Как прозвонить электродвигатель мультиметром на 220в асинхронный. Измерение сопротивления изоляции электродвигателя

В своей повседневной жизни мы постоянно сталкиваемся с различными электрическими приборами, значительно облегчающими нашу деятельность. Практически все они имеют в своей конструкции двигатель, питаемый электроэнергией для совершения определенной работы.

Иногда по разным причинам в нем возникают неисправности. Приходится определять его работоспособность, выявлять и устранять поломки.

Как устроен электродвигатель

Сразу оговоримся, что не будем прибегать к сложным техническим описаниям и формулам, а постараемся использовать упрощенные схемы и терминологию. Также учитываем, что работы с электродвигателями в электроустановках относятся к опасным. К ним допускается обученный, подготовленный персонал.

Внимание: Самостоятельный ремонт электродвигателя неквалифицированными работниками может закончиться трагически!

Кинематическая схема

По механической конструкции любой электрический двигатель можно представить состоящим всего из двух частей:

1. стационарно закрепленной, которая называется статором и крепится к корпусу станка, механизма или удерживается в руках, как на дрели, перфораторе и подобных устройствах;

2. подвижной — ротора, совершающего вращательное движение, передаваемое исполнительному приводу.

Обе эти половинки полностью разделены друг от друга, но соприкасаются через подшипники. Больше нигде и ни в каком месте они чисто механически не контактируют. Ротор вставлен внутрь статора и совершенно свободно вращается в нем.

Эту способность вращаться необходимо оценивать в первую очередь при анализе работоспособности любой электрической машины.

Для проверки вращения необходимо:

1. полностью снять напряжение со схемы питания;

2. попробовать вручную прокрутить ротор.

Первое действие является необходимым требованием правил безопасности, а второе — техническим тестом.

Часто оценить вращение бывает сложно из-за подключенного привода. Например, ротор двигателя исправного пылесоса довольно легко раскрутить движением руки. Чтобы повернуть вал рабочего перфоратора, придется приложить усилие. Прокрутить вал двигателя, подключенного через червячный редуктор, вообще не получится из-за конструктивных особенностей этого механизма.

По этим причинам оценку вращения ротора в статоре проводят при отключенном приводе и анализируют качество работы подшипников. Затруднять движение может:

    износ контактных площадок скольжения;

    отсутствие смазки в подшипниках или ее неправильное применение. Например, обычный солидол, которым часто заполняют шарикоподшипники, на морозе загустеет и может быть причиной плохого запуска двигателя;

    попадание грязи или посторонних предметов между подвижной и стационарной частью.

Шум во время работы двигателя создается неисправными, разбитыми подшипниками с повышенным люфтом. Для его быстрой оценки достаточно пошатать ротор относительно стационарной части, создавая переменные нагрузки в вертикальной плоскости, и попробовать вдвигать и вытаскивать его вдоль оси. На многих моделях незначительные люфты считаются допустимыми.

Если ротор вращается свободно и подшипники хорошо работают, то надо искать неисправность в электромагнитных цепях.

Электрическая схема

Чтобы любой двигатель работал необходимо выполнить два условия:

1. на его обмотку (или обмотки у многофазных моделей) подвести номинальное напряжение;

2. электрическая и магнитная схемы должны быть исправными.

Где проверять напряжение питания двигателя

Рассмотрим первое положение на примере конструкции электрической дрели с .

Если у исправной дрели вставить вилку в розетку с подведенным напряжением, то этого недостаточно для запуска двигателя. Потребуется еще нажать на кнопку включения.

Только тогда электрический ток от вилки по шнуру через симисторный узел регулирования и контакты нажатой кнопки подойдет к щеточному узлу, расположенному на коллекторе, и через него сможет попасть на обмотку.

Подведем итог: делать вывод об исправности двигателя дрели можно только после проверки напряжения на щетках коллекторного узла, а не контактах вилки. Приведенный пример является частным случаем, но раскрывает общие принципы поиска неисправностей, характерные для большинства электрических устройств. К сожалению, этим положением часть электриков второпях пренебрегает.

Типы электрических схем электродвигателей

Электродвигатели создаются для работы от постоянного или переменного тока. Причем последние делятся на:

    синхронные, когда частоты вращения частоты вращения ротора и электромагнитного поля статора совпадают;

    асинхронные — с отстающей частотой.

Они имеют разные конструктивные особенности, но общие принципы работы, основанные на воздействии вращающегося электромагнитного поля статора на поле ротора, передающее вращение приводу.

Двигатели постоянного тока

Их изготавливают для использования в качестве кулеров компьютерных устройств, стартеров легковых автомобилей, мощных дизельных станций, зерноуборочных комбайнов, танков и решения других задач. Устройство одной из подобных простых моделей показано на картинке.

Магнитное поле статора у этой конструкции создается не постоянными магнитами, а двумя электромагнитами, собранными на специальных сердечниках — магнитопроводах, вокруг которых расположены катушки с обмотками.

Магнитное поле ротора создается током, проходящим через щетки коллекторного узла по обмотке, уложенной в пазы якоря.

Асинхронные двигатели переменного тока

Представленный на картинке разрез одной из моделей демонстрирует определенное подобие с ранее рассмотренным устройством. Конструктивные отличия заключаются в выполнении ротора формой короткозамкнутой обмотки (без прямой подачи в нее тока от электроустановки), получившей название «беличьего колеса» и принципах расположения витков на статоре.

Синхронные двигатели переменного тока

У них обмотки катушек статора расположены под одинаковым углом смещения между собой. За счет этого создается вращающееся с определенной скоростью электромагнитное поле.

Внутри этого поля помещен электромагнит ротора, который под воздействием приложенных магнитных сил тоже начинает двигаться с частотой, синхронной скорости вращения приложенной силы.

Таким образом, во всех рассмотренных схемах двигателей используются:

1. обмотки из проводов для усиления магнитных полей единичных витков;

2. магнитопроводы для создания путей протекания магнитных потоков;

3. электромагниты или постоянные магниты.

У отдельных конструкций двигателей, называемых коллекторными, используется схема передачи тока от стационарной части на вращающиеся детали через узел щеткодержателя.

Во всех этих технических устройствах и способны возникать различные неисправности, которые влияют на работу конкретного двигателя.

Поскольку магнитопровод создается на заводе из пластин специальных сталей, собранных с высокой надежностью, то поломки этих элементов происходят очень редко, да и то под воздействием агрессивной среды, не предусмотренной условиями эксплуатации или из-за непредвиденных запредельных механических нагрузок на корпус.

Поэтому проверка прохождения магнитных потоков практически не проводится, а все внимание при неисправностях электродвигателей после оценки механики обращается на состояние электрических характеристик обмоток.

Как проверить щеточный узел коллекторного двигателя

Каждая пластина коллектора является контактным соединением определенной части непрерывной обмотки якоря и через ее подключение к щетке проходит электрический ток.

У исправного двигателя в этом узле создается минимальное , не оказывающее практического влияния на качество работы и выходную мощность. Внешний вид пластин отличается чистотой, а промежутки между ними ничем не заполнены.

Двигатели, которые подвергались серьезным нагрузкам, имеют загрязненные коллекторные пластины со следами графитовой пыли, набившейся в пазы и ухудшающей изоляционные свойства.

Щетки двигателя усилием пружин прижимаются к пластинам. Графит при работе постепенно стирается. Его стержень изнашивается по длине, а сила прижатия пружины уменьшается. При ослаблении контактного давления увеличивается переходное электрическое сопротивление, что вызывает искрение в коллекторе.

В результате начинается повышенный износ щеток и медных пластин коллектора, который может быть причиной поломки двигателя.

Поэтому надо проверять щеточный механизм, осматривать чистоту поверхностей, качество выработки щеток, условия работы пружин, отсутствие искрения и появления кругового огня при работе.

Загрязнения убираются мягкой тряпочкой, смоченной раствором технического спирта. Промежутки между пластинами прочищают воронилами из твердых не смолистых пород дерева. Щетки притирают мелкозернистой наждачной шкуркой.

Если на коллекторных пластинах появились выбоины или выгоревшие участки, то коллектор подвергают механической обработке и полировке до уровня, при котором ликвидированы все неровности.

Хорошо подогнанный щеточный узел не должен создавать искр во время работы.

Как проверить состояние изоляции обмоток относительно корпуса

Для выявления нарушения диэлектрических свойств изоляции относительно статора и ротора необходимо использовать специально предназначенный для этих целей прибор — .

Он подбирается по величине выходной мощности и напряжению.

Первоначально измерительные концы подключаются на общую клемму выводов обмоток и болт заземления корпуса. У собранного двигателя электрический контакт корпусов статора и ротора создается через металлические подшипники.

Если замер показывает нормальную изоляцию, то этого вполне достаточно. В противном случае все обмотки рассоединяются и осуществляется поиск нарушения изоляции методом измерения и осмотра отдельных цепей.

Причины плохого состояния изоляции могут быть разными: от механического нарушения слоя лакокрасочного покрытия проводов до повышенной влажности внутри корпуса. Поэтому их надо точно определить. В одних случаях достаточно хорошо просушить обмотки, а в других необходимо искать места с царапинами или задирами для исключения токов утечек.

Большое число электроприборов на 220 В, которыми пользуется каждый, содержит электрические движки. Это и различные виды электроинструмента, и электроприборы, используемые на кухне и в квартире - стиральные и посудомоечные машины, пылесосы и т. д. и т. п. Все эти моторы выполняют механическую работу и этим существенно облегчают нашу жизнь. Поэтому их неисправности, что называется, как гром среди ясного неба.

Внезапно становится понятной значимость электромотора и его исправность. Чтобы не допустить подобную неприятность, движки бытовых электроприборов и электроинструмента рекомендуется периодически проверять. Причем проверки должны соответствовать эксплуатационной нагрузке - чем продолжительнее электроприбор используется, тем более частые проверки необходимы. В связи с этим расскажем далее нашим читателям, как проверить электродвигатель самостоятельно.

Что необходимо помнить при проверке

Не рекомендуем нашим читателям самостоятельно проверять электрические движки, да и любые другие электроприборы без определенного, пусть даже небольшого объема знаний в электрике. Хотя такая проверка и не требует детальных технических описаний и знания большого числа формул, всегда есть риск поражения электрическим током. По этой причине лучше всего поручать проверки и ремонты электрооборудования подготовленным кадрам. А без определенных знаний одно неверное прикосновение отверткой не там где надо может испортить либо движок, либо что-то еще.

Напомним нашим читателям, что работа каждого электродвигателя основана на взаимодействии статора и ротора.

  • Статор, который статичен, т.е. неподвижен, является частью корпуса закрепленного или опирающегося на несущее основание.
  • Ротор вращается и поэтому созвучен с английским словом rotate, что означает «вращать». В основном ротор располагается внутри статора. Но есть такие конструкции электродвигателей, в которых статор в значительной мере охвачен ротором. Такие движки применялись, например, в электропроигрывателях граммофонных пластинок. Их также можно встретить в некоторых моделях стиральных машин, вентиляторах и не только в них.

Проверяем подшипники

Перемещение ротора относительно статора возможно благодаря подшипникам. Они могут быть конструктивно выполнены на одном из принципов:

  • скольжения,
  • качения.

Легкость вращения вала и ротора электродвигателя - это первый пункт проверки любого движка. Чтобы его реализовать на практике, необходимо:

  • отключить проверяемый двигатель от источника питания или электросети;
  • взявшись рукой за вал, покачать туда-сюда или провернуть ротор.

Но поскольку часто движки являются частью электропривода с редуктором, необходимо точно знать то, что вал, за который берешься, - это часть ротора, а не редуктора. Некоторые шестеренчатые редукторы с определенным усилием все же позволяют провернуть свой вал, и таким образом можно сделать оценку состояния подшипников. Но многие глобоидные и червячные - нет. В таком случае надо попытаться получить доступ к валу двигателя внутри редуктора. А еще лучше - отсоединить по возможности редуктор от движка.

Если вращение затруднено, значит, подшипник неисправен по следующим причинам:

  • его срок службы истек из-за износа рабочих элементов;
  • смазки либо слишком мало, либо ее нет вовсе. Но может быть и так, что применена смазка, не соответствующая условиям эксплуатации. Например, некоторые ее разновидности при температурах ниже нуля становятся настолько густыми, что тормозят вращение. В таком случае подшипники промывают бензином и заменяют смазку другой, пригодной для этих условий.
  • Зазоры между трущимися элементами подшипника забиты грязью. Возможно и попадание посторонних мелких предметов.

Проверяем двигатели визуально

Если подшипники в хорошем состоянии, взявшись рукой за вал и покачав его из стороны в сторону, не ощущаешь люфт. При этом в работающем движке не слышен шум, идущий от подшипника. И, наоборот, в изношенном подшипнике заметен и люфт, и значительный шум, особенно если это подшипник качения. Для асинхронного двигателя, независимо от того, трехфазный он или однофазный, отсутствие нормальной работоспособности чаще всего связано именно с подшипниками.

В таких движках это единственные детали, которые со временем механически изнашиваются. Исключение составляют асинхронные движки с кольцами. Их содержат также и синхронные электродвигатели. Кольца и скользящие по ним щетки подвержены износу и наряду с подшипниками осматриваются для проверки их нормальной работоспособности. Поверхности колец, пребывающих в хорошем и исправном состоянии, гладкие и без царапин. Щетки должны быть притерты к поверхности колец и надежно прижаты к ним.

Но для большинства читателей наиболее частыми будут проблемы, связанные с коллекторными движками. Они являются основными во всех электроприборах и электроинструментах. И в них также изнашивающимися деталями являются подшипники и щетки. Но скольжение щеток происходит не по кольцам, а по коллектору. Его поверхность неоднородна, что существенно ускоряет износ щеток, которые при этом превращаются в графитовую пыль.

Она оседает на всех поверхностях движка и корпуса электроприбора, создавая условия для появления электрических цепей. Поэтому при проверке таких электроприборов важно своевременно выявить критический уровень загрязнения графитовой пылью и выполнить качественную очистку от нее как самого двигателя, так и всех остальных поверхностей.

Как прозвонить электродвигатель мультиметром

Но осмотр рисковых элементов электродвигателей обычно недостаточен. Тем более что таким способом невозможно выявить неисправность в обмотках. Поэтому надо знать, как прозвонить электродвигатель мультиметром или тестером. Такая прозвонка обмоток электродвигателя трехфазного, однофазного и постоянного тока позволит разобраться в некоторых неисправностях и выявить необходимость перемотки поврежденной обмотки.

Измерять сопротивление обмотки обычно не имеет смысла, поскольку сопротивление обмоток большинства движков весьма мало по своей величине. Причем омическое сопротивление тем меньше, чем больше мощность и, соответственно ей, сечение обмоточных проводов. Кстати, это же характерно и для трансформаторов. Поэтому проверка обмоток при появлении характерных неисправностей в электродвигателях сводится к тому, чтобы прозванивать их тестером.

К сожалению, таким способом прозвонить обмотку с целью предотвращения неисправности не получится. Так можно только разобраться с уже возникшими неисправностями. А они в движках влияют на правильность вращения ротора. При этом скорость вращения уменьшается, корпус заметно сильнее нагревается, звук работающего двигателя ощутимо изменяется. Особенно это заметно на слух в коллекторных двигателях. Они работают с характерным жужжанием, которое связано с магнитострикционным эффектом.

Если обрывается соединение одной или нескольких обмоток, они не создают звуковых колебаний, и тональность звука понижается. Чтобы найти повреждение, нужен тестер, настроенный на измерение сопротивления в омах. На коллекторе расположены пары пластин одна напротив другой. Поэтому надо одним щупом прикоснуться к любой пластине коллектора и с диаметрально противоположной стороны другим щупом найти парную пластину.

На ней прибор покажет некоторое значение сопротивления. Оно должно быть по величине небольшим, причем, его величина уменьшается по мере увеличения мощности моторов. Если искомая пластина либо не находится, либо расположена в стороне от диаметральной линии, проходящей через первую пластину, и такое расположение больше не повторяется для других пластин, подобных первой, значит

  • либо обрыв в цепи пластина – обмотка – пластина;
  • либо внутри обмотки нарушена изоляция и появилась электрическая цепь через ее повреждение.

Потребуется ремонт ротора. В ходе проверки на обследованные пластины, например, лаком для ногтей наносится метка-точка. Но сначала надо протестировать лак. После высыхания и затвердевания он должен легко отделиться от поверхности. В коллекторных движках, работающих от сети 220 В, задействована обмотка статора. Проверить ее тестером сложнее, поскольку для сравнения измеряемых величин сопротивлений нужен еще один такой же двигатель. Но поскольку для двигателя должно быть указано значение тока холостого хода, его можно замерить тестером.

  • Соблюдая технику безопасности, надо присоединить электрическую цепь к обесточенной розетке (например, сделав отключение на щитке). Движок при этом должен быть надежно закреплен для противодействия силе пуска. Затем подается напряжение, и на табло прибора смотрится сила тока и сравнивается с паспортными данными. При замыкании в обмотке статора сила тока будет больше указанной в техническом паспорте.

Похожие проблемы со статором бывают и в асинхронных движках. При замыканиях между витками или на корпус скорость вращения ротора всегда уменьшается. В таких случаях надо взять тестер и прозвонить асинхронный электродвигатель, используя таблицу сопротивлений изоляции (если она приведена в технической документации). В исправном двигателе каждая обмотка надежно изолирована как от других обмоток, так и от корпуса, что и покажет прибор при проверке.

Другие неисправности

Но кроме уже упомянутых проблем, которые в основном бывают при эксплуатации движков, встречаются и экзотические неисправности.

  • Например, повреждения «беличьей клетки» в асинхронных моделях. При этой неисправности со статором получается полный порядок, но движок все равно не выдает полную мощность. Поскольку повреждение внутреннее, проще всего заменить ротор исправным.

  • Намотанные обмотки применяются только при наличии колец в роторе. Если он вращается при разомкнутой цепи колец, значит, в нем появилось замыкание между витками. А движок «несанкционированно» превратился в асинхронную модель с короткозамкнутым ротором.
  • Нехарактерные шумы. Причинами могут быть нарушения в структуре пластин сердечников. Также, если ротор задевает статор, это будет не только слышно, но возможен нагрев и задымление. Это всегда следствие износа или внезапной поломки подшипников.

Соблюдение рекомендуемых условий эксплуатации и плановых осмотров позволит максимально долго и без проблем использовать оборудование с двигателями. Следуйте инструкциям и получайте от своих электроприборов максимум пользы.

При помощи мультиметра и нескольких приспособлений, не особо разбираясь в принципе работы электродвигателей, можно проверить:

Испытание изоляции обмоток

Независимо от конструкции, электродвигатель нужно проверить при помощи мегомметра на пробой изоляции между обмотками и корпусом. Проверки при помощи одного только мультиметра может быть недостаточно для выявления повреждения изоляции, поэтому используют высокое напряжение.


мегомметр для измерения сопротивления изоляции

В паспорте электродвигателя должно указываться напряжение для испытания изоляции обмоток на электрическую прочность. Для двигателей, подключаемых к сети 220 или 380 В, при их проверке используются 500 или 1000 Вольт, но за неимением источника, можно воспользоваться сетевым напряжением.


паспорт асинхронного двигателя

Изоляция обмоточных проводов низковольтных двигателей не рассчитана выдерживать такие перенапряжения, поэтому при проверке нужно свериться с паспортными данными. Иногда у некоторых электродвигателей вывод обмоток, соединённых звездой, может быть подключён на корпус, поэтому следует внимательно изучать подключение отводов, делая проверку.

Проверка обмоток на обрыв и междувитковое замыкание

Чтобы прозвонить обмотки на обрыв нужно переключить мультиметр в режим омметра. Выявить междувитковое замыкание можно сравнив сопротивление обмотки с паспортными данными или с измерениями симметричных обмоток проверяемого двигателя.

Нужно помнить, что у мощных электродвигателей поперечное сечение проводов обмоток достаточно большое, поэтому их сопротивление будет близким к нулю, а такую точность измерений в десятые доли Ома обычные тестеры не обеспечивают.

Поэтому нужно собрать измерительное приспособление из аккумулятора и реостата, (приблизительно 20 Ом) выставив ток 0,5-1А. Измеряют падение напряжения на резисторе, подключенном последовательно в цепь аккумулятора и измеряемой обмотки.

Для сверки с паспортными данными, можно рассчитать сопротивление по формуле, но, можно этого и не делать – если требуется идентичность обмоток, то достаточно будет совпадения падения напряжения по всем измеряемым выводам.

Измерения можно производить любым мультиметром

Цифровой мультиметр Mastech MY61 58954

Ниже приведены алгоритмы проверки электродвигателей, у которых необходимым условием работоспособности является симметричность обмоток.

Проверка асинхронных трёхфазных двигателей с короткозамкнутым ротором

У подобных двигателей можно прозвонить только статорные обмотки, электромагнитное поле которых в замкнутых накоротко стержнях ротора наводит токи, создающие магнитное поле, взаимодействующее с полем статора.

Неисправности в роторах данных электродвигателей случаются крайне редко, и для их выявления, необходимо специальное оборудование.


ротор двигателя

Чтобы проверить трёхфазный мотор, нужно снять крышку клеммника – там находятся клеммы подключения обмоток, которые могут быть соединены по типу «звезда»

или «треугольник».


Прозвонку можно сделать, даже не снимая перемычки –

достаточно измерить сопротивление между фазными клеммами – все три показания омметра должны совпадать.

При несовпадении показаний необходимо будет разъединить обмотки и проверить их по отдельности. Если расчётное сопротивление у одной из обмоток меньше, чем у остальных – это указывает на наличие междувиткового замыкания, и электродвигатель нужно отдавать на перемотку.

Проверка конденсаторных двигателей

Чтобы проверить однофазный асинхронный двигатель с короткозамкнутым ротором, по аналогии с трёхфазным мотором, необходимо прозвонить только статорные обмотки.

Но у однофазных (двухфазных) электродвигателей имеются только две обмотки – рабочая и пусковая.

Сопротивление рабочей обмотки всегда меньше, чем у пусковой

Таким образом, измеряя сопротивление, можно идентифицировать выводы, если табличка со схемой и обозначениями затёрлась или затерялась.

Часто у таких двигателей рабочая и пусковая обмотки соединены внутри корпуса, и от точки соединения сделан общий вывод.

Принадлежность выводов идентифицируют следующим образом – сумма сопротивлений, измеренных от общего отвода должна соответствовать суммарному сопротивлению обмоток.

Проверка коллекторных двигателей

Поскольку коллекторные электродвигатели переменного и постоянного тока имеют схожую конструкцию, то алгоритм прозвонки будет одинаков.

Сначала проверить обмотку статора (в двигателях постоянного тока её может заменять магнит). Потом проверяют роторные обмотки, сопротивление которых должно быть одинаково, коснувшись щупами щёток коллектора, или противоположных контактных выводов.

Удобней проверять обмотки ротора на выводах щёток, прокручивая вал, добиваясь, чтобы щётки контактировали только с одной парой контактов – таким способом можно выявить подгорание у некоторых контактных площадок.

Чтобы проверить роторные обмотки, нужно найти выводы от данных колец, и удостовериться в совпадении измеренных сопротивлений. Часто такие двигатели оснащаются механической системой отключения роторных обмоток при наборе оборотов, поэтому отсутствие контакта может быть из-за поломки в данном механизме.

Статорные обмотки проверяются как у обычного трёхфазного двигателя.

Сегодня обсудим, как прозвонить электродвигатель мультиметром. Умеющему пользоваться подходит отвертка-индикатор. Один нюанс: заручившись помощью тестера, оценим параметры, отличим пусковую обмотку от рабочей по значению сопротивления (в первом случае величина будет выше вдвое). Отвертка-индикатор миниатюрная, удобная, умение пользоваться приобретете, при необходимости, выплатив 30 рублей найдете новую.

Устройство электродвигателя

Разновидностей двигателей предостаточно. Составлены движущейся частью – ротором – неподвижной – статором. Первым делом посмотрим, где намотана медная проволока. Вариантов ответа три:

  1. Катушки только на роторе.
  2. Катушки только на статоре.
  3. На подвижной и неподвижной части намотка.

В остальном прозвонить асинхронный электродвигатель будет ничуть не сложнее, нежели коллекторный. И наоборот. Разница ограничивается принципом действия, не затрагивая методики оценки работоспособности конструкции. Чтобы правильно прозвонить электродвигатель, перестаньте разбирать особенности.

Ротор электродвигателя

В этом и следующем подзаголовке научим, как прозвонить трехфазный электродвигатель. Если катушки (вне зависимости от количества) имеются на роторе, смотрим, конструкцию токосъемника. Вариантов ответа минимум два.

Графитовые щетки

Видим барабан ротора, снабженный выраженными секциями. Токосъемники представляют собой графитовые щетки. Двигатель коллекторный. Нужно прозвонить все секции. Выводами катушек являются противолежащие секции окружности.

Берем тестер, начинаем поочередно оценивать сопротивление: в каждом случае ответ (в омах) одинаковый плюс минус погрешность. При фиксировании обрыва очистка барабана не помогает. Факт бесконечного сопротивления или короткого замыкания свидетельствует: катушка сгорела. В некоторых двигателях сопротивление катушки близкое нулю.

Рассказывали, что делать в этом случае. Взять нормальную Крону 12 вольт, соединить катушку ротора последовательно низкоомному сопротивлению (20 Ом). Тестером измерить падения напряжения на катушке, добавочном резисторе, пользуясь пропорцией, посчитать значение (R1/R2 = U1/U2). Обратите внимание: резистор высокоточный (ряд Е48 или выше), чтобы вычисления обладали малой погрешностью. Удается измерить сравнительно малые сопротивления.

Обратите внимание: ток достигает 0,5 А при мощности 7 Вт. Вместо батарейки лучше взять блок питания компьютера, либо аккумулятор.

Непрерывные кольца

Токосъемник выполнен в виде одного или нескольких непрерывных колец. Указывает красноречиво: синхронный двигатель (число фаз по количеству секций), либо асинхронный с фазным ротором. Собственно, до этого нет дела, потому как собрались прозвонить электродвигатель тестером, определить назначение прибора поленимся. Смотрим количество колец: число укладывается в пределы 1 – 3. Последнее означает: двигатель трехфазный. Начинаем звонить.

Обмотки соединены звездой, в результате сопротивление между каждыми двумя контактами равное. Если есть на руках оборудования для создания напряжения 500 В, следует прозвонить электродвигатель мегомметром на корпус. Стандартное значение изоляции составляет 20 МОм. Обратите внимание: обмотки могут не выдержать испытания. С двигателем на 12 вольт такие действия предпринимать не стоит. В результате при полностью исправном роторе получится равное сопротивление между контактами. При обнаружении короткого замыкания на корпус проверьте, не является ли техническим решением создания системы с глухозаземленной нейтралью.

Пришло время упомянуть, что для такой системы способ питания характерен напряжениям ниже 1 кВ. Однако при резонансной компенсации (если удастся в природе найти двигатель) может использоваться нечто подобное. По шильдику с маркировкой можно быстро решить вопрос (выход нейтрали на корпус).

Коллекторные щетки чаще расположены перпендикулярно поверхности барабана, тогда как к токосъемникам прижимаются под некоторым углом. Возникает вопрос – где нейтраль. Не выходит на корпус – не используют в схеме. Часто встречается на напряжениях свыше 3 кВ. Здесь нейтраль изолирована, токи уходят через фазу, где в данном случае присутствует нуль (или отрицательное значение).

В высоковольтных цепях общий провод может заземляться через дугогасящий реактор. При коротком замыкании одной фазы на грунт образуется параллельный контур между емкостным сопротивлением линии и индуктивностью реактора. Собственно, тип импеданса дал название устройству (мнимая, реактивная части сопротивления). На промышленной частоте сопротивление контура близко бесконечности, в результате обрыв блокируется до приезда ремонтной группы.

Ротор часто называют якорем.

Статор электродвигателя

После вызванивания ротора электродвигателя займитесь статором. Деталь более простой конструкции. Если перед нами генератор, часть обмоток возбуждающая, в общем случае следует просто найти сопротивление каждой. Обмотки бывают пусковыми только однофазных цепей. Сопротивление катушки будет больше. Допустим, имеется три контакта, тогда распределение между ними следующее:

  • Общий провод обеих обмоток, куда подается нуль (земля).
  • Фазный вход рабочей катушки.
  • Конец пусковой обмотки, куда подается напряжение 230 вольт, минуя конденсатор.

Различие проводится по величине сопротивления: между фазными входами номинал больше, следовательно, оставшийся конец – нулевой провод. Далее деление проводится, как было указано выше. Сопротивление пусковой катушки наибольшее (разница между нулем и этим контактом), оставшиеся концы обозначат рабочую обмотку. Номинал активной части импеданса уменьшен, снижая тепловые потери. Обратите внимание: на 230 вольт существуют также модели электродвигателей, где обе обмотки считаются рабочими. Разница по сопротивлению между ними невелика (менее двух раз).

Для трехфазных двигателей обмотки статора выполняются на разное количество полюсов, всегда эквивалентны. Исповедуется строгая симметрия. Объединение ведется по схеме звезды. В коллекторных двигателях большой мощности между полюсами главной катушки могут размещаться добавочные (дополнительные). Намотаны одним слоем, потому демонстрируют большее сопротивление. Предназначены компенсировать реактивную мощность якоря. Понятно, что число дополнительных полюсов равно числу основных. Разница ограничена геометрическими размерами.

Сердечник дополнительных полюсов изготавливается внахлест (шихтованная конструкция) для уменьшения вихревых токов. Аналогично ротору, недостаточным будет прозвонить трехфазный электродвигатель мультиметром, следует также измерить изоляцию корпуса (типичное значение 20 МОм).

Дополнительный конструктив двигателей

Часто состав двигателей пестрит дополнительными элементами, оптимизирующими работу, выполняющими защитную, иную функцию. Сюда нужно отнести варисторы. Резисторы, соединяющие каждую щетку с корпусом, при резком росте напряжения замыкают искру. Осуществляется гашение. Такие явления, как круговой огонь на коллекторе, приводят к преждевременному выходу оборудования из строя.

Явление наблюдается в результате возникновения противо-ЭДС. Механизм генерации достаточно прост: при изменении тока в проводнике образуется сила, противодействующая процессу. В процессе перехода на следующую секцию феномен вызывает возникновение разности потенциалов щетка-нерабочая часть коллектора. При напряжениях свыше 35 вольт процесс вызывает ионизацию воздуха зазора, наблюдаем в виде искры. Одновременно ухудшаются шумовые характеристики оборудования.

Данное явление, однако, используется отслеживать постоянство скорости вращения вала коллекторного двигателя. Уровень искрения определен числом оборотов. При отклонении параметра от номинала тиристорная схема изменяет угол отсечки напряжения в нужную сторону, чтобы вернуть скорость вала к номинальной. Подобные электронные платы часто встретим в составе бытовых кухонных комбайнов или мясорубок. Состав двигателя следующий:

Электрический двигатель

  1. Термопредохранители. Температура срабатывания выбирается, чтобы уберечь изоляцию от выгорания, разрушения. Предохранитель укреплен на корпусе электродвигателя стальной дужкой, либо прячется под изоляцией обмоток. В последнем случае наружу торчат выводы, легко можно прозвонить мультиметром. Проще проследить, заручившись помощью тестера, индикаторной отвертки, на какие ножки разъема выходит схема защиты. В нормальном состоянии термопредохранитель дает короткое замыкание.
  2. Вместо предохранителей частот ставятся температурные реле. Нормально разомкнутые или замкнутые. Чаще используется последний тип. На корпусе пишут марку, можно в интернете найти соответствующий тип элемента. Дальше действовать согласно найденной информации (тип, сопротивление, температура срабатывания, положение контактов в начальный момент времени).
  3. На двигателях стиральных машин часто ставят датчики оборотов, тахометры. В первом случае выводов три, во втором – два. Принцип действия датчиков Холла основан на изменении разницы потенциалов в поперечном направлении пластинки, по которой течет слабый электрический ток. Соответственно, два крайних вывода служат для подачи питания, должны давать короткое замыкание (небольшое сопротивление), тогда как выход можно проверить только под действием магнитного поля в рабочем режиме. Для этого нужно подать питание согласно электрической разводке. Рекомендуем скачать техническую информацию (data sheet) на присутствующий в электродвигателе датчик Холла. Придуманы другие варианты. Можно измерить питание тестером на включенной стиральной машине. Полагаем читатели понимают опасность манипуляций. Лучше будет электродвигатель снять, питание подать отдельно, только на датчик Холла. Затем все зависит от конструкции. Если на роторе магнит постоянный, достаточно просто повращать ось рукой, чтобы на выходе датчика Холла появились импульсы (фиксируется тестером). В противном случае понадобится изъять сенсор. Заручившись помощью постоянного магнита, проверяется работоспособность. Датчик Холла в составе электродвигателя обычно служит для контроля скорости вращения.

Теперь читатели знают, как прозвонить электродвигатель мультиметром, обзор заканчивается. Ряд специфических устройств можно продолжать до бесконечности. Главное – прозвонить обмотку электродвигателя, мотор обычно стоит дороже прочих деталей. Не берем случай, когда датчик Холла идет по цене 4000 рублей. Уверены, читатели смогут дополнить рекомендации. Но войдите в положение – невозможно объять необъятное… в пределах одного обзора.

Наладка движков неизменного тока

Наладку движков неизменного тока делают в последующем объеме: наружный осмотр, измерение сопротивлений обмоток неизменному току, измерение сопротивлений изоляции обмоток относительно корпуса и меж собой, испытание междувитковой изоляции обмотки якоря, пробный запуск.

Наружный осмотр мотора неизменного тока, как и осмотр асинхронного двигателя , начинают со щитка. На щитке двигателя постоянного тока должны быть указаны последующие данные:

  • наименование либо товарный символ завода-изготовителя,
  • тип машины,
  • заводской номер машины,
  • номинальные данные (мощность, напряжение, ток, частота вращения),
  • метод возбуждения машины,
  • год выпуска,
  • масса и ГОСТ машины.

Выводы обмотки мотора постоянного тока должны быть накрепко изолированы друг от друга и от корпуса, расстояние меж ними и корпусом должно быть более 12-15 мм. Повышенное внимание при наружном осмотре обращают на коллектор и щеточный механизм (щетки, траверсу и щеткодержатели), потому что их состояние в значимой мере оказывает влияние на коммутацию машины, а как следует, и на устойчивость ее работы.

При осмотре коллектора убеждаются в отсутствии на рабочей поверхности следов резца, выбоин, пятен лака и краски, также следов нагара от неудовлетворительной работы щеточного механизма. Изоляция меж коллекторными пластинами должна быть выбрана на глубину 1-2 мм, с краев пластинок должна быть снята фаска шириной 0,5-1 мм (зависимо от мощности мотора). Промежутки меж пластинами должны быть совсем чисты - в их не должно быть железных стружек либо опилок, пыли от графитовых щеток, масла, лака и т. п.

На работу мотора неизменного тока, а в особенности его щеточного механизма, оказывают влияние биение коллектора и его вибрация. Чем выше окружная скорость коллектора, тем меньше величина допустимого биения. Для быстроходных движков максимально допустимая величина биения не должна превосходить 0,02-0,025 мм. Величину амплитуды вибрации определяют индикатором часового типа.

При проведении измерения наконечник индикатора придавливают к поверхности в том направлении, в каком нужно произвести измерение вибрации. Потому что поверхность коллектора прерывающаяся (чередуются пластинки коллектора и впадины), употребляют отлично притертую щетку, в которую должен упираться наконечник индикатора. Корпус индикатора должен быть укреплен на основании, не подверженном вибрации.

При измерении стрелка индикатора колеблется с частотой измеряемой вибрации в границах определенного угла, величина которого и оценивается по шкале индикатора в сотых толиках мм. Но этот устройство позволяет определять вибрации при частоте вращения менее 750 об/мин. Для движков, частота вращения которых превосходит 750 об/мин, нужно воспользоваться особыми приборами-виброметрами либо вибрографами, которые позволяют определять либо записывать вибрацию тех либо других узлов машины.

Биение также определяют при помощи индикатора. Биение коллектора определяют как в прохладном, так и в нагретом состоянии машины. При измерении обращают свое внимание на поведение стрелки индикатора. Плавное движение стрелки показывает на достаточную цилиндричность поверхности, а подергивание стрелки свидетельствует о местных нарушениях цилиндричности поверхности, в особенности небезопасной для щеточного механизма мотора. Измерение биения носит условный нрав, потому что опыт работы оказывает, что есть движки, у каких при малых частотах вращения значения биений значительны, а при номинальной скорости они работают удовлетворительно. Поэтому окончательное заключение о качестве работы коллектора можно дать только после проверки работы мотора под нагрузкой.

Осматривая механическую часть мотора неизменного тока, следует уделять свое внимание на состояние паек н соединений обмоток, подшипниковых узлов, на равномерность зазора (при разобранном движке). Зазор, измеренный в диаметрально обратных точках меж якорем и главными полюсами мотора, не должен отличаться от среднего значения более чем на 10% при зазорах наименее 3 мм и менее чем на 5% при зазорах более 3 мм.

После проверки биений и вибраций приступают к регулировке щеточного механизма мотора. Щетки в обоймах должны свободно передвигаться, но не должны пошатываться. Обычный зазор меж щеткой и обоймой в направлении вращения не должен превосходить 0,1- 0,4 мм, в продольном направлении 0,2-0,5 мм.

Обычное удельное давление щеток на коллектор зависимо от марки материала щетки должно быть более 150-180 г/см2 для графитовых щеток, 220- 250 г/см2 для медно-графитовых. Во избежание неравномерного рассредотачивания тока давление отдельных щеток не должно отличаться от среднего более чем на 10%. Величину удельного давления определяют следующим образом . Между коллектором и щеткой помещают лист тонкой бумаги, к щетке прикрепляют динамометр, а затем, оттягивая динамометром щетку, находят такое положение, когда можно будет свободно вытянуть лист бумаги. Показание динамометра в этот момент соответствует Давлению щетки на коллектор. Удельное давление определяют путем деления показания динамометра на площадь основания щетки.

Правильная установка щеток является одним из важнейших факторов нормальной работы машины. Щеткодержатели устанавливают таким образом, чтобы щетки стояли строго параллельно пластинам коллектора и расстояния между их сбегающими краями были равны полюсному делению машины с погрешностью не более 2%.

У двигателей, имеющих несколько траверс, щеткодержатели размещают таким образом, чтобы щетки перекрывали по возможности большую часть длины коллектора (так называемое шахматное расположение). Это позволит участвовать в коммутации всей длине коллектора, что способствует более равномерному его износу. Однако при таком размещении щеток необходимо следить за тем, чтобы щетки не выступали при работе (с учетом разбега вала) за край коллектора. Щетки перед пуском двигателя в ход тщательно притирают к коллектору (рис. 1) стеклянной (но не карборундовой) бумагой с зернами средней крупности. Зерна карборундовой бумаги могут внедриться в тело щетки и затем при работе наносить царапины на коллектор, тем самым ухудшая условия коммутации машины.

Как проверить коллекторный электродвигатель мультиметром — обмотки статора и ротора

Читайте так же:

Электродвигатель постоянного тока. Принцип работы.

Электродвигатели постоянного тока можно найти во многих портативных бытовых устройствах, автомобилях.

Прежде чем приступить к проверке правильности включения обмоток, изучают маркировку выводов машины конкретного типа. В двигателях постоянного тока выводы обмоток маркируют согласно ГОСТ 183-66 первыми прописными буквами их наименования с добавлением после них цифры 1 - для начала обмотки и 2 - для ее конца. При наличии в двигателе других обмоток такого же наименования, начала и концы их маркируют цифрами 3-4, 5-6 и т. д. Обозначения выводов могут соответствовать схемам возбуждения и направлениям вращения двигателя, которые приведены на рис. 2.

Правильность включения обмоток полюсов проверяют для уточнения чередования их полярности. Чередование полярности дополнительных и главных полюсов для любой машины должно быть строго определенным для данного направления вращения машины. При переходе от полюса к полюсу по направлению вращения машины, работающей в режиме двигателя, после каждого главного полюса следует дополнительный полюс той же полярности, например N-п, S-s. Чередование полярности полюсов может быть определено несколькими способами: внешним осмотром, с помощью магнитной стрелки, и с помощью специальной катушки.

Первый способ применяют в тех случаях, когда направление намотки обмоток можно проследить визуально.

Рис. 1. Притирание щеток к коллектору: а - неправильно; б - правильно

Рис. 2. Обозначения выводов обмоток двигателей постоянного тока при различных схемах возбуждения и направлениях вращения

Зная направление намотки обмотки и пользуясь правилом «буравчика», определяют полярность полюсов. Этот способ удобен для катушек последовательной обмотки возбуждения, направление намотки которой благодаря значительному сечению витков определить очень легко.

Второй способ применяют в основном для катушек обмоток параллельного возбуждения. Сущность этого способа заключается в следующем. В обмотку двигателя подают ток, подвешивают на нитке магнитную стрелку, полярность концов которой помечена, и подносят ее поочередно к каждому полюсу. В зависимости от полярности полюса стрелка повернется к нему концом противоположной полярности.

Читайте так же:

При использовании указанного способа необходимо помнить, что стрелка обладает способностью перемагиичиваться, поэтому опыт необходимо производить как можно быстрее. Способ магнитной стрелки редко применяют для определения полярности обмотки последовательного возбуждения, так как для создания достаточно сильного поля необходимо пропустить через обмотку значительный ток.

Третий способ определения полярности обмоток применим для любой обмотки, он носит название способа пробной катушки. Катушка может иметь любую форму - торроидальную, прямоугольную, цилиндрическую. Катушку наматывают с возможно большим числом витков из тонкой изолированной медной проволоки на каркас из картона, целлулоида и т. п. Катушку присоединяют к чувствительному гальванометру и прикладывают к поверхности полюса (рис. 3), а затем быстро сдергивают с него и замечают направление отклонения стрелки милливольтметра.

Соединение обмоток считают правильным, если под каждыми двумя соседними полюсами стрелки прибора отклоняются в разные стороны, при условии, что пробная катушка обращена к полюсам одной и той же стороной. Проверку правильности присоединения обмотки добавочных полюсов по отношению к обмотке якоря производят по схеме, приведенной на рис. 4.

При замыкании ключа К стрелка милливольтметра будет отклоняться. При правильном включении намагничивающая сила обмотки дополнительных полюсов направлена встречно намагничивающей силе обмотки якоря, поэтому обмотка якоря и обмотка дополнительных полюсов должны включаться встречно, т. е. минус (или плюс) якоря следует соединить с минусом (или с плюсом) обмотки дополнительных полюсов.

Рис. 3. Определение полярности полюсов двигателей постоянного тока с помощью пробной катушки

Рис. 4. Схема проверки правильности включения обмотки добавочных полюсов по отношению к обмотке якоря

Для проверки взаимного включения обмотки дополнительных полюсов и компенсационной обмотки можно использовать схему, приведенную на рис. 5, для небольших по мощности двигателей .

При нормальней работе двигателя постоянного тока магнитный поток, создаваемый компенсационной обмоткой, должен совпадать по направлению с магнитным потоком обмотки дополнительных полюсов. После определения полярности обмоток компенсационная обмотка и обмотка дополнительных полюсов должны включаться согласованно, т. е. минус одной обмотки следует соединить с плюсом другой.

Рис. 5. Схема проверки правильности включения обмотки дополнительных полюсов к компенсационной обмотке

Прежде чем определять полярность щеток и производить необходимые измерения сопротивлений обмоток, устанавливают щетки на нейтраль. Под нейтралью электрического двигателя понимается такое взаимное расположение обмоток главных полюсов и якоря, когда коэффициент трансформации между ними равен нулю. Для установки щеток на нейтраль собирают схему (рис. 6).

Обмотку возбуждения подключают к источнику питания (батарее) через ключ, а к щеткам якоря подключают чувствительный милливольтметр. При подаче в обмотку возбуждения тока толчком, стрелка милливольтметра отклоняется в ту или иную сторону. При положении щеток строго по нейтрали стрелка прибора отклоняться не будет.

Диагностика и ремонт якоря стартера в критериях гаража Стартер представляет собой узел, без которого не обходится ни одно тс, так как этот элемент является одним из главных в системе зажигания. Как понятно, нескончаемых деталей не бывает и временами стартерный узел имеет свойство выходить из строя. Как проверить и отремонтировать батарейку в ключе...

Точность обычных приборов невелика - в лучшем случае 0,5%. Поэтому щетки устанавливают в положение, соответствующее минимальному показанию прибора, и считают, что это нейтраль. Трудность установки щеток на нейтраль заключается в том, что положение нейтрали зависит от положения пластин коллектора.

Очень часто бывает, что нейтраль, найденная для одного положения якоря, сдвигается при его проворачивании. Поэтому определяют положение нейтрали для двух различных положений вала. Если положение нейтрали оказывается различным для различных положений якоря, то следует выставить щетки в среднем положении между двумя отметками. Точность установки щеток на нейтраль зависит от степени прилегания поверхности щетки к коллектору. Поэтому для получения более точного результата при определении нейтрали двигателя предварительно притирают щетки к коллектору.

Полярность щеток определяется одним из следующих способов.

1. К двум точкам коллектора (рис. 7), отстоящим от разноименных щеток на одинаковом расстоянии, присоединяют вольтметр. При подаче возбуждения стрелка вольтметра отклонится в ту или иную сторону. Если стрелка отклонится вправо, то «плюс» находится в точке 1, а «минус» - в точке 2. Ближайшая против направления вращения щетка будет иметь полярность присоединенного зажима прибора.

2. Через обмотку возбуждения пропускают постоянный ток определенной полярности, к якорю подключают вольтметр и приводят якорь во вращение толчком от руки или с помощью механизма. Стрелка вольтметра при этом отклонится. Направление отклонения стрелки укажет полярность щеток.

Измерение сопротивления обмоток двигателя постоянного тока является весьма важным элементам проверки двигателей постоянного тока, так как по результатам измерения судят о состоянии контактных соединений обмоток (паек, болтовых, сварных соединений). Измерение сопротивления обмоток двигателя производят одним из следующих методов: амперметра-вольтметра, одинарного или двойного моста и микроомметром. Необходимо помнить о некоторых особенностях измерений сопротивления обмоток двигателей постоянного тока.

1. Сопротивление последовательной обмотки возбуждения, уравнительной обмотки, обмотки добавочных полюсов невелико (тысячные доли ома), поэтому измерения производят микроомметром или двойным мостом.

2. Сопротивление обмотки якоря измеряют по методу амперметра-вольтметра с использованием специального двухконтактного щупа с пружинами в изоляционной рукоятке (рис. 8). Измерение проводят следующим образом: к пластинам коллектора неподвижного якоря со снятыми щетками поочередно подводят постоянный ток от хорошо заряженной батареи напряжением 4-6 В. Между пластинами, к которым подводится ток, измеряют падение напряжения с помощью милливольтметра. Искомая величина сопротивления одной ветви якоря

Рис. 6. Схема проверки правильности установки щеток на нейтраль