Соотношение неопределенностей гейзенберга кратко. Соотношение неопределённости Гейзенберга

Открытие Вернером Гейзенбергом принципов неопределенности, которое он сделал в 1927 году, стало одним из важнейших достижений науки, сыгравших фундаментальную роль в развитии квантовой механики, а затем и оказавшим влияние на развитие всего современного естествознания.

Традиционное исследование мироздания исходило из установки, что коль все материальные объекты, которые мы можем наблюдать, ведут себя неким определенным образом, то и все остальные, которые мы не можем познавать с помощью ощущений, тоже должны вести себя также. Если же происходит некое возмущение в этом поведении, то оно квалифицируется как парадокс и вызывает недоумение. Такой была реакция естествоиспытателей, когда они проникли в микромир и столкнулись с явлениями, не укладывающимися в традиционную модель миропонимания. Особенно ярко этот феномен проявился в области где рассматривались предметы несоизмеримые по величине с теми, с которыми ученые привыкли иметь дело до этого. Принцип по сути, дал ответ на вопрос, чем микромир отличается от мира привычного нам.

Ньютоновская физика практически игнорировала такое явление, как влияние инструмента познания на сам объект познания, путем воздействия на его В начале 1920-х годов Вернер Гейзенберг поднимает данную проблему и приходит к формуле, в которой описывается степень влияния метода измерения свойств объекта, на сам объект. В результате и был открыт принцип неопределенности Гейзенберга. Математическое отражение он получил в теории соотношения неопределенностей. Категория «неопределенность» в данной концепции обозначала то, что исследователь точно не знает местоположения исследуемой частицы. В своем практическом значении принципы неопределенности Гейзенберга утверждали, что чем точнее по характеристикам, используется прибор для измерения физических свойств предмета, тем будет достигнута меньшая неопределенность наших представлений об этих свойствах. Например, принцип неопределенности Гейзенберга при использовании в исследовании микромира позволял сделать выводы о «нулевой» неопределенности, когда воздействие инструмента на изучаемый объект была ничтожно мала.

В дальнейших исследованиях было установлено, что принцип неопределенности Гейзенберга связывает своим содержанием не только пространственные координаты и скорость. Здесь он просто более наглядно проявляется. На самом деле его влияние присутствует во всех частях системы, которую мы изучаем. Этот вывод позволяет сделать несколько замечаний в отношении действия принципа Гейзенберга. Во-первых, этот принцип предполагает, что установить одинаково точно пространственные параметры объектов невозможно. Во-вторых, это свойство - объективно и не зависит от человека, который проводит измерения.

Эти выводы стали мощным импульсом для развития теорий управления в самых разных областях человеческой деятельности, где главным как правило, выступает пресловутый «человеческий фактор». В этом проявилось общественная значимость открытия Гейзенберга.

Современные научные и околонаучные дискуссии относительно принципов неопределенности, высказывают предположение, что если мол, роль человека в познании микромира ограничена, и он не может активно влиять на нее, то не является ли это свидетельством того, что сознание человека связано неким образом с «Высшим разумом» (теория «Новой эры»). Данные выводы не представляется возможным признать серьезными потому, что в них изначально неверно трактуется сам принцип. По Гейзенбергу, главным в его открытии, является не факт присутствия человека, а именно факт влияния инструмента на предмет исследования.

Принципы Гейзенберга на сегодняшний день являются одним из самых употребляемых методологических инструментов, применяемых в различных областях знаний.

В классической механике состояние материальной точки (классической частицы) определяется заданием значений координат, импульса, энергии и т. д. Перечисленные величины называются динамическими переменными. Строго говоря, микрообъекту не могут быть приписаны указанные динамические переменные. Однако информацию о микрочастицах мы получаем, наблюдая их взаимодействие с приборами, представляющими собой макроскопические тела. Поэтому результаты измерений поневоле выражаются в терминах, разработанных для характеристики макротел, т. е. через значения динамических переменных. В соответствии с этим измеренные значения динамических переменных приписываются микрочастицам. Например, говорят о состоянии электрона, в котором он имеет такое-то значение энергии, и т. д.

Своеобразие свойств микрочастиц проявляется в том, что не для всех переменных получаются при измерениях определенные значения. Так, например, электрон (и любая другая микрочастица) не может иметь, одновременно точных значений координаты х и компоненты импульса . Неопределенности значений удовлетворяют соотношению

( - постоянная Планка). Из (20.1) следует, что чем меньше неопределенность одной из переменных или тем больше неопределенность другой. Возможно такое состояние, в котором одна из переменных имеет точное значение, другая переменная при этом оказывается совершенно неопределенной (ее неопределенность равна бесконечности).

Соотношение, аналогичное (20.1), имеет место для у и , для z и , а также для ряда других пар величин (в классической механике такие пары величин называются канонически сопряженными). Обозначив канонически сопряженные величины буквами А и В, можно написать

(20.2)

Соотношение (20.2) называется соотношением неопределенности для величин А и Б. Это соотношение открыл В. Гейзенберг в 1927 г.

Утверждение о том, что произведение неопределенностей значений двух сопряженных переменных не может быть по порядку величины меньше постоянной Планка , называется принципом неопределенности Гейзенберга.

Энергия и время являются канонически сопряженными величинами. Поэтому для них также справедливо соотношение неопределенности:

Это соотношение означает, что определение энергии с точностью должно занять интервал времени, равный но меньшей мере .

Соотношение неопределенности было установлено из рассмотрения, в частности, следующего примера. Попытаемся определить значение координаты х свободно летящей микрочастицы, поставив на ее пути щель ширины , расположенную перпендикулярно к направлению движения частицы (рис. 20.1). До прохождения частицы через щель ее составляющая импульса имеет точное значение, равное нулю (щель по условию перпендикулярна к импульсу), так что , зато координата х частицы является совершенно неопределенной. В момент прохождения частицы через щель положение меняется. Вместо полной неопределенности координаты х появляется неопределенность , но это достигается ценой утраты определенности значения Действительно, вследствие дифракции имеется некоторая вероятность того, что частица будет двигаться в пределах угла , где - угол, соответствующий первому дифракционному минимуму (максимумами высших порядков можно пренебречь, поскольку их интенсивность мала по сравнению с интенсивностью центрального максимума). Таким образом, появляется неопределенность:

Краю центрального дифракционного максимума (первому минимуму), получающемуся от щели ширины соответствует угол для которого

{см. формулу (129.5) 2-го тома). Следовательно,

Отсюда с учетом (18.1) получается соотношение

согласующееся с (20.1).

Иногда соотношение неопределенности получает следующее толкование: в действительности у микрочастицы имеются точные значения координат и импульсов, однако ощутимое для такой частицы воздействие измерительного прибора не позволяет точно определить эти значения. Такое толкование является совершенно неправильным. Оно противоречит наблюдаемым на опыте явлениям дифракции микрочастиц.

Соотношение неопределенности указывает, в какой мере можно пользоваться понятиями классической механики применительно к микрочастицам, в частности, с какой степенью точности можно говорить о траекториях микрочастиц. Движение по траектории характеризуется вполне определенными значениями координат и скорости в каждый момент времени. Подставив в (20.1) вместо произведение тих, получим соотношение

Мы видим, что чем больше масса частицы, тем меньше неопределенности ее координаты и скорости и, следовательно, с тем большей точностью применимо понятие траектории. Уже для макрочастицы размером всего 1 мкм неопределенности значений оказываются за пределами точности измерения этих величин, так что практически ее движение будет неотличимо от движения по траектории.

При определенных условиях даже движение микрочастицы может приближенно рассматриваться как происходящее по траектории. В качестве примера рассмотрим движение электрона в электронно-лучевой трубке. Оценим неопределенности координаты и импульса электрона для этого случая. Пусть след электронного пучка на экране имеет радиус порядка , длина трубки порядка 10 см (рис. 20.2). Тогда Импульс электрона связан с ускоряющим напряжением U соотношением

Отсюда При напряжении . В энергия электрона равна Оценим величину импульса:

Следовательно, , наконец, согласно соотношению (20.1):

Полученный результат указывает на то, что движение электрона в электронно-лучевой трубке практически неотличимо от движения по траектории.

Соотношение неопределенности является одним из фундаментальных положений квантовой механики. Одного этого соотношения достаточно, чтобы получить ряд важных результатов, В частности, оно позволяет объяснить тот факт, что электрон не падает на ядро атома, а также оценить размеры простейшего атома и минимальную возможную энергию электрона в таком атоме.

Если бы электрон упал на точечное ядро, его координаты и импульс приняли бы определенные (нулевые) значения, что несовместимо с принципом неопределенности. Этот принцип требует, чтобы неопределенность координаты электрона и неопределенность импульса были связаны условием (20.1), Формально энергия была бы минимальна при Поэтому, производя оценку наименьшей возможной энергии, нужно положить . Подставив эти значения в (20.1), получим соотношение

Соотношения неопределённости Гейзенберга

В классической механике состояние материальной точки (классической частицы определяется заданием значений координат, импульса, энергии и т.д.). Микрообъекту не могут быть приписаны перечисленные переменные. Однако, информацию о микрочастицах мы получаем, наблюдая их взаимодействие с приборами представляющие собой макроскопические тела. Поэтому результаты измерений поневоле выражаются в терминах, разработанных для характеристики макротел, следовательно, приписываются и микрочастицам. Например, говорят о состоянии электрона, в котором он имеет какое-то значение энергии или импульса.

Своеобразие свойств микрочастиц проявляется в том, что не для всех переменных получается при измерениях точные значения. Так, например, электрон (и любая другая микрочастица) не может одновременно иметь точных значений координаты х и компоненты импульса Р х. Неопределённость значений x и Р х удовлетворяет соотношению:

Из уравнения (1) следует, что чем меньше неопределённость одной из переменных, тем больше неопределённость другой. Возможно, такое состояние, в котором одна из переменных имеет точное значение, другая переменная при этом оказывается совершенной неопределенной (ее неопределённость равна бесконечности).

– классические в механике пары называются

канонически сопряженными

т.е.

Произведение неопределённостей значений двух сопряженных переменных не может быть по порядку величины меньше постоянной Планка .

Гейзенберг (1901-1976 гг.), немец, Нобелевский лауреат 1932 г., в 1927 г. сформулировал принцип неопределенности, ограничивающий применение к микрообъектам классических понятий и представлений:

– это соотношение означает, что определение энергии с точностью до E должно занять интервал времени, равный по меньшей мере

Попытаемся определить значение координаты х свободно летящей микрочастицы, поставив на ее пути щель шириной х, расположенную перпендикулярно к направлению движения частицы. До прохождения через щель, Р х =0 Þ , зато координата х является совершенно неопределенной. В момент прохождения щель положение меняется. Вместо полной неопределенности х появляется неопределенность х, но это достигается ценой утраты определенности значения P х. Вследствие дифракции появляется некоторая вероятность того, что частица будет двигаться в пределах угла 2j, j – угол, соответствующий первому дифракционному min (интенсивностью высших порядков можно пренебречь).

Краю центрального дифракционного max (первому min) получающемуся от щели шириной х, соответствует угол j, для которого

Соотношение неопределённости показывает в какой мере можно пользоваться понятиями классической механики, в частности, с какой степенью точности можно говорить о траектории микрочастиц.

Подставим вместо

Мы видим, что чем больше масса частицы, тем меньше неопределённости её координаты и скорости, следовательно, c тем большей точностью применимо для неё понятие траектории.

Соотношение неопределённости является одним из фундаментальных положений квантовой механики.

В частности, оно позволяет объяснить тот факт, что электрон не падает на ядро атома, а также оценить размеры простейшего атома и минимальную возможную энергию электрона в таком атоме.

Если бы электрон упал на ядро, его координаты и импульс приняли бы определенные (нулевые) значения, что несовместимо с принципом неопределенности (доказательство от обратного).

Пример Хотя соотношение неопределённости распространяется на частицы любых масс, для макрочастиц оно принципиального значения не имеет. Например, для тела m=1 г., движущегося с =600 м/с, при определении скорости с очень высокой точностью 10 -6 %, неопределенность координаты:

Т.е. очень и очень мала.

Для электрона движущегося с (что соответствует его энергии в 1эВ).

При определении скорости с точностью до 20%

Это очень большая неопределенность, т.к. расстояние между узлами кристаллической решетки твердых тел порядка единиц ангстрем.

Таким образом, любая квантовая система не может находится в состояниях, в которых координаты ее центра инерции (для частицы – координаты частицы) и импульс одновременно принимает вполне определенные значения.

В квантовой механике теряет смысл понятие траектории, т.к. если мы точно определим значения координат, то ничего не можем сказать о направлении ее движения (т.е. импульса), и наоборот.

Вообще говоря, принцип неопределенности справедлив как для макро-, так и для микрообъектов. Однако для макрообъектов значения неопределенности, оказывается пренебрежимо малыми по отношению к значениям самих этих величин, тогда как в микромире эти неопределённости оказываются существенными.

Принцип неопределённости Гейзенбе́рга (или Га́йзенберга ) - в квантовой механике так называют принцип, дающий нижний (ненулевой) предел для произведения дисперсий величин, характеризующих состояние системы.

Обычно принцип неопределённости иллюстрируется следующим образом. Рассмотрим ансамбль невзаимодействующих эквивалентных частиц, приготовленных в определённом состоянии, для каждой из которых измеряется либо координата q , либо импульс p . При этом результаты измерений будут случайными величинами, дисперсии которых будут удовлетворять соотношению неопределённостей . Отметим, что, хотя нас интересуют одновременные значения координаты и импульса в данном квантовом состоянии , измерять их у одной и той же частицы нельзя, так как любое измерение изменит её состояние.

В общем смысле, соотношение неопределённости возникает между любыми переменными состояния, определяемыми некоммутирующими операторами. Это - один из краеугольных камней квантовой механики, который был открыт Вернером Гейзенбергом в г.

Краткий обзор

Принцип неопределённости в квантовой механике иногда объясняется таким образом, что измерение координаты обязательно влияет на импульс частицы. По-видимому, сам Гейзенберг предложил это объяснение, по крайней мере первоначально. То, что влияние измерения на импульс несущественно, может быть показано следующим образом: рассмотрим ансамбль (невзаимодействующих) частиц, приготовленных в одном и том же состоянии; для каждой частицы в ансамбле мы измеряем либо импульс, либо координату, но не обе величины. В результате измерения мы получим, что значения распределены с некоторой вероятностью, и для дисперсий d p и d q верно отношение неопределённости.

Отношения неопределённости Гейзенберга - это теоретический предел точности любых измерений. Они справедливы для так называемых идеальных измерений, иногда называемых измерениями фон Неймана . Они тем более справедливы для неидеальных измерений или измерений Ландау .

Соответственно, любая частица (в общем смысле, например несущая дискретный электрический заряд) не может быть описана одновременно как «классическая точечная частица» и как волна . (Сам факт того, что какое-либо из этих описаний может быть справедливо, по крайней мере в отдельных случаях, называют корпускулярно-волновым дуализмом). Принцип неопределённости, в виде, первоначально предложенном Гейзенбергом, верен в случае, когда ни одно из этих двух описаний не является полностью и исключительно подходящим, например частица в коробке с определённым значением энергии; то есть для систем, которые не характеризуются ни каким-либо определённым «положением» (какое-либо определённое значение расстояния от потенциальной стенки), ни определённым значением импульса (включая его направление).

Существует точная, количественная аналогия между отношениями неопределённости Гейзенберга и свойствами волн или сигналов . Рассмотрим переменный во времени сигнал, например звуковую волну . Бессмысленно говорить о частотном спектре сигнала в какой-либо момент времени. Для точного определения частоты необходимо наблюдать за сигналом в течение некоторого времени, таким образом теряя точность определения времени. Другими словами, звук не может иметь и точного значения времени, как например короткий импульс, и точного значения частоты, как, например, в непрерывном чистом тоне. Временно́е положение и частота волны во времени походят на координату и импульс частицы в пространстве.

Определение

Если приготовлены несколько идентичных копий системы в данном состоянии, то измеренные значения координаты и импульса будут подчиняться определённому распределению вероятности - это фундаментальный постулат квантовой механики. Измеряя величину стандартного отклонения Δx координаты и стандартного отклонения Δp импульса, мы найдем что:

,

где - постоянная Дирака . В некоторых случаях «неопределённость» переменной определяется как наименьшая ширина диапазона, который содержит 50 % значений, что, в случае нормального распределения переменных, приводит для произведения неопределённостей к большей нижней границе . Отметьте, что это неравенство даёт несколько возможностей - состояние может быть таким, что x может быть измерен с высокой точностью, но тогда p будет известен только приблизительно, или наоборот p может быть определён точно, в то время как x - нет. Во всех же других состояниях, и x и p могут быть измерены с «разумной» (но не произвольно высокой) точностью.

В повседневной жизни мы обычно не наблюдаем неопределённость потому, что значение чрезвычайно мало.

Другие характеристики

Было развито множество дополнительных характеристик, включая описанные ниже:

Выражение конечного доступного количества информации Фишера

Принцип неопределённости альтернативно выводится как выражение неравенства Крамера - Рао в классической теории измерений. В случае когда измеряется положение частицы. Средне-квадратичный импульс частицы входит в неравенство как информация Фишера . См. также полная физическая информация.

Обобщённый принцип неопределённости

Принцип неопределённости не относится только к координате и импульсу. В своей общей форме, он применим к каждой паре сопряжённых переменных . В общем случае, и в отличие от случая координаты и импульса, обсуждённого выше, нижняя граница произведения неопределённостей двух сопряжённых переменных зависит от состояния системы. Принцип неопределённости становится тогда теоремой в теории операторов, которую мы здесь приведем

Следовательно, верна следующая общая форма принципа неопределённости , впервые выведенная в г. Говардом Перси Робертсоном и (независимо) Эрвином Шрёдингером :

Это неравенство называют соотношением Робертсона - Шрёдингера .

Оператор A B B A называют коммутатором A и B и обозначают как [A ,B ] . Он определен для тех x , для которых определены оба A B x и B A x .

Из соотношения Робертсона - Шрёдингера немедленно следует соотношение неопределённости Гейзенберга :

Предположим, A и B - две физические величины, которые связаны с самосопряжёнными операторами. Если A B ψ и B A ψ определены, тогда:

,

Среднее значение оператора величины X в состоянии ψ системы, и

Возможно также существование двух некоммутирующих самосопряжённых операторов A и B , которые имеют один и тот же собственный вектор ψ . В этом случае ψ представляет собой чистое состояние, которое является одновременно измеримым для A и B .

Общие наблюдаемые переменные, которые повинуются принципу неопределённости

Предыдущие математические результаты показывают, как найти отношения неопределённости между физическими переменными, а именно, определить значения пар переменных A и B , коммутатор которых имеет определённые аналитические свойства.

  • самое известное отношение неопределённости - между координатой и импульсом частицы в пространстве:
  • отношение неопределённости между двумя ортогональными компонентами оператора полного углового момента частицы:
где i , j , k различны и J i обозначает угловой момент вдоль оси x i .
  • следующее отношение неопределённости между энергией и временем часто представляется в учебниках физики, хотя его интерпретация требует осторожности, так как не существует оператора, представляющего время:
. Однако, при условие периодичности несущественно и принцип неопределенности принимает привычный вид: .

Интерпретации

Альберту Эйнштейну принцип неопределённости не очень понравился, и он бросил вызов Нильсу Бору и Вернеру Гейзенбергу известным мысленным экспериментом (См. дебаты Бор-Эйнштейн для подробной информации): заполним коробку радиоактивным материалом, который испускает радиацию случайным образом. Коробка имеет открытый затвор, который немедленно после заполнения закрывается при помощи часов в определённый момент времени, позволяя уйти небольшому количеству радиации. Таким образом время уже точно известно. Мы все ещё хотим точно измерить сопряжённую переменную энергии. Эйнштейн предложил сделать это, взвешивая коробку до и после. Эквивалентность между массой и энергией по специальной теории относительности позволит точно определить, сколько энергии осталось в коробке. Бор возразил следующим образом: если энергия уйдет, тогда полегчавшая коробка сдвинется немного на весах. Это изменит положение часов. Таким образом часы отклоняются от нашей неподвижной системы отсчёта , и по специальной теории относительности, их измерение времени будет отличаться от нашего, приводя к некоторому неизбежному значению ошибки. Детальный анализ показывает, что неточность правильно дается соотношением Гейзенберга.

В пределах широко, но не универсально принятой Копенгагенской интерпретации квантовой механики, принцип неопределённости принят на элементарном уровне. Физическая вселенная существует не в детерминистичной форме, а скорее как набор вероятностей, или возможностей. Например, картина (распределение вероятности) произведённая миллионами фотонов, дифрагирующими через щель может быть вычислена при помощи квантовой механики, но точный путь каждого фотона не может быть предсказан никаким известным методом. Копенгагенская интерпретация считает, что это не может быть предсказано вообще никаким методом.

Именно эту интерпретацию Эйнштейн подвергал сомнению, когда писал Максу Борну : «я уверен, что Бог не бросает кости» (Die Theorie liefert viel. Aber ich bin überzeugt, dass der Alte nicht würfelt ) . Нильс Бор , который был одним из авторов Копенгагенской интерпретации, ответил: «Эйнштейн, не говорите Богу, что делать».

Эйнштейн был убеждён, что эта интерпретация была ошибочной. Его рассуждение основывалось на том, что все уже известные распределения вероятности являлись результатом детерминированных событий. Распределение подбрасываемой монеты или катящейся кости может быть описано распределением вероятности (50 % орёл, 50 % решка). Но это не означает, что их физические движения непредсказуемы. Обычная механика может вычислить точно, как каждая монета приземлится, если силы, действующие на неё будут известны, а орлы/решки будут все ещё распределяться случайно (при случайных начальных силах).

Эйнштейн предполагал, что существуют скрытые переменные в квантовой механике, которые лежат в основе наблюдаемых вероятностей.

Ни Эйнштейн, ни кто-либо ещё с тех пор не смог построить удовлетворительную теорию скрытых переменных, и неравенство Белла иллюстрирует некоторые очень тернистые пути в попытке сделать это. Хотя поведение индивидуальной частицы случайно, оно также скоррелировано с поведением других частиц. Поэтому, если принцип неопределённости - результат некоторого детерминированного процесса, то получается, что частицы на больших расстояниях должны немедленно передавать информацию друг другу, чтобы гарантировать корреляции в своём поведении.

Принцип неопределённости в популярной культуре

Принцип неопределённости часто неправильно понимается или приводится в популярной прессе. Одна частая неправильная формулировка в том, что наблюдение события изменяет само событие. Вообще говоря, это не имеет отношения к принципу неопределённости. Почти любой линейный оператор изменяет вектор, на котором он действует (то есть почти любое наблюдение изменяет состояние), но для коммутативных операторов никаких ограничений на возможный разброс значений нет (). Например, проекции импульса на оси c и y можно измерить вместе сколь угодно точно, хотя каждое измерение изменяет состояние системы. Кроме того, в принципе неопределённости речь идёт о параллельном измерении величин для нескольких систем, находящихся в одном состоянии, а не о последовательных взаимодействиях с одной и той же системой.

Другие (также вводящие в заблуждение) аналогии с макроскопическими эффектами были предложены для объяснения принципа неопределённости: одна из них рассматривает придавливание арбузной семечки пальцем. Эффект известен - нельзя предсказать, как быстро или куда семечка исчезнет. Этот случайный результат базируется полностью на хаотичности, которую можно объяснить в простых классических терминах.

В некоторых научно-фантастических рассказах устройство для преодоления принципа неопределённости называют компенсатором Гейзенберга, наиболее известное используется на звездолёте «Энтерпрайз» из фантастического телесериала Звёздный Путь в телепортаторе. Однако, неизвестно, что означает «преодоление принципа неопределённости». На одной из пресс-конференций продюсера сериала спросили «Как работает компенсатор Гейзенберга?», на что он ответил «Спасибо, хорошо!»

Научный юмор

Необычная природа принципа неопределённости Гейзенберга и его запоминающееся название, сделали его источником нескольких шуток. Говорят, что популярной надписью на стенах физического факультета университетских городков является: «Здесь, возможно, был Гейзенберг».

В другой шутке о принципе неопределённости, квантового физика останавливает на шоссе полицейский и спрашивает: «Вы знаете, как быстро Вы ехали, сэр?». На что физик отвечает: «Нет, но я точно знаю, где я!»

Литература

Использованная литература

Журнальные статьи

  • W. Heisenberg, Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik , Zeitschrift für Physik, 43 1927, pp 172–198. English translation: J. A. Wheeler and H. Zurek, Quantum Theory and Measurement Princeton Univ. Press, 1983, pp. 62–84.
  • Л. И. Мандельштам , И. Е. Тамм «Соотношение неопределённости энергия-время в нерелятивистской квантовой механике », Изв. Акад. Наук СССР (сер. физ.) 9 , 122-128 (1945).
  • G. Folland, A. Sitaram, The Uncertainty Principle: A Mathematical Survey , Journal of Fourier Analysis and Applications, 1997 pp 207–238.

О соотношения неопределенностей Шредингера

  • Шредингер Э. К принципу неопределенностей Гейзенберга. Избранные труды по квантовой механике. М.: Наука, 1976. стр.210-217.
  • Додонов В. В., Манько В. И. Обобщения соотношений неопределенностей в квантовой механике. Труды ФИАН СССР. 1987. Том 183 стр.5-70.
  • Суханов А. Д. Соотношения неопределенностей Шредингера и физические особенности коррелированно-когерентных состояний, Теор. Мат. Физ. Том.132. N.3. (2002) с.449-468.
  • Суханов А. Д. Соотношение неопределенностей Шредингера для квантового осциллятора в термостате. Теор. Мат. Физ. Том.148. N.2. (2006) с.295-308.

Концепция неопределённости квантовой механики


Понятия и принципы классической физики оказались неприменимыми не только к изучению свойств пространства и времени, но еще в большей мере к исследованию физических свойств мельчайших частиц материи или микрообъектов, таких, как электроны, протоны, нейтроны, атомы и подобные им объекты, которые часто называют атомными частицами. Они образуют невидимый нами микромир, и поэтому свойства объектов этого мира совершенно не похожи на свойства объектов привычного нам макромира. Планеты, звезды, кометы, квазары и другие небесные тела образуют мегамир.

Переходя к изучению свойств и закономерностей объектов микромира, необходимо сразу же отказаться от привычных представлений, которые навязаны нам предметами и явлениями окружающего нас макромира. Конечно, сделать это нелегко, ибо весь наш опыт и представления возникли и опираются на наблюдения обычных тел, да и сами мы являемся макрообъектами. Поэтому требуются немалые усилия, чтобы преодолеть наш прежний опыт при изучении микрообъектов. Для описания поведения микрообъектов широко используются абстракции и математические методы исследования.

В первое время физики были поражены необычными свойствами тех мельчайших частиц материи, которые они изучали в микромире. Попытки описать, а тем более объяснить свойства микрочастиц с помощью понятий и принципов классической физики потерпели явную неудачу. Поиски новых понятий и методов объяснения в конце концов привели к возникновению новой квантовой механики, в окончательное построению и обоснование которой значительный вклад внесли Э. Шредингер (1887-1961), В. Гейзенберг (1901-1976), М. Борн (1882-1970). В самом начале эта механика была названа волновой в противоположность обычной механики, которая рассматривает свои объекты как состоящие из корпускул, или частиц. В дальнейшем для механики микрообъектов утвердилось название квантовой механики.

4.1. Дуализм волны и частицы в микрообъектах.

Обсуждение необычных свойств микрообъектов начнем с описания экспериментов, посредством которых впервые было установлено, что эти объекты в одних опытах обнаруживают себя как материальные частицы, или корпускулы, в других - как волны. Для сравнения сошлемся на историю изучения оптических явлений. Известно, что Ньютон рассматривал свет в виде мельчайших корпускул, но после открытия явлений интерференции и дифракции возобладала волновая теор ия света, согласно которой свет представлялся в виде волнообразного движения, возникающего в особой среде, названной эфиром. В начале нашего столетия открытие явления фотоэффекта способствовало признанию корпускулярной природы света: фотоны как раз и представляли такие световые корпускулы. Еще раньше (1900 г.) представление о дискретных порциях (квантах) энерги и было использовано немецким физиком Максом

Планком (1858-1947) для объяснения процессов поглощения и излучения энерги и. Впоследствии А. Эйштейн показал, что свет не только поглощается и излучается, но и распространяется квантами. На этой основе он сумел объяснить явление фотоэффекта, состоящего в вырывании квантами света, названными фотонами, электронов с поверхности тела. Энерги я Е фотона пропорциональна частоте: Е = hv , где Е - энерги я, v - частота, h - постоянная Планка.

С другой стороны, такие световые явления, как интерференция и дифракция, еще в прошлом веке объяснялись с помощью волновых представлений. В теор ии Максвелла свет рассматривался как особый вид электромагнитных волн. Таким образом, классические представления о свете как волновом процессе были дополнены новыми взглядами, рассматривающими его как поток световых корпускул, квантов или фотонов. В результате возник так называемый корпускулярно-волновой дуализм, согласно которому одни оптические явления (фотоэффект) объяснялись с помощью корпускулярных представлений, другие (интерференция и дифракция) - волновых взглядов. С точки зрения обыденного сознания трудно было представить свет как поток частиц - фотонов, но не менее привычным раньше казалось сводить свет к волновому процессу. Еще менее ясным казалось вообразить свет в виде своеобразного создания, объединяющего свойства корпускул и волн. Тем не менее, признание корпускулярно-волнового характера света во многом способствовало прогрессу физической науки.

Новый радикальный шаг в развитии физики был связан с распространением корпускулярно-волнового дуализма на мельчайшие частицы вещества - электроны, протоны, нейтроны и другие микрообъекты. В классической физике вещество всегда считалось состоящим из частиц и потому волновые свойства казались явно чуждыми ему. Тем удивительным оказалось открытие о наличии у микрочастиц волновых свойств, первую гипотез у о существовании которых высказал в 1924 г. известный французский ученый Луи де Бройль (1875-1960). Экспериментально эта гипотез а была подтверждена в 1927 г. американскими физиками К. Дэвиссоном и Л. Джермером, впервые обнаружившими явление дифракции электронов на кристалле никеля, т. е. типично волновую картину.

Гипотез а де Бройля:

Каждой материальной частице независимо от ее природы следует поставить в соответствие волну, длина которой обратно пропорциональна импульсу частицы: λ = h / p , где h - постоянная Планка, р - импульс частицы, равный произведению ее массы на скорость.

Таким образом, было установлено, что не только фотоны, т. е. кванты света, но и материальные, вещественные частицы, такие, как электрон, протон, нейтрон и другие, обладают двойственными свойствами. Следовательно, все микрообъекты обладают как корпускулярными, так и волновыми свойствами. Это явление, названное впоследствии дуализмом волны и частицы, совершенно не укладывалось в рамкиклассическойфизики,объекты изучения которой могли обладать либо корпускулярными, либо волновыми свойствами.В отличие от этого микрообъекты обладают одновременно как корпускулярными, так и волновыми свойствами. Например, в одних экспериментах электрон обнаруживал типично корпускулярные свойства, а в других - волновые свойства, так что его можно было назвать как частицей, так и волной. Тот факт, что поток электронов представляет собой поток мельчайших частиц вещества, знали и раньше, но то, что этот поток обнаруживает волновые свойства, образуя типичные явления интерференции и дифракции, подобно волнам света, звука и жидкости, оказалось полной неожиданностью для физиков.

Для лучшего понимания всех дальнейших вопросов проделаем такой мысленный эксперимент. Пусть мы имеем устройство, которое дает поток электронов, например, электронную пушку. Поставим перед ней тонкую металлическую пластинку с двумя дырочками, через которые могут пролетать электроны. Прохождение электронов через эти отверстия регистрируется специальным прибором, например, счетчиком Гейгера или электронным умножителем, подсоединенным к динамику. Если подсчитать количество электронов, прошедших отдельно через первое отверстие, когда второе закрыто, и через второе, когда первое закрыто, а потом через оба отверстия, то окажется, что сумма вероятностей прохождения электронов, когда открыто одно из отверстий, не будет равна вероятности их прохождения при двух открытых отверстиях:

где Р - вероятность прохождения электронов при двух открытых отверстиях, Р1- вероятность прохождения электронов при открытии первого отверстия, Р2- вероятность при открытии второго отверстия.

Это неравенство свидетельствует о наличии интерференции при прохождении электронов через оба отверстия. Интересно отметить, что если на прошедшие электроны воздействовать светом, то интерференция исчезает. Следовательно, фотоны, из которых состоит свет, изменяют характер движения электронов.

Таким образом, перед нами совершенно новое явление, заключающееся в том, что всякая попытка наблюдения микрообъектов сопровождается изменением характера их движения. Поэтому никакое наблюдение микрообъектов независимо от приборов и измерительных средств субъекта в мире мельчайших частиц материи невозможно. Именно это обстоятельство вызывает обычно возражение со стороны тех, кто не видит различия между микро- и макрообъектами. В макромире, в котором мы живем, мы не замечаем влияния приборов наблюдения и измерения на макротела, которые изучаем, поскольку практически такое влияние чрезвычайно мало и поэтому им можно пренебречь. В этом мире как приборы и инструменты, так и сами изучаемые тела характеризуются тем же порядком величин. Совершенно иначе обстоит дело в микромире, где макроприбор не может не влиять на микрообъекты. Однако подобное воздействие не фигурирует в классической механике.

Другое принципиальное отличие микрообъектов от макрообъектов заключается в наличии у первых корпускулярно-волновых свойств, но объединение таких противоречивых свойств у макрообъектов начисто отвергается классической физикой. Хотя классическая физика и признает существование вещества и поля, но отрицает существование объектов, обладающих корпускулярными свойствами, присущими веществу, и одновременно волновыми свойствами, которые характерны для физических полей (акустических, оптических или электромагнитных).

В силу такой кажущейся противоречивости корпускулярных и волновых свойств датский физик Нильс Бор выдвинул принцип дополнительности для квантово-механического микрообъектов, согласно которому корпускулярная картина такого описания должна быть дополненаволновымальтернативным описанием. Действительно, в одних экспериментах микрочастицы, например электроны, ведут себя как типичные корпускулы, в других - как волновые структуры. Нельзя, конечно, думать, что волновые и корпускулярные свойства у микрообъектов возникают вследствие соответствующих экспериментов. На самом деле такие свойства при этих экспериментах только обнаруживаются. Мы приходим, таким образом, к выводу, что дуализм микрообъектов, заключающийся в объединении в одном микрообъекте одновременно волновых и корпускулярных свойств, представляетсобойфундаментальную характеристику объектов микромира. Опираясь именно на эту характеристику, мы можем понять и объяснить другие особенности микромира.

4.2. Вероятностный характер предсказаний квантовой Механике.

Принципиальное отличие квантовой механики от классической состоит также в том, что ее предсказания всегда имеют вероятностный характер. Это означает, что мы не можем точно предсказать, в какое именно место попадает, например, электрон в рассмотренном выше эксперименте, какие бы совершенные средства наблюдения и измерения ни использовали. Можно оценить лишь его шансы попасть в определенное место, а следовательно, применить для этого понятия и методы теор ии вероятностей, которая служит для анализа неопределенных ситуаций. Подчеркивая это "очень важное различие между классической и квантовой механикой", Р. Фейнман указывает, что "мы не умеем предсказывать, что должно было бы случиться в данных обстоятельствах". Мало того, добавляет он, мы уверены, что это немыслимо:

единственное, что поддается предвычислению, - это вероятность различных событий. Приходится признать, что мы изменили нашим прежним идеалам понимания природы. Может быть, это шаг назад, но никто не научил нас, как избежать его!

Идеалом классической механики было стремление к точному и достоверному предсказанию изучаемых явлений и событий. Действительно, если полностью заданы положение и скорость движения механической системы в данный момент времени, то уравнения механики позволяют с достоверностью вычислить координаты и скорость ее движения в любой заданный момент времени в будущем или прошлом. В самом деле, небесная механика, опираясь на этот принцип, дает на много лет вперед точные и достоверные прогно зы о солнечных и лунных затмениях, так же как и о прошлых затмениях. Отсюда следует, что при таких прогно зах никак не учитывается изменение событий во времени, но самое главное состоит в том, что классическая механика абстрагируется (или отвлекается) от многих усложняющих факторов. Она, например, рассматривает планеты, движущиеся вокруг Солнца, как материальные точки, поскольку расстояния между ними гораздо больше, чем размеры самих планет. Поэтому для предсказания движения планет вполне допустимо рассматривать их как такие точки, т.е. геометрические точки, в которых сконцентрирована вся масса планет. Мы не говорим уж о том, что для определения положения и скорости их движения можно отвлекаться от многих других факторов, например, от воздействия других систем в Галактике, движения самой Галактики и т.п. Благодаря такому I упрощению реальной картины, ее схематизации возможны точные предсказания о движении небесных тел.

Ничего подобного не имеется в мире мельчайших частиц материи, о свойствах которых мы можем судить лишь косвенно по показаниям наших макроскопических приборов. Поведение микрообъектов совершенно не похоже на поведение окружающих нас макротел, изнаблюденияиизучениякоторыхнакапливаетсянаш опыт. К сожалению, этот опыт нельзя использовать при изучении микрообъектов, потому что и сами их размеры не сравнимы с размерами макротел, и силы взаимодействия, существующие в микромире, имеют совершенно другой, более сложный характер. Вот почему явления, происходящие в микромире, трудно поддаются пониманию и людьми, впервые знакомящимися с ними, и самими учеными, многие годы потратившими на их изучение. Немалое значение здесь имеет особый принцип ограничения или запрета, который мы обсудим ниже.

4.3. Принцип неопределённости в квантовой механике.

Этот принцип впервые сформулировал выдающийся немецкий физик Вернер Гейзенберг (1901-1976) в виде соотношения неточностей при определении сопряженных величин в квантовой механике, который теперь обычно называют принципом неопределенности. Суть его заключается в следующем: если мы стремимся определить значение одной из сопряженных величин в квантово-механическом описании, например, координаты х, то значение другой величины, а именно скорости или скорее импульса р = mv , нельзя определить с такой же

точностью. Иначе говоря, чем точнее определяется одна из сопряженных величин, тем менее точной оказывается другая величина. Это соотношение неточностей, или принцип неопределенности, выражается следующей формулой:

где х - обозначает координату, р - импульс, h - постоянную Планка, а Δ - приращение величины.

Таким образом, принцип неопределенности постул ирует:

Невозможно с одинаковой точностью определить и положение, и импульс микрочастицы. Произведение их неточностей не должно превышать постоянную Планка.

На практике, конечно, неточности измерения бывают значительно больше, чем тот минимум, который предписывает принцип неопределенности, но речь идет о принципиальной стороне дела. Границы, которые устанавливаются этим принципом, не могут быть преодолены путем совершенствования средств измерения. Поэтому принцип неопределенности, по крайней мере в настоящее время, считается фундаментальным положением квантовой механики и неявно фигурирует в ней во всех рассуждениях. Теор етически не исключается возможность отклонения этого принципа и соответственно изменения связанных с ним законов квантовой механики, но в настоящее время он считается общепризнанным.

Из принципа неопределенности непосредственно следует, что вполне возможно осуществить эксперимент, с помощью которого можно с большой точностью определить положение микрочастицы, но в таком случае ее импульс будет определен неточно. Наоборот, если импульс будет определен с возможной степенью точности, тогда ее положение станет известным недостаточно точно.

В квантовой механике любое состояние системы описывается с помощью так называемой "волновой функции", но в отличие от классической механики эта функция определяет параметры ее будущего состояния не достоверно, а лишь с той или иной степенью вероятности. Это означает, что для того или иного параметра системы волновая функция дает лишь вероятностные предсказания. Например, будущее положение какой-либо частицы системы будет определено лишь в некотором интервале значений, точнее говоря, для нее будет известно лишь вероятностное распределение значений.

Таким образом, квантовая теор ия фундаментально отличается от классической тем, что ее предсказания имеют лишь вероятностный характер и потому она не обеспечивает точных предсказаний, к каким мы привыкли в классической механике. Именно эта неопределенность и неточность ее предсказаний больше всего вызывает споры среди ученых, некоторые из которых стали в связи с этим говорить об индетерминизме квантовой механики. (Подробнее об этом см. следующую главу). Отметим, что представители прежней, классической физики были убеждены, что по мере развития науки и совершенствования измерительной техники законы науки станут все более точными и достоверными. Поэтому они верили, что никакого предела для точности предсказаний не существует. Принцип неопределенности, лежащий в основе квантовой механики, в корне подорвал эту веру.

4.4. Философские выводы из квантовой механики.

Принцип неопределенности, как нетрудно заметить, тесно связан с такой фундаментальной проблемой научного познания, как взаимодействие объекта и субъекта, которая имеет философский характер.

Что нового дает квантовая механика для ее понимания?

Прежде всего, она ясно показывает, что субъект, т. е. физик, исследующий мир мельчайших частиц материи, не может не воздействовать своими приборами и измерительными устройствами на эти частицы. Классическая физика тоже признавала, что приборы наблюдения и измерения оказывают свое возмущающее влияние на изучаемые процессы, но оно было там настолько незначительно, что им можно было пренебречь. Совсем иное положение мы имеем в квантовой механике, ибо приборы и измерительные устройства, используемые для изучения микрообъектов, являются макрообъектами. Поэтому они вносят такие возмущения в движения микрочастиц, что в результате их будущие состояния нельзя определить вполне точно и достоверно. Стремясь точно определить один параметр, получают неточность в измерении другого параметра.

Важнейший философский вывод из квантовой механики заключается в принципиальной неопределенности результатов измерения и, следовательно, невозможности точного предвидения будущего.

Однако отсюда вовсе не следует, что предсказания в области микромира совершенно невозможны. Речь идет только о том, что воздействия приборов наблюдения и измерения на мельчайшие частицы материи сказываются на их поведении значительно сильнее, чем на поведении макротел. Однако даже в области макромира абсолютно точное предсказание осуществить невозможно. Тем более это касается недоступного нашим чувствам микромира. Неудивительно поэтому, что после возникновения квантовой механики многие заговорили о полной непредсказуемости будущего, о "свободе воли" электрона и подобных ему частиц, о господстве случайности в мире и отсутствии в нем детерминизма. Подробнее об этом мы расскажем в следующей главе.