номинализма, что он основательно расторгнул первобытное магическое или мистическое тождество слова с объектом - слишком основательно даже для того типа, основа которого заложена не в том, чтобы крепко держаться за вещи, а в том, чтобы абстрагировать идею и ставить ее над вещами.

Это тождество субъективности и объективности и составляет как раз достигнутую теперь самосознанием всеобщность, возвышающуюся над обеими упомянутыми сторонами, или особенностями, и растворяющую их в себе.

На этой стадии соотнесенные друг с другом самосознающие субъекты возвысились, следовательно, через снятие их неодинаковой особенности единичности до сознания их реальной всеобщности - всем им присущей свободы - и тем самым до созерцания определенного тождества их друг с другом.

Полтора столетия спустя в них изумленно вглядывалась Инта, прапраправнучка женщины, которой уступил место в космическом корабле Сарп, пораженный ее необъяснимым тождеством с Веллой.

Но когда обнаружилось, что перед смертью своей хороший писатель Каманин читал рукопись именно КРАСНОГОРОВА и при этом того самого, чья кандидатура обсуждалась свирепым физиком Шерстневым за секунду до его, Шерстнева, ПОДОБНОЙ ЖЕ гибели, - тут, знаешь ли, пахнуло на меня уже не простым совпадением, тут запахло ТОЖДЕСТВОМ !

Заслуга Клоссовски в том, что он показал: эти три формы теперь связаны навеки, но не благодаря диалектической трансформации и тождеству противоположностей, а благодаря их рассеянию по поверхности вещей.

В этих своих работах Клоссовски развивает теорию знака, смысла и нонсенса, а также дает глубоко оригинальную интерпретацию идеи вечного возвращения Ницше, понятого как эксцентрическая способность утверждать расхождения и дизъюнкции, не оставляющая места ни тождеству Я, ни тождеству мира, ни тождеству Бога.

Как и в любом другом виде идентификации человека по признакам внешности, в фотопортретной экспертизе идентифицируемым объектом во всех случаях является конкретное физическое лицо, тождество которого устанавливается.

Теперь из ученика вышел учитель, и прежде всего как учитель справился он с великой задачей первой поры своего магистерства, одержав победу в борьбе за авторитет и полное тождество человека и должности.

Но в ранней классике это тождество мыслящего и мыслимого трактовалось только интуитивно и только описательно.

Для Шеллинга тождество Природы и Духа есть натурфилософский принцип, предшествующий эмпирическому познанию и детерминирующий понимание результатов последнего.

На основании этого тождества минеральных признаков и сделано заключение, что эта шотландская формация современна самым нижним формациям Валлиса, потому что количество имеющихся налицо палеонтологических данных слишком незначительно, чтобы с помощью его можно было подтвердить или опровергнуть подобного рода положение.

Теперь уже не первоначало дает место историчности, но сама ткань историчности выявляет необходимость первоначала, которое было бы одновременно и внутренним, и сторонним, наподобие некоей гипотетической вершины конуса, где все различия, все рассеяния, все прерывности сжимаются в единую точку тождества , в тот бесплотный образ Тождественного, способного, однако, расщепиться и превратиться в Иное.

Известно, что нередки случаи, когда объект, подлежащий отождествлению по памяти, не обладает достаточным числом заметных признаков, которые позволили бы установить его тождество .

Ясно, следовательно, что вечей, или восстаний, в Москве на людей, хотевших бежать от татар, в Ростове на татар, в Костроме, Нижнем, Торжке на бояр, вечей, созываемых всеми колоколами, не должно, по одному тождеству названия, смешивать с вечами Новгорода и других старых городов: Смоленска, Киева, Полоцка, Ростова, где жители, по словам летописца, как на думу, на веча сходились и, что старшие решали, на то пригороды соглашались.

В ходе изучения алгебры мы сталкивались с понятиями многочлен (например ($y-x$ ,$\ 2x^2-2x$ и тд) и алгебраическая дробь(например $\frac{x+5}{x}$ , $\frac{2x^2}{2x^2-2x}$,$\ \frac{x-y}{y-x}$ и тд). Сходство этих понятий в том, что и в многочленах, и в алгебраических дробях присутствуют переменные и числовые значения, выполняются арифметические действия: сложение, вычитание, умножение, возведение в степень. Отличие этих понятий состоит в том, что в многочленах не производится деление на переменную, а в алгебраических дробях деление на переменную можно производить.

И многочлены , и алгебраические дроби в математике называются рациональными алгебраическими выражениями. Но многочлены являются целыми рациональными выражениями, а алгебраические дроби- дробно- рациональными выражениями.

Можно получить из дробно --рационального выражения целое алгебраическое выражение используя тождественное преобразование, которое в данном случае будет являться основным свойством дроби - сокращением дробей. Проверим это на практике:

Пример 1

Выполнить преобразование:$\ \frac{x^2-4x+4}{x-2}$

Решение: Преобразовать данное дробно-рациональное уравнение можно путем использования основного свойства дроби- сокращения, т.е. деления числителя и знаменателя на одно и то же число или выражение, отличное от $0$.

Сразу данную дробь сократить нельзя,необходимо преобразовать числитель.

Преобразуем выражние стоящее в числителе дроби,для этого воспользуемся формулой квадрата разности :$a^2-2ab+b^2={(a-b)}^2$

Дробь имеет вид

\[\frac{x^2-4x+4}{x-2}=\frac{x^2-4x+4}{x-2}=\frac{{(x-2)}^2}{x-2}=\frac{\left(x-2\right)(x-2)}{x-2}\]

Теперь мы видим, что в числителе и в знаменателе есть общий множитель --это выражение $x-2$, на которое произведем сокращение дроби

\[\frac{x^2-4x+4}{x-2}=\frac{x^2-4x+4}{x-2}=\frac{{(x-2)}^2}{x-2}=\frac{\left(x-2\right)(x-2)}{x-2}=x-2\]

После сокращения мы получили, что исходное дробно-рациональное выражение $\frac{x^2-4x+4}{x-2}$ стало многочленом $x-2$, т.е. целым рациональным.

Теперь обратим внимание на то, что тождественными можно считать выражения $\frac{x^2-4x+4}{x-2}$ и $x-2\ $ не при всех значениях переменной, т.к. для того, чтобы дробно-рациональное выражение существовало и было возможно сокращение на многочлен $x-2$ знаменатель дроби не должен быть равен $0$ (так же как и множитель, на который мы производим сокращение. В данном примере знаменатель и множитель совпадают, но так бывает не всегда).

Значения переменной, при которых алгебраическая дробь будет существовать называются допустимыми значениями переменной.

Поставим условие на знаменатель дроби: $x-2≠0$,тогда $x≠2$.

Значит выражения $\frac{x^2-4x+4}{x-2}$ и $x-2$ тождественны при всех значениях переменной, кроме $2$.

Определение 1

Тождественно равными выражениями называются те, которые равны при всех допустимых значениях переменной.

Тождественным преобразованием является любая замена исходного выражения на тождественно равное ему.К таким преобразованиям относятся выполнение действий: сложения, вычитания, умножение, вынесение общего множителя за скобку, приведение алгебраических дробей к общему знаменателю, сокращение алгебраических дробей, приведение подобных слагаемых и т.д. Необходимо учитывать,что ряд преобразований, такие как, сокращение, приведение подобных слагаемых могут изменить допустимые значения переменной.

Приемы, использующиеся для доказательств тождеств

    Привести левую часть тождества к правой или наоборот с использованием тождественных преобразований

    Привести обе части к одному и тому же выражению с помощью тождественных преобразований

    Перенести выражения, стоящие в одной части выражения в другую и доказать, что полученная разность равна $0$

Какое из приведенных приемов использовать для доказательства данного тождества зависит от исходного тождества.

Пример 2

Доказать тождество ${(a+b+c)}^2- 2(ab+ac+bc)=a^2+b^2+c^2$

Решение: Для доказательства данного тождества мы используем первый из приведенных выше приемов, а именно будем преобразовывать левую часть тождества до ее равенства с правой.

Рассмотрим левую часть тождества:$\ {(a+b+c)}^2- 2(ab+ac+bc)$- она представляет собой разность двух многочленов. При этом первый многочлен является квадратом суммы трех слагаемых.Для возведения в квадрат суммы нескольких слагаемых используем формулу:

\[{(a+b+c)}^2=a^2+b^2+c^2+2ab+2ac+2bc\]

Для этого нам необходимо выполнить умножение числа на многочлен.Вспомним, что для этого надо умножить общий множитель,стоящий за скобками на каждое слагаемое многочлена,стоящего в скобках.Тогда получим:

$2(ab+ac+bc)=2ab+2ac+2bc$

Теперь вернемся к исходному многочлену,он примет вид:

${(a+b+c)}^2- 2(ab+ac+bc)=\ a^2+b^2+c^2+2ab+2ac+2bc-(2ab+2ac+2bc)$

Обратим внимание, что перед скобкой стоит знак «-» значит при раскрытии скобок все знаки, которые были в скобках меняются на противоположные.

${(a+b+c)}^2- 2(ab+ac+bc)=\ a^2+b^2+c^2+2ab+2ac+2bc-(2ab+2ac+2bc)= a^2+b^2+c^2+2ab+2ac+2bc-2ab-2ac-2bc$

Приведем подобные слагаемые,тогда получим, что одночлены $2ab$, $2ac$,$\ 2bc$ и $-2ab$,$-2ac$, $-2bc$ взаимно уничтожатся, т.е. их сумма равна $0$.

${(a+b+c)}^2- 2(ab+ac+bc)=\ a^2+b^2+c^2+2ab+2ac+2bc-(2ab+2ac+2bc)= a^2+b^2+c^2+2ab+2ac+2bc-2ab-2ac-2bc=a^2+b^2+c^2$

Значит путем тождественных преобразований мы получили тождественное выражение в левой части исходного тождества

${(a+b+c)}^2- 2(ab+ac+bc)=\ a^2+b^2+c^2$

Заметим, что полученное выражение показывает, что исходное тождество --верно.

Обратим внимание, что в исходном тождестве допустимы все значения переменной, значит мы доказали тождество используя тождественные преобразования, и оно верно при всех допустимых значениях переменной.