Кто создал электронный микроскоп. Виды микроскопов: описание, основные характеристики, назначение

ЭЛЕКТРОННЫЙ МИКРОСКОП
прибор, который позволяет получать сильно увеличенное изображение объектов, используя для их освещения электроны. Электронный микроскоп (ЭМ) дает возможность видеть детали, слишком мелкие, чтобы их мог разрешить световой (оптический) микроскоп. ЭМ - один из важнейших приборов для фундаментальных научных исследований строения вещества, особенно в таких областях науки, как биология и физика твердого тела. Существуют три основных вида ЭМ. В 1930-х годах был изобретен обычный просвечивающий электронный микроскоп (ОПЭМ), в 1950-х годах - растровый (сканирующий) электронный микроскоп (РЭМ), а в 1980-х годах - растровый туннельный микроскоп (РТМ). Эти три вида микроскопов дополняют друг друга в исследованиях структур и материалов разных типов.
ОБЫЧНЫЙ ПРОСВЕЧИВАЮЩИЙ ЭЛЕКТРОННЫЙ МИКРОСКОП
ОПЭМ во многом подобен световому микроскопу см. МИКРОСКОП , но только для освещения образцов в нем используется не свет, а пучок электронов. В нем имеются электронный прожектор (см. ниже), ряд конденсорных линз, объективная линза и проекционная система, которая соответствует окуляру, но проецирует действительное изображение на люминесцентный экран или фотографическую пластинку. Источником электронов обычно служит нагреваемый катод из вольфрама или гексаборида лантана. Катод электрически изолирован от остальной части прибора, и электроны ускоряются сильным электрическим полем. Для создания такого поля катод поддерживают под потенциалом порядка -100 000 В относительно других электродов, фокусирующих электроны в узкий пучок. Эта часть прибора называется электронным прожектором (см. ЭЛЕКТРОННАЯ ПУШКА). Поскольку электроны сильно рассеиваются веществом, в колонне микроскопа, где движутся электроны, должен быть вакуум. Здесь поддерживается давление, не превышающее одной миллиардной атмосферного.
Электронная оптика. Электронное изображение формируется электрическими и магнитными полями примерно так же, как световое - оптическими линзами. Принцип действия магнитной линзы поясняется схемой (рис. 1). Магнитное поле, создаваемое витками катушки, по которой проходит ток, действует как собирающая линза, фокусное расстояние которой можно изменять, изменяя ток. Поскольку оптическая сила такой линзы, т.е. способность фокусировать электроны, зависит от напряженности магнитного поля вблизи оси, для ее увеличения желательно сконцентрировать магнитное поле в минимально возможном объеме. Практически это достигается тем, что катушку почти полностью закрывают магнитной "броней" из специального никель-кобальтового сплава, оставляя лишь узкий зазор в ее внутренней части. Создаваемое таким образом магнитное поле может быть в 10-100 тыс. раз более сильным, чем магнитное поле Земли на земной поверхности.

Схема ОПЭМ представлена на рис. 2. Ряд конденсорных линз (показана лишь последняя) фокусирует электронный пучок на образце. Обычно первая из них создает неувеличенное изображение источника электронов, а последняя контролирует размер освещаемого участка на образце. Диафрагмой последней конденсорной линзы определяется ширина пучка в плоскости объекта. Образец помещается в магнитном поле объективной линзы с большой оптической силой - самой важной линзы ОПЭМ, которой определяется предельное возможное разрешение прибора. Аберрации объективной линзы ограничиваются ее диафрагмой так же, как это происходит в фотоаппарате или световом микроскопе. Объективная линза дает увеличенное изображение объекта (обычно с увеличением порядка 100); дополнительное увеличение, вносимое промежуточными и проекционной линзами, лежит в пределах величин от несколько меньшей 10 до несколько большей 1000. Таким образом, увеличение, которое можно получить в современных ОПЭМ, составляет от менее 1000 до ЭЛЕКТРОННЫЙ МИКРОСКОП1 000 000. (При увеличении в миллион раз грейпфрут вырастает до размеров Земли.) Исследуемый объект обычно помещают на очень мелкую сетку, вкладываемую в специальный держатель. Держатель можно механическим или электрическим способом плавно перемещать вверх-вниз и вправо-влево.



Изображение. Контраст в ОПЭМ обусловлен рассеянием электронов при прохождении электронного пучка через образец. Если образец достаточно тонок, то доля рассеянных электронов невелика. При прохождении электронов через образец одни из них рассеиваются из-за столкновений с ядрами атомов образца, другие - из-за столкновений с электронами атомов, а третьи проходят, не претерпевая рассеяния. Степень рассеяния в какой-либо области образца зависит от толщины образца в этой области, его плотности и средней атомной массы (числа протонов) в данной точке. Электроны, выходящие из диафрагмы с угловым отклонением, превышающим некоторый предел, уже не могут вернуться в пучок, несущий изображение, а поэтому сильно рассеивающие участки повышенной плотности, увеличенной толщины, места расположения тяжелых атомов выглядят на изображении как темные зоны на светлом фоне. Такое изображение называется светлопольным, поскольку на нем окружающее поле светлее объекта. Но можно сделать так, чтобы электрическая отклоняющая система пропускала в диафрагму объектива только те или иные из рассеянных электронов. Тогда образец выглядит светлым на темном поле. Слабо рассеивающий объект часто бывает удобнее рассматривать в режиме темного поля. Окончательное увеличенное электронное изображение преобразуется в видимое посредством люминесцентного экрана, который светится под действием электронной бомбардировки. Это изображение, обычно слабоконтрастное, как правило, рассматривают через бинокулярный световой микроскоп. При той же яркости такой микроскоп с увеличением 10 может создавать на сетчатке глаза изображение, в 10 раз более крупное, чем при наблюдении невооруженным глазом. Иногда для повышения яркости слабого изображения применяется люминофорный экран с электронно-оптическим преобразователем. В этом случае окончательное изображение может быть выведено на обычный телевизионный экран, что позволяет записать его на видеоленту. Видеозапись применяется для регистрации изображений, меняющихся во времени, например, в связи с протеканием химической реакции. Чаще всего окончательное изображение регистрируется на фотопленке или фотопластинке. Фотопластинка обычно позволяет получить более четкое изображение, чем наблюдаемое простым глазом или записанное на видеоленте, так как фотоматериалы, вообще говоря, более эффективно регистрируют электроны. Кроме того, на единице площади фотопленки может быть зарегистрировано в 100 раз больше сигналов, чем на единице площади видеоленты. Благодаря этому изображение, зарегистрированное на фотопленке, можно дополнительно увеличить примерно в 10 раз без потери четкости.
Разрешение. Электронные пучки имеют свойства, аналогичные свойствам световых пучков. В частности, каждый электрон характеризуется определенной длиной волны. Разрешающая способность ЭМ определяется эффективной длиной волны электронов. Длина волны зависит от скорости электронов, а следовательно, от ускоряющего напряжения; чем больше ускоряющее напряжение, тем больше скорость электронов и тем меньше длина волны, а значит, выше разрешение. Столь значительное преимущество ЭМ в разрешающей способности объясняется тем, что длина волны электронов намного меньше длины волны света. Но поскольку электронные линзы не так хорошо фокусируют, как оптические (числовая апертура хорошей электронной линзы составляет всего лишь 0,09, тогда как для хорошего оптического объектива эта величина достигает 0,95), разрешение ЭМ равно 50-100 длинам волн электронов. Даже со столь слабыми линзами в электронном микроскопе можно получить предел разрешения ок. 0,17 нм, что позволяет различать отдельные атомы в кристаллах. Для достижения разрешения такого порядка необходима очень тщательная настройка прибора; в частности, требуются высокостабильные источники питания, а сам прибор (который может быть высотой ок. 2,5 м и иметь массу в несколько тонн) и его дополнительное оборудование требуют монтажа, исключающего вибрацию.
РАСТРОВЫЙ ЭЛЕКТРОННЫЙ МИКРОСКОП
РЭМ, ставший важнейшим прибором для научных исследований, служит хорошим дополнением ОПЭМ. В РЭМ применяются электронные линзы для фокусировки электронного пучка в пятно очень малых размеров. Можно отрегулировать РЭМ так, чтобы диаметр пятна в нем не превышал 0,2 нм, но, как правило, он составляет единицы или десятки нанометров. Это пятно непрерывно обегает некоторый участок образца аналогично лучу, обегающему экран телевизионной трубки. Электрический сигнал, возникающий при бомбардировке объекта электронами пучка, используется для формирования изображения на экране телевизионного кинескопа или электронно-лучевой трубки (ЭЛТ), развертка которой синхронизирована с системой отклонения электронного пучка (рис. 3). Увеличение в данном случае понимается как отношение размера изображения на экране к размеру области, обегаемой пучком на образце. Это увеличение составляет от 10 до 10 млн.



Взаимодействие электронов сфокусированного пучка с атомами образца может приводить не только к их рассеянию, которое используется для получения изображения в ОПЭМ, но и к возбуждению рентгеновского излучения, испусканию видимого света и эмиссии вторичных электронов. Кроме того, поскольку в РЭМ перед образцом имеются только фокусирующие линзы, он позволяет исследовать "толстые" образцы.
Отражательный РЭМ. Отражательный РЭМ предназначен для исследования массивных образцов. Поскольку контраст, возникающий при регистрации отраженных, т.е. обратно-рассеянных, и вторичных электронов, связан в основном с углом падения электронов на образец, на изображении выявляется поверхностная структура. (Интенсивность обратного рассеяния и глубина, на которой оно происходит, зависят от энергии электронов падающего пучка. Эмиссия вторичных электронов определяется, в основном составом поверхности и электропроводностью образца.) Оба эти сигнала несут информацию об общих характеристиках образца. Благодаря малой сходимости электронного пучка можно проводить наблюдения с гораздо большей глубиной резкости, чем при работе со световым микроскопом, и получать прекрасные объемные микрофотографии поверхностей с весьма развитым рельефом. Регистрируя рентгеновское излучение, испускаемое образцом, можно в дополнение к данным о рельефе получать информацию о химическом составе образца в поверхностном слое глубиной ЭЛЕКТРОННЫЙ МИКРОСКОП0,001 мм. О составе материала на поверхности можно судить и по измеренной энергии, с которой эмиттируются те или иные электроны. Все сложности работы с РЭМ обусловлены, в основном, его системами регистрации и электронной визуализации. В приборе с полным комплексом детекторов, наряду со всеми функциями РЭМ, предусматривается рабочий режим электронно-зондового микроанализатора.
Растровый просвечивающий электронный микроскоп. Растровый просвечивающий электронный микроскоп (РПЭМ) - это особый вид РЭМ. Он рассчитан на тонкие образцы, такие же, как и исследуемые в ОПЭМ. Схема РПЭМ отличается от схемы на рис. 3 только тем, что в ней нет детекторов, расположенных выше образца. Поскольку изображение формируется бегущим пучком (а не пучком, освещающим весь исследуемый участок образца), требуется высокоинтенсивный источник электронов, чтобы изображение можно было зарегистрировать за приемлемое время. В РПЭМ высокого разрешения используются автоэлектронные эмиттеры высокой яркости. В таком источнике электронов создается очень сильное электрическое поле (ок. В/см) вблизи поверхности заостренной травлением вольфрамовой проволочки очень малого диаметра. Это поле буквально вытягивает миллиарды электронов из проволочки без всякого нагрева. Яркость такого источника почти в 10 000 раз больше, чем источника с нагреваемой вольфрамовой проволокой (см. выше), а испускаемые им электроны могут быть сфокусированы в пучок диаметром менее 1 нм. Были даже получены пучки, диаметр которых близок к 0,2 нм. Автоэлектронные источники могут работать только в условиях сверхвысокого вакуума (при давлениях ниже Па), в которых полностью отсутствуют такие загрязнения, как пары углеводородов и воды, и становится возможным получение изображений с высоким разрешением. Благодаря таким сверхчистым условиям можно исследовать процессы и явления, недоступные ЭМ с обычными вакуумными системами. Исследования в РПЭМ проводятся на сверхтонких образцах. Электроны проходят сквозь такие образцы почти без рассеяния. Электроны, рассеянные на углы более нескольких градусов без замедления, регистрируются, попадая на кольцевой электрод, расположенный под образцом (рис. 3). Сигнал, снимаемый с этого электрода, сильно зависит от атомного номера атомов в той области, через которую проходят электроны, - более тяжелые атомы рассеивают больше электронов в направлении детектора, чем легкие. Если электронный пучок сфокусирован в точку диаметром менее 0,5 нм, то можно получить изображение отдельных атомов. Реально удается различать на изображении, полученном в РПЭМ, отдельные атомы с атомной массой железа (т.е. 26 и более). Электроны, не претерпевшие рассеяния в образце, а также электроны, замедлившиеся в результате взаимодействия с образцом, проходят в отверстие кольцевого детектора. Энергетический анализатор, расположенный под этим детектором, позволяет отделить первые от вторых. Измеряя энергию, потерянную электронами при рассеянии, можно получить важную информацию об образце. Потери энергии, связанные с возбуждением рентгеновского излучения или выбиванием вторичных электронов из образца, позволяют судить о химических свойствах вещества в области, через которую проходит электронный пучок.
РАСТРОВЫЙ ТУННЕЛЬНЫЙ МИКРОСКОП
В ЭМ, рассмотренных выше, для фокусировки электронов применяются магнитные линзы. Данный раздел посвящен ЭМ без линз. Но, прежде чем переходить к растровому туннельному микроскопу (РТМ), будет полезно кратко остановиться на двух старых видах безлинзового микроскопа, в которых формируется проецированное теневое изображение.
Автоэлектронный и автоионный проекторы. Автоэлектронный источник, применяемый в РПЭМ, с начала 1950-х годов применялся в теневых проекторах. В автоэлектронном проекторе электроны, испускаемые за счет автоэлектронной эмиссии острием очень малого диаметра, ускоряются в направлении люминесцентного экрана, расположенного на расстоянии нескольких сантиметров от острия. В результате на экране возникает проецированное изображение поверхности острия и находящихся на этой поверхности частиц с увеличением, равным отношению радиуса экрана к радиусу острия (порядка). Более высокое разрешение достигается в автоионном проекторе, в котором проецирование изображения осуществляется ионами гелия (или некоторых других элементов), эффективная длина волны которых меньше, чем у электронов. Это позволяет получать изображения, показывающие истинное расположение атомов в кристаллической решетке материала острия. Поэтому автоионные проекторы используются, в частности, для исследования кристаллической структуры и ее дефектов в материалах, из которых могут быть изготовлены такие острия.
Растровый туннельный микроскоп (РТМ). В этом микроскопе тоже используется металлическое острие малого диаметра, являющееся источником электронов. В зазоре между острием и поверхностью образца создается электрическое поле. Число электронов, вытягиваемых полем из острия в единицу времени (ток туннелирования), зависит от расстояния между острием и поверхностью образца (на практике это расстояние меньше 1 нм). При перемещении острия вдоль поверхности ток модулируется. Это позволяет получить изображение, связанное с рельефом поверхности образца. Если острие заканчивается одиночным атомом, то можно сформировать изображение поверхности, проходя атом за атомом. РТМ может работать только при условии, что расстояние от острия до поверхности постоянно, а острие можно перемещать с точностью до атомных размеров. Вибрации подавляются благодаря жесткой конструкции и малым размерам микроскопа (не более кулака), а также применению многослойных резиновых амортизаторов. Высокую точность обеспечивают пьезоэлектрические материалы, которые удлиняются и сокращаются под действием внешнего электрического поля. Подавая напряжение порядка 10-5 В, можно изменять размеры таких материалов на 0,1 нм и менее. Это дает возможность, закрепив острие на элементе из пьезоэлектрического материала, перемещать его в трех взаимно перпендикулярных направлениях с точностью порядка атомных размеров.
ТЕХНИКА ЭЛЕКТРОННОЙ МИКРОСКОПИИ
Вряд ли остался какой-либо сектор исследований в области биологии и материаловедения, где бы не применялась просвечивающая электронная микроскопия (ПЭМ); это обеспечено успехами техники приготовления образцов. Все применяемые в электронной микроскопии методики нацелены на получение предельно тонкого образца и обеспечение максимального контраста между ним и подложкой, которая необходима ему в качестве опоры. Основная методика рассчитана на образцы толщиной 2-200 нм, поддерживаемые тонкими пластмассовыми или углеродными пленками, которые кладутся на сетку с размером ячейки ок. 0,05 мм. (Подходящий образец, каким бы способом он ни был получен, обрабатывается так, чтобы увеличить интенсивность рассеяния электронов на исследуемом объекте.) Если контраст достаточно велик, то глаз наблюдателя может без напряжения различить детали, находящиеся на расстоянии 0,1-0,2 мм друг от друга. Следовательно, для того, чтобы на изображении, создаваемом электронным микроскопом, были различимы детали, разделенные на образце расстоянием в 1 нм, необходимо полное увеличение порядка 100-200 тыс. Лучшие из микроскопов могут создать на фотопластинке изображение образца с таким увеличением, но при этом изображается слишком малый участок. Обычно делают микроснимок с меньшим увеличением, а затем увеличивают его фотографически. Фотопластинка разрешает на длине 10 см ок. 10 000 линий. Если каждая линия соответствует на образце некой структуре протяженностью 0,5 нм, то для регистрации такой структуры необходимо увеличение не менее 20 000, тогда как при помощи РЭМ и РПЭМ, в которых изображение регистрируется электронной системой и развертывается на телевизионном экране, может быть разрешено только ок. 1000 линий. Таким образом, при использовании телевизионного монитора минимально необходимое увеличение примерно в 10 раз больше, чем при фоторегистрации.
Биологические препараты. Электронная микроскопия широко применяется в биологических и медицинских исследованиях. Разработаны методики фиксации, заливки и получения тонких срезов тканей для исследования в ОПЭМ и РПЭМ и методики фиксации для исследования объемных образцов в РЭМ. Эти методики дают возможность исследовать организацию клеток на макромолекулярном уровне. Электронная микроскопия выявила компоненты клетки и детали строения мембран, митохондрий, эндоплазматической сети, рибосом и множества других органелл, входящих в состав клетки. Образец сначала фиксируют глутаральдегидом или другими фиксирующими веществами, а затем обезвоживают и заливают пластмассой. Методы криофиксации (фиксации при очень низких - криогенных - температурах) позволяют сохранить структуру и состав без использования химических фиксирующих веществ. Кроме того, криогенные методы позволяют получать изображения замороженных биологических образцов без их обезвоживания. При помощи ультрамикротомов с лезвиями из полированного алмаза или сколотого стекла можно делать срезы тканей толщиной 30-40 нм. Смонтированные гистологические препараты могут быть окрашены соединениями тяжелых металлов (свинца, осмия, золота, вольфрама, урана) для усиления контраста отдельных компонентов или структур.



Биологические исследования были распространены на микроорганизмы, особенно на вирусы, которые не разрешаются световыми микроскопами. ПЭМ позволила выявить, например, структуры бактериофагов и расположение субъединиц в белковых оболочках вирусов. Кроме того, методами позитивного и негативного окрашивания удалось выявить структуру с субъединицами в ряде других важных биологических микроструктур. Методы усиления контраста нуклеиновых кислот позволили наблюдать одно- и двунитные ДНК. Эти длинные линейные молекулы распластывают в слой основного белка и накладывают на тонкую пленку. Затем на образец вакуумным напылением наносят очень тонкий слой тяжелого металла. Этот слой тяжелого металла "оттеняет" образец, благодаря чему последний при наблюдении в ОПЭМ или РПЭМ выглядит как бы освещенным с той стороны, с которой напылялся металл. Если же вращать образец во время напыления, то металл накапливается вокруг частиц со всех сторон равномерно (как снежный ком).
Небиологические материалы. ПЭМ применяется в исследованиях материалов для изучения тонких кристаллов и границ между разными материалами. Чтобы получить изображение границы раздела с большим разрешением, образец заливают пластмассой, делают срез образца, перпендикулярный границе, а затем утоньшают его так, чтобы граница была видна на заостренной кромке. Кристаллическая решетка сильно рассеивает электроны в определенных направлениях, давая дифракционную картину. Изображение кристаллического образца в значительной мере определяется этой картиной; контраст сильно зависит от ориентации, толщины и совершенства кристаллической решетки. Изменения контраста на изображении позволяют изучать кристаллическую решетку и ее несовершенства в масштабе атомных размеров. Получаемая при этом информация дополняет ту, которую дает рентгенографический анализ объемных образцов, так как ЭМ дает возможность непосредственно видеть во всех деталях дислокации, дефекты упаковки и границы зерен. Кроме того, в ЭМ можно снимать электронограммы и наблюдать картины дифракции от выделенных участков образца. Если диафрагму объектива настроить так, чтобы через нее проходили только один дифрагированный и нерассеянный центральный пучки, то можно получать изображение определенной системы кристаллических плоскостей, которая дает этот дифрагированный пучок. Современные приборы позволяют разрешать периоды решетки величиной 0,1 нм. Исследовать кристаллы можно также методом темнопольного изображения, при котором перекрывают центральный пучок, так что изображение формируется одним или несколькими дифрагированными пучками. Все эти методы дали важную информацию о структуре очень многих материалов и существенно прояснили физику кристаллов и их свойства. Например, анализ ПЭМ-изображений кристаллической решетки тонких малоразмерных квазикристаллов в сочетании с анализом их электронограмм позволил в 1985 открыть материалы с симметрией пятого порядка.
Высоковольтная микроскопия. В настоящее время промышленность выпускает высоковольтные варианты ОПЭМ и РПЭМ с ускоряющим напряжением от 300 до 400 кВ. Такие микроскопы имеют более высокую проникающую способность, чем у низковольтных приборов, причем почти не уступают в этом отношении микроскопам с напряжением 1 млн. вольт, которые строились в прошлом. Современные высоковольтные микроскопы достаточно компактны и могут быть установлены в обычном лабораторном помещении. Их повышенная проникающая способность оказывается очень ценным свойством при исследовании дефектов в более толстых кристаллах, особенно таких, из которых невозможно сделать тонкие образцы. В биологии их высокая проникающая способность дает возможность исследовать целые клетки, не разрезая их. Кроме того, с помощью таких микроскопов можно получать объемные изображения толстых объектов.
Низковольтная микроскопия. Выпускаются также РЭМ с ускоряющим напряжением, составляющим всего несколько сот вольт. Даже при столь низких напряжениях длина волны электронов меньше 0,1 нм, так что пространственное разрешение и здесь ограничивается аберрациями магнитных линз. Однако, поскольку электроны с такой низкой энергией проникают неглубоко под поверхность образца, почти все электроны, участвующие в формировании изображения, приходят из области, расположенной очень близко к поверхности, благодаря чему повышается разрешение поверхностного рельефа. С помощью низковольтных РЭМ были получены изображения на твердых поверхностях объектов размером менее 1 нм.
Радиационное повреждение. Поскольку электроны представляют собой ионизирующее излучение, образец в ЭМ постоянно подвергается его воздействию. (В результате этого воздействия возникают вторичные электроны, используемые в РЭМ.) Следовательно, образцы всегда подвергаются радиационному повреждению. Типичная доза излучения, поглощаемая тонким образцом за время регистрации микрофотографии в ОПЭМ, примерно соответствует энергии, которой было бы достаточно для полного испарения холодной воды из пруда глубиной 4 м с площадью поверхности 1 га. Чтобы уменьшить радиационное повреждение образца, необходимо использовать различные методы его подготовки: окрашивание, заливку, замораживание. Кроме того, можно регистрировать изображение при дозах электронов, в 100-1000 раз меньших, нежели по стандартной методике, а затем улучшать его методами компьютерной обработки изображений.
ИСТОРИЧЕСКАЯ СПРАВКА
История создания электронного микроскопа - замечательный пример того, как самостоятельно развивающиеся области науки и техники могут, обмениваясь полученной информацией и объединяя усилия, создавать новый мощный инструмент научных исследований. Вершиной классической физики была теория электромагнитного поля, которая объяснила распространение света, возникновение электрических и магнитных полей, движение заряженных частиц в этих полях как распространение электромагнитных волн. Волновая оптика сделала понятными явление дифракции, механизм формирования изображения и игру факторов, определяющих разрешение, в световом микроскопе. Успехам в области теоретической и экспериментальной физики мы обязаны открытием электрона с его специфическими свойствами. Эти отдельные и, казалось бы, независимые пути развития привели к созданию основ электронной оптики, одним из важнейших приложений которой являлось изобретение ЭМ в 1930-х годах. Прямым намеком на такую возможность можно считать гипотезу о волновой природы электрона, выдвинутую в 1924 Луи де Бройлем и экспериментально подтвержденную в 1927 К.Дэвиссоном и Л.Джермером в США и Дж.Томсоном в Англии. Тем самым была подсказана аналогия, позволившая построить ЭМ по законам волновой оптики. Х.Буш обнаружил, что с помощью электрических и магнитных полей можно формировать электронные изображения. В первые два десятилетия 20 в. были созданы и необходимые технические предпосылки. Промышленные лаборатории, работавшие над электронно-лучевым осциллографом, дали вакуумную технику, стабильные источники высокого напряжения и тока, хорошие электронные эмиттеры. В 1931 Р. Руденберг подал патентную заявку на просвечивающий электронный микроскоп, а в 1932 М.Кнолль и Э.Руска построили первый такой микроскоп, применив магнитные линзы для фокусировки электронов. Этот прибор был предшественником современного ОПЭМ. (Руска был вознагражден за свои труды тем, что стал лауреатом Нобелевской премии по физике за 1986.) В 1938 Руска и Б.фон Боррис построили прототип промышленного ОПЭМ для фирмы "Сименс-Хальске" в Германии; этот прибор в конце концов позволил достичь разрешения 100 нм. Несколькими годами позднее А.Пребус и Дж.Хиллер построили первый ОПЭМ высокого разрешения в Торонтском университете (Канада). Широкие возможности ОПЭМ почти сразу же стали очевидны. Его промышленное производство было начато одновременно фирмой "Сименс-Хальске" в Германии и корпорацией RCA в США. В конце 1940-х годов такие приборы стали выпускать и другие компании. РЭМ в его нынешней форме был изобретен в 1952 Чарльзом Отли. Правда, предварительные варианты такого устройства были построены Кноллем в Германии в 1930-х годах и Зворыкиным с сотрудниками в корпорации RCA в 1940-х годах, но лишь прибор Отли смог послужить основой для ряда технических усовершенствований, завершившихся внедрением в производство промышленного варианта РЭМ в середине 1960-х годов. Круг потребителей такого довольно простого в обращении прибора с объемным изображением и электронным выходным сигналом расширился с быстротой взрыва. В настоящее время насчитывается добрый десяток промышленных изготовителей РЭМ"ов на трех континентах и десятки тысяч таких приборов, используемых в лабораториях всего мира. В 1960-х годах разрабатывались сверхвысоковольтные микроскопы для исследования более толстых образцов. Лидером этого направления разработок был Г.Дюпуи во Франции, где в 1970 был введен в действие прибор с ускоряющим напряжением, равным 3,5 млн. вольт. РТМ был изобретен Г.Биннигом и Г.Рорером в 1979 в Цюрихе. Этот весьма простой по устройству прибор обеспечивает атомное разрешение поверхностей. За свою работу по созданию РТМ Бинниг и Рорер (одновременно с Руской) получили Нобелевскую премию по физике.
См. также

Для изучения нанообъектов разрешения оптических микроскопов (даже использующих ультра-фиолет ) явно недостаточно. В связи с этим в 1930х гг. возникла идея использовать вместо све-та электроны, длина волны которых, как мы знаем из квантовой физики, в сотни раз меньше, чем у фотонов.

Как известно, в основе нашего зрения лежит формирование изображения объекта на сетчатке глаза световыми волнами, отраженными от этого объекта. Если, прежде чем попасть в глаз, свет проходит сквозь оптическую систему микроскопа , мы видим увеличенное изображение. При этом ходом световых лучей умело управляют линзы, составляющие объектив и окуляр прибора.

Но как же можно получить изображение объекта, причём с гораздо более высокой разрешающей способностью, используя не световое излучение, а поток электронов? Другими словами, как возможно видение предметов на основе использования не волн, а частиц?

Ответ очень прост. Известно, что на траекторию и скорость электронов существенно влияют внешние электромагнитные поля, с помощью которых можно эффективно управлять движением электронов.

Наука о движении электронов в электромагнитных полях и о расчёте устройств, формирующих нужные поля, называется электронной оптикой .

Электронное изображение формируется электрическими и магнитными полями примерно так же, как световое – оптическими линзами. Поэтому в электронном микроскопе устройства фоку-сировки и рассеивания электронного пучка называют “электронными линзами ”.

Электронная линза. Витки проводов катушки, по которым проходит ток, фокусируют пучок электронов так же, как стеклянная линза фокусирует световой пучок

Магнитное поле катушки действует как собирающая или рассеивающая линза. Чтобы сконцентрировать магнитное поле, катушку закрывают магнитной «броней » из специального ни-кель-кобальтового сплава, оставляя лишь узкий зазор во внутренней части. Создаваемое таким образом магнитное поле может быть в 10–100 тыс. раз сильнее, чем магнитное поле Земли!

К сожалению, наш глаз не может непосредственно воспринимать электронные пучки. Поэтому они используются для “рисования ” изображения на люминесцентных экранах (которые светятся при попадании электронов). Кстати, тот же принцип лежит в основе работы мониторов и осцил-лографов.

Существует большое количество различных типов электронных микроскопов , среди которых наиболее популярен растровый электронный микроскоп (РЭМ). Мы получим его упрощенную схему, если поместим изучаемый объект внутрь электронно-лучевой трубки обыкновенного телевизора между экраном и источником электронов.

В таком микроскопе тонкий луч электронов (диаметр пучка около 10 нм) обегает (как бы сканируя) образец по горизонтальным строчкам, точку за точкой, и синхронно передает сигнал на кинескоп. Весь процесс аналогичен работе телевизора в процессе развертки. Источником электронов служит металл (обычно вольфрам), из которого при нагревании в результате термоэлектронной эмиссии испускаются электроны.

Схема работы растрового электронного микроскопа

Термоэлектронная эмиссия – выход электронов с поверхности проводников. Число вышедших электронов мало при Т=300K и экспоненциально растет с повышением температуры.

При прохождении электронов через образец одни из них рассеиваются из-за столкновений с ядрами атомов образца, другие- изза столкновений с электронами атомов, а третьи проходят сквозь него. В некоторых случаях испускаются вторичные электроны, индуцируется рентгенов-ское излучение и т.п. Все эти процессы регистрируются специальными детекторами и в преобразованном виде выводятся на экран, создавая увеличенную картинку изучаемого объекта.

Увеличение в данном случае понимается как отношение размера изображения на экране к размеру области, обегаемой пучком на образце. В связи с тем, что длина волны электрона на порядки меньше, чем фотона, в современных РЭМ это увеличение может достигать 10 миллионов15, соответствуя разрешению в единицы нанометров, что позволяет визуализировать отдельные атомы.

Главный недостаток электронной микроскопии – необходимость работы в полном вакууме, ведь наличие какоголибо газа внутри камеры микроскопа может привести к ионизации его атомов и существенно исказить результаты. Кроме того, электроны оказывают разрушительное воздействие на биологические объекты, что делает их неприменимыми для исследования во многих областях биотехнологии.

История создания электронного микроскопа – замечательный пример достижения, основанного на междисциплинарном подходе, когда самостоятельно развивающиеся области науки и техники, объединившись, создали новый мощный инструмент научных исследований.

Вершиной классической физики была теория электромагнитного поля, которая объяснила распространение света, электричество и магнетизм как распространение электромагнитных волн. Волновая оптика объяснила явление дифракции, механизм формирования изображения и игру факторов, определяющих разрешение в световом микроскопе. Успехам квантовой физики мы обязаны открытием электрона с его специфическими корпускулярноволновыми свойствами. Эти отдельные и, казалось бы, независимые пути развития привели к созданию электронной оптики, одним из важнейших изобретений которой в 1930х годах стал электронный микроскоп.

Но и на этом ученые не успокоились. Длина волны электрона, ускоренного электрическим полем, составляет несколько нанометров. Это неплохо, если мы хотим увидеть молекулу или даже атомную решетку. Но как заглянуть внутрь атома? На что похожа химическая связь? Как выглядит процесс отдельной химической реакции? Для этого сегодня в разных странах ученые разрабатывают нейтронные микроскопы.

Нейтроны обычно входят в состав атомных ядер наряду с протонами и имеют почти в 2000 раз большую массу, чем электрон. Те, кто не забыл формулу де Бройля из квантовой главы,сразу сообразят, что и длина волны у нейтрона во столько же раз меньше, то есть составляет пикометры тысячные доли нанометра! Тогдато атом и предстанет исследователям не как расплывчатое пятнышко, а во всей своей красе.

Нейтронный микроскоп имеет много плюсов – в частности, нейтроны хорошо отображают атомы водорода и легко проникают в толстые слои образцов. Однако и построить его очень трудно: нейтроны не имеют электрического заряда, поэтому преспокойно игнорируют магнитные и электрические поля и так и норовят ускользнуть от датчиков. К тому же не так-то просто выгнать большие неповоротливые нейтроны из атомов. Поэтому сегодня первые прототипы нейтронного микроскопа еще весьма далеки от совершенства.

Как же устроен электронный микроскоп? В чём его отличие от оптического микроскопа, существует ли между ними какая-нибудь аналогия?

В основе работы электронного микроскопа лежит свойство неоднородных электрических и магнитных полей, обладающих вращательной симметрией, оказывать на электронные пучки фокусирующее действие. Таким образом, роль линз в электронном микроскопе играет совокупность соответствующим образом рассчитанных электрических и магнитных полей; соответствующие устройства, создающие эти поля, называют «электронными линзами».

В зависимости от вида электронных линз электронные микроскопы делятся на магнитные, электростатические и комбинированные.

Какого же типа объекты могут быть исследованы с помощью электронного микроскопа?

Так же как и в случае оптического микроскопа объекты, во-первых, могут быть «самосветящимися», т. е. служить источником электронов. Это, например, накаленный катод или освещаемый фотоэлектронный катод. Во-вторых, могут быть использованы объекты, «прозрачные» для электронов, обладающих определённой скоростью. Иными словами, при работе на просвет объекты должны быть достаточно тонкими, а электроны достаточно быстрыми, чтобы они проходили сквозь объекты и поступали в систему электронных линз. Кроме того, путём использования отражённых электронных лучей могут быть изучены поверхности массивных объектов (в основном металлов и металлизированных образцов). Такой способ наблюдения аналогичен методам отражательной оптической микроскопии.

По характеру исследования объектов электронные микроскопы разделяют на просвечивающие, отражательные, эмиссионные, растровые, теневые и зеркальные.

Наиболее распространёнными в настоящее время являются электромагнитные микроскопы просвечивающего типа, в которых изображение создаётся электронами, проходящими сквозь объект наблюдения. Он состоит из следующих основных узлов: осветительной системы, камеры объекта, фокусирующей системы и блока регистрации конечного изображения, состоящего из фотокамеры и флуоресцирующего экрана. Все эти узлы соединены друг с другом, образуя так называемую колонну микроскопа, внутри которой поддерживается давление. Осветительная система обычно состоит из трёхэлектродной электронной пушки (катод, фокусирующий электрод, анод) и конденсорной линзы (речь идёт об электронных линзах). Она формирует пучок быстрых электронов нужного сечения и интенсивности и направляет его на исследуемый объект, находящийся в камере объектов. Пучок электронов, прошедший сквозь объект, поступает в фокусирующую (проекционную) систему, состоящую из объективной линзы и одной или нескольких проекционных линз.

Электронный микроскоп Электронный микроскоп прибор, позволяющий получать изображение объектов с максимальным увеличением до 10 6 раз, благодаря использованию вместо светового потока пучка электронов. Разрешающая способность электронного микроскопа в 1000÷10000 раз превосходит разрешение светового микроскопа и для лучших современных приборов может составлять несколько ангстрем (10 -7 м).


Появление электронного микроскопа стало возможным после ряда физических открытий конца XIX начала XX века. Это открытие в 1897 году электрона (Дж.Томсон) и экспериментальное обнаружение в 1926 году волновых свойств электрона (К.Дэвиссон, Л.Гермер), подтверждающее выдвинутую в 1924 году де Бройлем гипотезу о корпускулярно-волновом дуализме всех видов материи. В 1926 году немецкий физик X.Буш создал магнитную линзу, позволяющую фокусировать электронные лучи, что послужило предпосылкой для создания в 1930-х годах первого электронного микроскопа. В 1931 году Р.Руденберг получил патент на просвечивающий электронный микроскоп, а в 1932 году М.Кнолль и Э.Руска построили первый прототип современного прибора. Эта работа Э.Руски в 1986 году была отмечена Нобелевской премией по физике, которую присудили ему и изобретателям сканирующего зондового микроскопа Герду Карлу Биннигу и Генриху Рореру. В 1938 Руска и Б. фон Боррис построили прототип промышленного просвечивающего электронного микроскопа для фирмы «Сименс-Хальске» в Германии; этот прибор в конце концов позволил достичь разрешения 100 нм. Несколькими годами позднее А.Пребус и Дж.Хиллер построили первый ОПЭМ высокого разрешения в Торонтском университете (Канада). В конце 1930-х начале 1940-х годов появились первые растровые электронные микроскопы (РЭМ), формирующие изображение объекта при последовательном перемещении электронного зонда малого сечения по объекту. Массовое применение этих приборов в научных исследованиях началось в 1960-ых годах, когда они достигли значительного технического совершенства. РЭМ в его нынешней форме был изобретен в 1952 Чарльзом Отли. Правда, предварительные варианты такого устройства были построены Кноллем в Германии в 1930-х годах и Зворыкиным с сотрудниками в корпорации RCA в х годах, но лишь прибор Отли смог послужить основой для ряда технических усовершенствований, завершившихся внедрением в производство промышленного варианта РЭМ в середине 1960-х годов.


Существуют два основных вида электронных микроскопов. просвечивающий электронный микроскопВ 1930-х годах был изобретен обычный просвечивающий электронный микроскоп (ОПЭМ), растровый (сканирующий) электронный микроскоп в 1950-х годах – растровый (сканирующий) электронный микроскоп (РЭМ)


Просвечивающий электронный микроскоп от ультратонкого объекта Просвечивающий электронный микроскоп (ПЭМ) это установка, в которой изображение от ультратонкого объекта (толщиной порядка 0,1 мкм) формируется в результате взаимодействия пучка электронов с веществом образца с последующим увеличением магнитными линзами (объектив) и регистрацией на флуоресцентном экране. Просвечивающий электронный микроскоп во многом подобен световому микроскопу, но только для освещения образцов в нем используется не свет, а пучок электронов. В нем имеются электронный прожектор, ряд конденсорных линз, объективная линза и проекционная система, которая соответствует окуляру, но проецирует действительное изображение на люминесцентный экран или фотографическую пластинку. Источником электронов обычно служит нагреваемый катод из вольфрама или гексаборида лантана. Катод электрически изолирован от остальной части прибора, и электроны ускоряются сильным электрическим полем. Для создания такого поля катод поддерживают под потенциалом порядка В относительно других электродов, фокусирующих электроны в узкий пучок. Эта часть прибора называется электронным прожектором. одной миллиардной атмосферного.Поскольку электроны сильно рассеиваются веществом, в колонне микроскопа, где движутся электроны, должен быть вакуум. Здесь поддерживается давление, не превышающее одной миллиардной атмосферного.


Магнитное поле, создаваемое витками катушки, по которой проходит ток, действует как собирающая линза, фокусное расстояние которой можно изменять, изменяя ток. Витки провода, по которым проходит ток, фокусируют пучок электронов так же, как стеклянная линза фокусирует световой пучок. Электронное изображение формируется электрическими и магнитными полями примерно так же, как световое – оптическими линзами. Принцип действия магнитной линзы поясняется следующей схемой.


ОБЫЧНЫЙ ПРОСВЕЧИВАЮЩИЙ ЭЛЕКТРОННЫЙ МИКРОСКОП (ОПЭМ). 1 – источник электронов; 2 – ускоряющая система; 3 – диафрагма; 4 –конденсорная линза; 5 – образец; 6 – объективная линза; 7 – диафрагма; 8 – проекционная линза; 9 – экран или пленка; 10 – увеличенное изображение. Электроны ускоряются, а затем фокусируются магнитными линзами. Увеличенное изображение, создаваемое электронами, которые проходят через диафрагму объектива, преобразуется люминесцентным экраном в видимое или регистрируется на фотопластинке. Ряд конденсорных линз (показана лишь последняя) фокусирует электронный пучок на образце. Обычно первая из них создает не увеличенное изображение источника электронов, а последняя контролирует размер освещаемого участка на образце. Диафрагмой последней конденсорной линзы определяется ширина пучка в плоскости объекта. Образец Образец помещается в магнитном поле объектной линзы с большой оптической силой – самой важной линзы ОПЭМ, которой определяется предельное возможное разрешение прибора. Аберрации объективной линзы ограничиваются ее диафрагмой так же, как это происходит в фотоаппарате или световом микроскопе. Объектная линза дает увеличенное изображение объекта (обычно с увеличением порядка 100); дополнительное увеличение, вносимое промежуточными и проекционной линзами, лежит в пределах величин от несколько меньшей 10 до несколько большей Таким образом, увеличение, которое можно получить в современных ОПЭМ, составляет от менее 1000 до ~ (При увеличении в миллион раз грейпфрут вырастает до размеров Земли). Исследуемый объект обычно помещают на очень мелкую сетку, вкладываемую в специальный держатель. Держатель можно механическим или электрическим способом плавно перемещать вверх-вниз и вправо- влево.


Окончательное увеличенное электронное изображение преобразуется в видимое посредством люминесцентного экрана, который светится под действием электронной бомбардировки. Это изображение, обычно слабоконтрастное, как правило, рассматривают через бинокулярный световой микроскоп. При той же яркости такой микроскоп с увеличением 10 может создавать на сетчатке глаза изображение, в 10 раз более крупное, чем при наблюдении невооруженным глазом. Иногда для повышения яркости слабого изображения применяется люминофорный экран с электронно-оптическим преобразователем. В этом случае окончательное изображение может быть выведено на обычный телевизионный экран. Фотопластинка обычно позволяет получить более четкое изображение, чем наблюдаемое простым глазом или записанное на видеоленте, так как фотоматериалы, вообще говоря, более эффективно регистрируют электроны. Разрешение.Разрешение. Электронные пучки имеют свойства, аналогичные свойствам световых пучков. В частности, каждый электрон характеризуется определенной длиной волны. Разрешающая способность ЭМ определяется эффективной длиной волны электронов. Длина волны зависит от скорости электронов, а следовательно, от ускоряющего напряжения; чем больше ускоряющее напряжение, тем больше скорость электронов и тем меньше длина волны, а значит, выше разрешение. Столь значительное преимуществ о ЭМ в разрешающей способности объясняется тем, что длина волны электронов намного меньше длины волны света. Но поскольку электронные линзы не так хорошо фокусируют, как оптические (числовая апертура хорошей электронной линзы составляет всего лишь 0,09, тогда как для хорошего оптического объектива эта величина достигает 0,95), разрешение ЭМ равно 50–100 длинам волн электронов. Даже со столь слабыми линзами в электронном микроскопе можно получить предел разрешения ~0,17 нм, что позволяет различать отдельные атомы в кристаллах. Для достижения разрешения такого порядка необходима очень тщательная настройка прибора; в частности, требуются высокостабильные источники питания, а сам прибор (который может быть высотой ~2,5 м и иметь массу в несколько тонн) и его дополнительное оборудование требуют монтажа, исключающего вибрацию. В ОПЭМ можно получить увеличение до 1 млн. Предел пространственного (по x, y) разрешения - ~0,17 нм.


Растровая электронная микроскопия Растровый электронный микроскоп (РЭМ, англ. Scanning Electron Microscope, SEM) прибор, основанный на принципе взаимодействия электронного пучка с веществом, предназначенный для получения изображения поверхности объекта с высоким пространственным разрешением (несколько нанометров), а также о составе, строении и некоторых других свойствах приповерхностных слоёв. Пространственное разрешение сканирующего электронного микроскопа зависит от поперечного размера электронного пучка, который, в свою очередь зависит от электронно-оптической системы, фокусирующей пучок. В настоящее время современные модели РЭМ выпускаются рядом фирм мира, среди которых можно назвать: Carl Zeiss NTS GmbH Германия FEI Company США (слилась с Philips Electron Optics) FOCUS GmbH Германия Hitachi Япония JEOL Япония (Japan Electron Optics Laboratory) Tescan Чехия


1 – источник электронов; 2 – ускоряющая система; 3 – магнитная линза; 4 – отклоняющие катушки; 5 – образец; 6 – детектор отраженных электронов; 7 – кольцевой детектор; 8 – анализатор В РЭМ применяются электронные линзы для фокусировки электронного пучка (электронного зонда) в пятно очень малых размеров. Можно отрегулировать РЭМ так, чтобы диаметр пятна в нем не превышал 0,2 нм, но, как правило, он составляет единицы или десятки нанометров. Это пятно непрерывно обегает некоторый участок образца аналогично лучу, обегающему экран телевизионной трубки. Электрический сигнал, возникающий при бомбардировке объекта электронами пучка, используется для формирования изображения на экране телевизионного кинескопа или электронно-лучевой трубки (ЭЛТ), развертка которой синхронизирована с системой отклонения электронного пучка (рис.). Увеличение в данном случае понимается как отношение размера изображения на экране к размеру области, обегаемой пучком на образце. Это увеличение составляет от 10 до 10 млн. электронной колонной Электронные линзы (обычно сферические магнитные) и отклоняющие катушки образуют систему, называемую электронной колонной. Однако РЭМ-метод характеризуется рядом ограничений и недостатков, которые особенно сильно проявляются в субмикронном и нанометровом диапазонах измерений: недостаточно высокое пространственное разрешение; сложность получения трехмерных изображений поверхности, обусловленная в первую очередь тем, что высота рельефа в РЭМ определяется по эффективности упругого и неупругого рассеяния электронов и зависит от глубины проникновения первичных электронов в поверхностный слой; необходимость нанесения дополнительного токосъемного слоя на плохопроводящие поверхности для предотвращения эффектов, связанных с накоплением заряда; проведение измерений только в условиях вакуума; возможность повреждения изучаемой поверхности высокоэнергетичным сфокусированным пучком электронов.


Из-за очень узкого электронного луча РЭМ обладают очень большой глубиной резкости (мм), что на два порядка выше, чем у оптического микроскопа и позволяет получать четкие микрофотографии с характерным трехмерным эффектом для объектов со сложным рельефом. Это свойство РЭМ крайне полезно для понимания поверхностной структуры образца. Микрофотография пыльцы демонстрирует возможности РЭМ.


Сканирующие зондовые микроскопы Сканирующие зондовые микроскопы (СЗМ, англ. SPM Scanning Probe Microscope) класс микроскопов для измерения характеристик объекта с помощью различных типов зондов. Процесс построения изображения основан на сканировании поверхности зондом. В общем случае СЗМ позволяют получить трёхмерное изображение поверхности (топографию) с высоким разрешением. Основные типы сканирующих зондовых микроскопов: Сканирующий туннельный микроскоп Сканирующий туннельный микроскоп (СТМ, англ. STM scanning tunneling microscope) или растровый тунельный микроскоп (РТМ) - для получения изображения используется туннельный ток между зондом и образцом, что позволяет получить информацию о топографии и электрических свойствах образца. Сканирующий атомно-силовой микроскоп Сканирующий атомно-силовой микроскоп (АСМ) - регистрирует различные силы между зондом и образцом. Позволяет получить топографию поверхности и её механические свойства. Сканирующий ближнепольный оптический микроскоп Сканирующий ближнепольный оптический микроскоп (СБОМ) - для получения изображения используется эффект ближнего поля.


Отличительной СЗМ особенностью является наличие: зонда, системы перемещения зонда относительно образца по 2-м (X-Y) или 3-м (X-Y-Z) координатам, регистрирующей системы. При малом расстоянии между поверхностью и образцом действие сил взаимодействия (отталкивания, притяжения,и других сил) и проявление различных эффектов (например, туннелирование электронов) можно зафиксировать с помощью современных средств регистрации. Для регистрации используют различные типы сенсоров, чувствительность которых позволяет зафиксировать малые по величине возмущения. Работа сканирующего зондового микроскопа основана на взаимодействии поверхности образца с зондом (кантилевер - англ. балка, игла или оптический зонд). Кантилеверы разделяются на жёсткие и мягкие, - по длине балки, а характеризуется это резонансной частотой колебаний кантилевера. Процесс сканирования микрозондом поверхности может происходить как в атмосфере или заранее заданном газе, так и в вакууме, и даже сквозь плёнку жидкости. Кантилевер в сканирующем электронном микроскопе (увеличение 1000X) координатам,


Регистрирующая система фиксирует значение функции, зависящей от расстояния зонд- образец. Для получения полноценного растрового изображения используют различные устройства развертки по осям X и Y (например, пьезотрубки, плоскопараллельные сканеры). Сканирование поверхности может происходить двумя способами, - сканирование кантилевером и сканировение подложкой. Если в первом случае движения вдоль исследуемой поверхности совершает кантилевер, то во втором относительно неподвижного кантилевера движется сама подложка. обратной связи Для сохранения режима сканирования, - кантилевер должен находиться вблизи поверхности, - в зависимости от режима, - будь то режим постоянной силы, или постоянной высоты, существует система, которая могла бы сохранять такой режим во время процесса сканирования. Для этого в электронную схему микроскопа входит специальная система обратной связи, которая связана с системой отклонения кантилевера от первоначального положения. Основные технические сложности при создании сканирующего зондового микроскопа: Конец зонда должен иметь размеры сопоставимые с исследуемыми объектами. Обеспечение механической (в том числе тепловой и вибрационной) стабильности на уровне лучше 0,1 ангстрема. Детекторы должны надежно фиксировать малые по величине возмущения регистрируемого параметра. Создание прецизионной системы развёртки. Обеспечение плавного сближения зонда с поверхностью.


Сканирующий туннельный микроскоп (СТМ, англ. STM scanning tunneling microscope) или растровый тунельный микроскоп (РТМ) Сканирующий тунельный микроскоп в современном виде изобретен (принципы этого класса приборов были заложены ранее другими исследователями) Гердом Карлом Биннигом и Генрихом Рорером в 1981 году. За это изобретение они были удостоены Нобелевской премии по физике за 1986 год, которая была разделена между ними и изобретателем просвечивающего электронного микроскопа Э. Руска. В СТМ острая металлическая игла подводится к образцу на расстояние нескольких ангстрем. При подаче на иглу относительно образца небольшого потенциала возникает туннельный ток. Величина этого тока экспоненциально зависит от расстояния образец-игла. Типичные значения пА при расстояниях около 1 A. В этом микроскопе используется металлическое острие малого диаметра, являющееся источником электронов. В зазоре между острием и поверхностью образца создается электрическое поле. Число электронов, вытягиваемых полем из острия в единицу времени (ток туннелирования), зависит от расстояния между острием и поверхностью образца (на практике это расстояние меньше 1 нм). При перемещении острия вдоль поверхности ток модулируется. Это позволяет получить изображение, связанное с рельефом поверхности образца. Если острие заканчивается одиночным атомом, то можно сформировать изображение поверхности, проходя атом за атомом.


РТМ может работать только при условии, что расстояние от острия до поверхности постоянно, а острие можно перемещать с точностью до атомных размеров. Высокое разрешение СТМ вдоль нормали к поверхности (~0,01 нм) и в горизонтальном направлении (~0,1 нм), которое реализуется как в вакууме, так и с диэлектрическими средами в туннельном промежутке, открывает широкие перспективы повышения точности измерений линейных размеров в нанометровом диапазоне. Платиново - иридиумная игла сканирующего туннельного микроскопа крупным планом.


Сканирующий атомно-силовой микроскоп Сканирующий атомно-силовой микроскоп (АСМ) Атомно-силовая микроскопия поверхности (АСМ), предложенная в 1986 г., основана на эффекте силового взаимодействия между близко расположенными твердыми телами. В отличие от СТМ метод АСМ пригоден для проведения измерений как на проводящих, так и на непроводящих поверхностях не только в вакууме, но и на воздухе и в жидкой среде. Важнейшим элементом АСМ является микрозонд (кантилевер), на конце которого располагается диэлектрическое острие с радиусом кривизны R, к которому с помощью трехкоординатного манипулятора подводится поверхность исследуемого образца на расстояние d0,1÷10 нм. Острие кантилевера обычно закрепляют на пружине, изготовленной в виде кронштейна с малой механической жесткостью. В результате межатомного (межмолекулярного) взаимодействия между образцом и острием кантилевера кронштейн отклоняется. Разрешение АСМ вдоль нормали к поверхности сравнимо с соответствующим разрешением СТМ, а разрешение в горизонтальном направлении (продольное разрешение) зависит от расстояния d и радиуса кривизны острия R. Числовой расчет показывает, что при R=0,5 нм и d=0,4 нм продольное разрешение составляет ~1 нм. Необходимо подчеркнуть, что зондом АСМ является острие иглы, которое позволяет снимать информацию о профиле элемента рельефа поверхности, имеющего нанометровые размеры, но высота (глубина) такого элемента не должна превышать 100 нм, а соседний элемент должен быть расположен не ближе, чем на расстоянии 100 нм. При выполнении некоторых специфических для АСМ условий возможно восстановление профиля элемента без потери информации. Однако эти условия практически невозможно осуществить в эксперименте.



Вид Пространственное разрешение (x,y) Разрешение по z- координате Размер поля Увеличение Оптическая микроскопия 200 нм-0,4 -0,2 мм х Конфокальный микроскоп 200 нм 1 нм Интерферометрия в белом свете 200 нм 0,1 нм 0.05 до x Голографическая микроскопия 200 нм 0,1 нм 0.05 до x Просвечивающий электронный микроскоп 0,2 нм- до Растровый электронный микроскоп (РЭМ) 0,4 нм 0,1 нм 0,1-500 мкм по z - ~1-10 мм до х Сканирующие зондовые микроскопы 0,1 нм 0,05 нм ~150 х 150 мкм по z -