Применение определенных интегралов в разных сферах. Применение дифференциального и интегрального исчисления к решению физических задач

План

1. История интегрального исчисления.

2. Определение и свойства интеграла.

3. Криволинейная трапеция.

4. Свойства определенного интеграла.

5. Набор стандартных картинок.

6. Применение интеграла.

История интегрального исчисления

История понятия интеграла тесно связана с задачами нахождения квадратур. Задачами о квадратуре той или иной плоской фигуры математики Древней Греции и Рима называли задачи на вычисление площадей. Латинское слово quadratura переводится как “придание квадратной формы”. Необходимость в специальном термине объясняется тем, что в античнoe время (и позднее, вплоть до XVIII столетия) еще не были достаточно развиты представления о действительных числах. Математики оперировали с их геометрическими аналогами или скалярными величинами, которые нельзя перемножать. Поэтому и задачи на нахождение площадей приходилось формулировать, например, так: «Построить квадрат, равновеликий данному кругу». (Эта классическая задача “о квадратуре круга”

круга» не может, как известно, быть решена с помощью циркуля и линейки.)

Символ ò введен Лейбницем (1675 г.). Этот знак является изменением латинской буквы S (первой буквы слова summa). Само слово интеграл придумал Я. Б е р н у л л и (1690 г.). Вероятно, оно происходит от латинского integro, которое переводится как приводить в прежнее состояние, восстанавливать. (Действительно, операция интегрирования «восстанавливает» функцию, дифференцированием которой получена подынтегральная функция.) Возможно, происхождение термина интеграл иное: слово integer означает целый.

В ходе переписки И. Бернулли и Г. Лейбниц согласились с предложением Я. Бернулли. Тогда же, в 1696 г., появилось и название новой ветви математики-интегральное исчисление (calculus integralis), которое ввел И. Бернулли.

Другие известные ермины, относящиеся к интегральному исчислению, появились заметно позднее. Употребляющееся сейчас название первообразная функция заменило более раннее «примитивная функция», которое ввел Лагранж (1797 г.). Латинское слово primitivus переводится как «начальный»: F(x) = ò f(x)dx ­- начальная (или первоначальная, или первообразная) для f(x), которая получается из F(x) дифференцированием.

В современной литературе множество всех первообразных для функции f(х) называется также неопределенным интегралом. Это понятие выделил Лейбниц, который заметил, что все первообразные функции отличаются на произвольную постоянную. b

называют определенным интегралом (обозначение ввел К. Фурье (1768-1830), но пределы интегрирования указывал уже Эйлер).

Многие значительные достижения математиков Древней Греции в решении задач на нахождение квадратур (т. е. вычисление площадей) плоских фигур, а также кубатур (вычисление объемов) тел связаны с применением метода исчерпывания, предложенным Евдоксом Книдским (ок. 408 - ок. 355 до н.э.). С помощью этого метода Евдокс доказал, например, что площади двух кругов относятся как квадраты их диаметров, а объем конуса равен 1/3 объёма цилиндра, имеющего такие же основание и высоту.

Метод Евдокса был усовершенствован Архимедом. Основные этапы, характеризующие метод Архимеда: 1) доказывается, что площадь круга меньше площади любого описанного около него правильного многоугольника, но больше площади любого вписанного; 2) доказывается, что при неограниченном удвоении числа сторон разность площадей этих многоугольников стремится к нулю; 3) для вычисления площади круга остается найти значение, к которому стремится отношение площади правильного многоугольника при неограниченном удвоении числа его сторон.

С помощью метода исчерпывания, целого ряда других остроумных соображений (в том числе с привлечением моделей механики) Архимед решил многие задачи. Он дал оценку числа p (3.10/71

Архимед предвосхитил многие идеи интегрального исчисления. (Добавим, что практически и первые теоремы о пределах были доказаны им.) Но потребовалось более полутора тысяч лет, прежде чем эти идеи нашли четкое выражение и были доведены до уровня исчисления.

Математики XVII столетия, получившие многие новые результаты, учились на трудах Архимеда. Активно применялся и другой метод - метод неделимых, который также зародился в Древней Греции (он связан в первую очередь с атомистическими воззрениями Демокрита). Например, криволинейную трапецию (рис. 1, а) они представляли себе составленной из вертикальных отрезков длиной f(х), которым тем не менее приписывали площадь, равную бесконечно малой величине f(х)dx. В соответствии с таким пониманием искомая площадь считалась равной сумме

бесконечно большого числа бесконечно малых площадей. Иногда даже подчеркивалось, что отдельные слагаемые в этой сумме - нули, но нули особого рода, которые, сложенные в бесконечном числе, дают вполне определенную положительную сумму.

На такой кажущейся теперь по меньшей мере сомнительной основе И. Кеплер (1571-1630) в своих сочинениях “Новая астрономия”.

(1609 г.) и «Стереометрия винных бочек» (1615 г.) правильно вычислил ряд площадей (например, площадь фигуры ограниченной эллипсом) и объемов (тело разрезалось на 6ecконечно тонкие пластинки). Эти исследования были продолжены итальянскими математиками Б. Кавальери (1598-1647) и Э.Торричелли (1608-1647). Сохраняет свое значение и в наше время сформулированный Б. Кавальери принцип, введенный им при некоторых дополнительных предположениях.

Пусть требуется найти площадь фигуры, изображенной на рисунке 1,б, где кривые, ограничивающие фигуру сверху и снизу, имеют уравнения y = f(x) и y=f(x)+c.

Представляя фигуру составленной из «неделимых», по терминологии Кавальери, бесконечно тонких столбиков, замечаем, что все они имеют общую длину с. Передвигая их в вертикальном направлении, можем составить из них прямоугольник с основанием b-а и высотой с. Поэтому искомая площадь равна площади полученного прямоугольника, т.е.

S = S1 = c (b – а).

Общий принцип Кавальери для площадей плоских фигур формулируется так: Пусть прямые некоторого пучка параллельных пересекают фигуры Ф1 и Ф2 по отрезкам равной длины (рис. 1,в). Тогда площади фигур Ф1 и Ф2 равны.

Аналогичный принцип действует в стереометрии и оказывается полезным при нахождении объемов.

В XVII в. были сделаны многие открытия, относящиеся к интегральному исчислению. Так, П.Ферма уже в 1629 г. задачу квадратуры любой кривой у = хn, где п - целое (т.е по существу вывел формулу ò хndx = (1/n+1)хn+1), и на этой основе решил ряд задач на нахождение центров тяжести. И. Кеплер при выводе своих знаменитых законов движения планет фактически опирался на идею приближенного интегрирования. И. Барроу (1630-1677), учитель Ньютона, близко подошел к пониманию связи интегрирования и дифференцирования. Большое значение имели работы по представлению функций в виде степенных рядов.

I. В физике

Работа силы

(A=FScos, cos 1)

Если на частицу действует сила F, кинетическая энергия не остается постоянной. В этом случае согласно

приращение кинетической энергии частицы за время dt равно скалярному произведению Fds, где ds - перемещение частицы за время dt. Величина

называется работой, совершаемой силой F.

Пусть точка движется по оси ОХ под действием силы, проекция которой на ось ОХ есть функция f(x) (f-непрерывная функция). Под действием силы точка переместилась из точки S1(a) в S2(b). Разобьем отрезок на n отрезков, одинаковой длины

Работа силы будет равна сумме работ силы на полученных отрезках. Т.к. f(x) -непрерывна, то при малом работа силы на этом отрезке равна

Аналогично на втором отрезке f(x1)(x2-x1), на n-ом отрезке --

f(xn-1)(b-xn-1).

Следовательно работа на равна:

А An = f(a)x +f(x1)x+...+f(xn-1)x= ((b-a)/n)(f(a)+f(x1)+...+f(xn-1))

Приблизительное равенство переходит в точное при n

А = lim [(b-a)/n] (f(a)+...+f(xn-1))= f(x)dx (по определению)

Пусть пружина жесткости С и длины l сжата на половину свой длины. Определить величину потенциальной энергии Ер равна работе A, совершаемой силой -F(s) упругость пружины при её сжатии, то

Eп = A= - (-F(s)) dx

Из курса механики известно, что

Отсюда находим

Еп= - (-Cs)ds = CS2/2 | = C/2 l2/4

Ответ: Cl2/8.

Какую работу надо совершить, чтобы растянуть пружину на 4 см, если известно, что от нагрузки в 1 Н она растягивается на 1 см.

Согласно закону Гука, сила X Н, растягивающая пружину на x, равна

Коэффициент пропорциональности k найдем из условия: если x=0,01 м, то X=1 Н, следовательно, k=1/0,01=100 и X=100x. Тогда

Ответ: A=0,08 Дж

С помощью подъемного крана извлекают железобетонную надолбу со дна реки глубиной 5 м. Какая работа при этом совершится, если надолба имеет форму правильного тетраэдра с ребром 1 м? Плотность железобетона 2500 кг/м3, плотность воды 1000 кг/м3.

Высота тетраэдра

объем тетраэдра

Вес надолбы в воде с учетом действия архимедовой силы равен

Теперь найдем работу Ai при извлечении надолбы из воды. Пусть вершина тетраэдра вышла на высоту 5+y, тогда объем малого тетраэдра, вышедшего из воды, равна, а вес тетраэдра:

Следовательно,

Отсюда A=A0+A1=7227,5 Дж + 2082,5 Дж = 9310 Дж = 9,31 кДж

Ответ: A=9,31 (Дж).

Какую силу давления испытывает прямоугольная пластинка длинной a и шириной b (a>b), если она наклонена к горизонтальной поверхности жидкости под углом б и ее большая сторона находится на глубине h?

Координаты центра масс

Центр масс - точка через которую проходит равнодействующая сил тяжести при любом пространственном расположении тела.

Пусть материальная однородная пластина о имеет форму криволинейной трапеции {x;y |axb; 0yf(x)} и функция

непрерывна на , а площадь этойкриволинейной трапеции равна S, тогда координаты центра масс пластины о находят по формулам:

x0 = (1/S) x f(x) dx; y0 = (1/2S) f 2(x) dx;

Найти центр масс однородного полукруга радиуса R.

Изобразим полукруг в системе координат OXY.

y = (1/2S) (R2-x2)dx = (1/R2) (R2-x2)dx = (1/R2)(R2x-x3/3)|= 4R/3

Ответ: M(0; 4R/3).

Найти координаты центра тяжести фигуры, ограниченной дугой эллипса x=acost, y=bsint, расположенной в I четверти, и осями координат.

В I четверти при возрастании x от 0 до a величина t убывает от р/2 до 0, поэтому

Воспользовавшись формулой площади эллипса S=рab, получим

Путь, пройденный материальной точкой

Если материальная точка движется прямолинейно со скоростью =(t) и за время

T= t2-t1 (t2>t1)

прошла путь S, то

В геометрии

Объём -- количественная характеристика пространственного тела. За единицу измерения объёма принимают куб с ребром 1мм(1дм, 1м и т.д.).

Количество кубов единичного объёма размещенных в данном теле -- объём тела.

Аксиомы объёма:

Объём -- это неотрицательная величина.

Объём тела равен сумме объёмов тел, его составляющих.

Найдем формулу для вычисления объёма:

выберем ось ОХ по направлению расположения этого тела;

определим границы расположения тела относительно ОХ;

введем вспомогательную функцию S(x) задающую следующее соответствие: каждому x из отрезка поставим в соответствие площадь сечения данной фигуры плоскостью, проходящей через заданную точку x перпендикулярно оси ОХ.

разобьем отрезок на n равных частей и через каждую точку разбиения проведём плоскость перпендикулярную оси ОХ, при этом наше тело разобьется на части. По аксиоме

V=V1+V2+...+Vn=lim(S(x1)x +S(x2)x+...+S(xn)x

а объем части, заключенной между двумя соседними плоскостями равна объему цилиндра Vц=SоснH.

Имеем сумму произведений значений функций в точках разбиения на шаг разбиения, т.е. интегральную сумму. По определению определенного интеграла, предел этой суммы при n называется интегралом

где S(x) - сечение плоскости, проходящей через выбранную точку перпендикулярно оси ОХ.

Для нахождения объема надо:

  • 1) Выбрать удобным способом ось ОХ.
  • 2) Определить границы расположения этого тела относительно оси.
  • 3) Построить сечение данного тела плоскостью перпендикулярно оси ОХ и проходящей через соответственную точку.
  • 4) Выразить через известные величины функцию, выражающую площадь данного сечения.
  • 5) Составить интеграл.
  • 6) Вычислив интеграл, найти объем.

Найти объем трехосного эллипса

Плоские сечения эллипсоида, параллельное плоскости xOz и отстоящее от нее на расстоянии y=h, представляет эллипс

Интегральное исчисление – это раздел математического анализа, в котором изучаются интегралы, их свойства, способы вычисления и приложения. Вместе с дифференциальным исчислением оно составляет основу аппарата математического анализа.

Даты возникновения некоторых математических знаков

Значение

Когда знак введен, год

Знаки объектов

бесконечность

Дж. Валлис

отношение длины окружности к диаметру

корень квадратный из

неизвестные или переменные величины

Р. Декарт

Знаки операций

сложение

немецкие математики

конец XV в.

вычитание

умножение

У. Оутред

умножение

Г. Лейбниц

Г. Лейбниц

Р. Декарт

X. Рудольф

логарифм

И. Кеплер

Б. Кавальери

арксинус

Ж. Лагранж

дифференциал

Г. Лейбниц

интеграл

Г. Лейбниц

производная

Г. Лейбниц

определенный интеграл

факториал

У. Гамильтон

многие математики

И. Бернулли

Знаки отношений

равенство

Р. Рекорд

Т. Гарриот

сравнимость

параллельность

У. Оутред

перпендикулярность

П. Эригон

Интегральное исчисление возникло из рассмотрения большого числа задач естествознания и математики. Важнейшие из них – физическая задача определения пройденного за данное время пути по известной, но, быть может, переменной скорости движения и значительно более древняя задача вычисления площадей и объемов геометрических фигур (см. Геометрические задачи на экстремум).

Центральным в интегральном исчислении является понятие интеграла, которое, однако, имеет две различные трактовки, приводящие соответственно к понятиям неопределенного и определенного интегралов.

В дифференциальном исчислении была введена операция дифференцирования функций. Рассматриваемая в интегральном исчислении обратная к дифференцированию математическая операция называется интегрированием или, точнее, неопределенным интегрированием.

В чем же состоит эта обратная операция и в чем ее неопределенность?

Операция дифференцирования сопоставляет заданной функции ее производную . Допустим, что мы хотим, исходя из заданной функции , найти такую функцию , производной которой является функция , т. е. . Такая функция называется первообразной функции .

Значит, обратная дифференцированию операция – неопределенное интегрирование – состоит в отыскании первообразной данной функции.

Заметим, что, наряду с функцией , первообразной для функции , очевидно, будет также любая функция , отличающаяся от постоянным слагаемым : ведь .

Таким образом, в отличие от дифференцирования, сопоставлявшего функции единственную другую функцию – производную первой, неопределенное интегрирование приводит не к одной конкретной функции, а к целому набору функций, и в этом его неопределенность.

Однако степень этой неопределенности не так уж велика. Напомним, что если производная некоторой функции равна нулю во всех точках какого-то промежутка, то это функция, постоянная на рассматриваемом промежутке (на промежутках, где скорость изменения переменной величины везде равна нулю, она не меняется). Значит, если на каком-то промежутке , то функция постоянна на этом промежутке, поскольку ее производная равна нулю во всех точках промежутка.

Итак, две первообразные одной и той же функции могут отличаться на промежутке только постоянным слагаемым.

Первообразные функции обозначают символом

где знак читается: интеграл. Это так называемый неопределенный интеграл. По доказанному, неопределенный интеграл изображает на рассматриваемом промежутке не одну конкретную функцию, а любую функцию вида

, (1)

где - какая-то первообразная функции на данном промежутке, а - произвольная постоянная.

Например, на всей числовой оси

; ; .

Мы здесь специально обозначили аргументы подынтегральных функций различными символами: , чтобы обратить внимание на независимость первообразной как функции от выбора буквы, используемой для обозначения ее аргумента.

Проверка написанных равенств выполняется простым дифференцированием их правых частей, в результате которого получаются стоящие в левых частях под знаком интеграла функции , , соответственно.

Полезно иметь в виду также следующие очевидные соотношения, непосредственно вытекающие из определений первообразной, производной, дифференциала и из соотношения (1) для неопределенного интеграла:

, , , .

Отыскание первообразной часто облегчают некоторые общие свойства неопределенного интеграла:

(вынесение постоянного множителя);

(интегрирование суммы); если

,

(замена переменной).

Эти соотношения также проверяются непосредственно с использованием соответствующих правил дифференцирования.

Найдем закон движения свободно падающего в пустоте тела, исходя из единственного факта, что при отсутствии воздуха ускорение свободного падения вблизи поверхности Земли постоянно и не зависит от особенностей падающего тела. Фиксируем вертикальную координатную ось; направление на оси выберем в сторону к Земле. Пусть - координата нашего тела в момент . Нам известно, таким образом, что и - постоянная. Требуется найти функцию - закон движения.

Поскольку , где , то, последовательно интегрируя, находим

Итак, мы нашли, что

, (3)

где и - какие-то постоянные. Но падающее тело подчиняется все-таки одному конкретному закону движения, в котором уже нет никакого произвола. Значит, есть еще какие-то условия, которые мы пока не использовали; они позволяют среди всех «конкурирующих» законов (3) выбрать тот, который соответствует конкретному движению. Эти условия легко указать, если разобраться в физическом смысле постоянных и . Если сравнить крайние члены соотношения (2) при , то выяснится, что , а из (3) при получается, что . Таким образом, математика сама напомнила нам, что искомый закон движения

вполне определится, если указать начальное положение и начальную скорость тела. В частности, если и , получаем .

Отметим теперь, что между операцией нахождения производной (дифференцированием) и операцией отыскания первообразной (неопределенным интегрированием) имеется, кроме указанного выше, еще целый ряд принципиальных отличий. В частности, следует иметь в виду, что если производная любой комбинации элементарных функций сама выражается через элементарные функции, т.е. является элементарной функцией, то первообразная элементарной функции уже не всегда является функцией элементарной. Например, первообразная

элементарной функции (называемая интегральным синусом и обозначаемая специальным символом ), как можно доказать, не выражается в элементарных функциях. Таким образом, принципиальный математический вопрос о существовании первообразной у наперед заданной функции не надо смешивать с не всегда разрешимой задачей об отыскании этой первообразной среди элементарных функций. Интегрирование часто является источником введения важных и широко используемых специальных функций, которые изучены ничуть не хуже таких «школьных» функций, как или , хотя и не входят в список элементарных функций.

Наконец, отметим, что отыскание первообразной, даже когда она выражается в элементарных функциях, скорее напоминает искусство, чем канонический алгоритм вычислений, подобный алгоритму дифференцирования. По этой причине найденные первообразные наиболее часто встречающихся функций собраны в виде справочных таблиц неопределенных интегралов. Следующая микротаблица такого рода, очевидно, равносильна микротаблице производных соответствующих основных элементарных функций:

Мы, пока говорили об обращении операции дифференцирования, пришли в этой связи к понятиям первообразной, неопределенного интеграла и дали первоначальное определение этих понятий.

Теперь укажем иной, куда более древний подход к интегралу, который послужил основным первоначальным источником интегрального исчисления и привел к понятию определенного интеграла или интеграла в собственном смысле этого слова. Этот подход четко прослеживается уже у древнегреческого математика и астронома Евдокса Книдского (примерно 408-355 до н.э.) и Архимеда, т.е. он возник задолго до появления дифференциального исчисления и операции дифференцирования.

Вопрос, который рассматривали Евдокс и Архимед, создав при его решении «метод исчерпывания», предвосхитивший понятие интеграла – это вопрос о вычислении площади криволинейной фигуры. Ниже мы рассмотрим этот вопрос, а пока поставим, вслед за И. Ньютоном, следующую задачу: по известной в любой момент из промежутка времени скорости тела найти величину перемещения тела за этот промежуток времени.

Если бы был известен закон движения, т.е. зависимость координаты тела от времени, то ответ, очевидно, выражался бы разностью . Более того, если бы мы знали какую-либо первообразную функции на промежутке , то, поскольку , где - постоянная, можно было бы найти искомую величину перемещения в виде разности , которая совпадает с разностью . Это очень полезное наблюдение, однако если первообразную данной функции указать не удается, то действовать приходится совсем иначе.

Будем рассуждать следующим образом.

Если промежуток отдельными моментами , такими, что , разбить на очень мелкие временные промежутки , , то на каждом из этих коротких промежутков скорость тела не успевает заметно измениться. Фиксировав произвольно момент , можно таким образом приближенно считать, что на промежутке времени движение происходит с постоянной скоростью . В таком случае для величины пути, пройденного за промежуток времени , получаем приближенное значение , где . Складывая эти величины, получаем приближенное значение

для всего перемещения на промежутке .

Найденное приближенное значение тем точнее, чем более мелкое разбиение промежутка мы произведем, т.е. чем меньше будет величина наибольшего из промежутков , на которые разбит промежуток .

Значит, искомая нами величина перемещения есть предел

(5)

сумм вида (4), когда величина стремится к нулю.

Суммы специального вида (4) называются интегральными суммами для функции на промежутке , а их предел (5), получаемый при неограниченном мельчании разбиений, называется интегралом (или определенным интегралом) от функции на промежутке . Интеграл обозначается символом

в котором числа называются пределами интегрирования, причем - нижним, a - верхним пределом интегрирования; функция , стоящая под знаком интеграла, называется подынтегральной функцией; - подынтегральным выражением; - переменной интегрирования.

Итак, по определению,

. (6)

Значит, искомая величина перемещения тела за временной промежуток при известной скорости движения выражается интегралом (6) от функции по промежутку .

Сопоставляя этот результат с тем, который на языке первообразной был указан в начале рассмотрения этого примера, приходим к знаменитому соотношению:

если . Равенство (7) называется формулой Ньютона-Лейбница. В левой его части стоит понимаемый как предел (6) интеграл, а в правой – разность значений (в концах и промежутка интегрирования) функции , первообразной подынтегральной функции . Таким образом, формула Ньютона-Лейбница связывает интеграл (6) и первообразную. Этой формулой можно, следовательно, пользоваться в двух противоположных направлениях: вычислять интеграл, найдя первообразную, или получать приращение первообразной, найдя из соотношения (6) интеграл. Мы увидим ниже, что оба эти направления использования формулы Ньютона-Лейбница весьма важны.

Интеграл (6) и формула (7) в принципе решают поставленную в нашем примере задачу. Так, если (как это имеет место в случае свободного падения, начинающегося из состояния покоя, т.е. с ), то, найдя первообразную функции по формуле (7), получаем величину

перемещения за время, прошедшее от момента до момента .

На основе разобранной только что физической задачи, приведшей нас к интегралу и формуле Ньютона-Лейбница, обобщая сделанные наблюдения, можно теперь сказать, что если на некотором промежутке задана функция , то, разбивая промежуток точками , составляя интегральные суммы

где , , и переходя к пределу при , где , мы получаем по определению интеграл

(6")

от функции по промежутку . Если при этом на , т.е. - первообразная функции на промежутке , то имеет место формула Ньютона-Лейбница:

. (7)

ЛЕОНАРД ЭЙЛЕР
(1707-1783)

Эйлер, крупнейший математик XVIII в., родился в Швейцарии. В 1727 г. по приглашению Петербургской академии наук он приехал в Россию. В Петербурге Эйлер попал в круг выдающихся ученых: математиков, физиков, астрономов, получил большие возможности для создания и издания своих трудов. Он работал с увлечением и вскоре стал, по единодушному признанию современников, первым математиком мира.

Научное наследие Эйлера поражает своим объемом и разносторонностью. В списке его трудов более 800 названий. Полное собрание сочинений ученого занимает 72 тома. Среди его работ – первые учебники по дифференциальному и интегральному исчислению.

В теории чисел Эйлер продолжил деятельность французского математика П. Ферма и доказал ряд утверждений: малую теорему Ферма, великую теорему Ферма для показателей 3 и 4 (см. Ферма великая теорема). Он сформулировал проблемы, которые определили горизонты теории чисел на десятилетия.

Эйлер предложил применить в теории чисел средства математического анализа и сделал первые шаги по этому пути. Он понимал, что, двигаясь дальше, можно оценить число простых чисел, не превосходящих , и наметил утверждение, которое затем докажут в XIX в. математики П. Л. Чебышев и Ж. Адамар.

Эйлер много работает в области математического анализа. Здесь он постоянно пользуется комплексными числами. Его имя носит формула , устанавливающая связь тригонометрических и показательной функций, возникающую при использовании комплексных чисел.

Ученый впервые разработал общее учение о логарифмической функции, согласно которому все комплексные числа, кроме нуля, имеют логарифмы, причем каждому числу соответствует бесчисленное множество значений логарифма.

В геометрии Эйлер положил начало совершенно новой области исследований, выросшей впоследствии в самостоятельную науку – топологию.

Имя Эйлера носит формула, связывающая число вершин (В), ребер (Р) и граней (Г) выпуклого многогранника: .

Даже основные результаты научной деятельности Эйлера трудно перечислить. Здесь и геометрия кривых и поверхностей, и первое изложение вариационного исчисления с многочисленными новыми конкретными результатами. У него были труды по гидравлике, кораблестроению, артиллерии, геометрической оптике и даже по теории музыки. Он впервые дает аналитическое изложение механики вместо геометрического изложения Ньютона, строит механику твердой точки или твердой пластины.

Одно из самых замечательных достижений Эйлера связано с астрономией и небесной механикой. Он построил точную теорию движения Луны с учетом притяжения не только Земли, но и Солнца. Это пример решения очень трудной задачи.

Последние 17 лет жизни Эйлера были омрачены почти полной потерей зрения. Но он продолжал творить так же интенсивно, как в молодые годы. Только теперь он уже не писал сам, а диктовал ученикам, которые проводили за него наиболее громоздкие вычисления.

Для многих поколений математиков Эйлер был учителем. По его математическим руководствам, книгам по механике и физике училось несколько поколений. Основное содержание этих книг вошло и в современные учебники.

Итак, определены важнейшие понятия интегрального исчисления и получена формула Ньютона-Лейбница, связывающая интегрирование и дифференцирование.

Подобно тому как в дифференциальном исчислении к понятию производной вела не только задача определения мгновенной скорости движения, но и задача проведения касательной, так в интегральном исчислении к понятию интеграла приводит не только физическая задача определения пройденного пути по заданной скорости движения, но и многие другие задачи, и в их числе древние геометрические задачи о вычислении площадей и объемов.

Пусть требуется найти площадь изображенной на рис. 1 фигуры (называемой криволинейной трапецией), верхняя «сторона» которой есть график заданной на отрезке функции . Точками разобьем отрезок на мелкие отрезки , в каждом из которых фиксируем некоторую точку . Площадь узкой криволинейной трапеции, лежащей над отрезком , заменим приближенно площадью соответствующего прямоугольника с основанием и высотой . В таком случае приближенное значение площади всей фигуры даст знакомая нам интегральная сумма , а точное значение искомой площади получится как предел таких сумм, когда длина наибольшего из отрезков разбиения стремится к нулю. Таким образом, получаем:

Попробуем теперь вслед за Архимедом выяснить, в каком отношении парабола делит площадь изображенного на рис. 2 единичного квадрата. Для этого попросту вычислим, исходя из формулы (8), площадь нижнего параболического треугольника. В нашем случае и . Нам известна первообразная функции , значит, можно воспользоваться формулой (7") Ньютона-Лейбница и без труда получить

.

Следовательно, парабола делит площадь квадрата в отношении 2:1.

При обращении с интегралами, особенно применяя формулу Ньютона-Лейбница, можно пользоваться общими свойствами неопределенного интеграла, которые названы в начале статьи. В частности, правило замены переменной в неопределенном интеграле при условии, что , , с учетом формулы Ньютона-Лейбница позволяет заключить, что

и таким образом, получается очень полезная формула замены переменной в определенном интеграле:

. (9)

С помощью интегралов вычисляют также объемы тел. Если изображенную на рис. 1 криволинейную трапецию вращать вокруг оси , то получится тело вращения, которое приближенно можно считать составленным из узких цилиндров (рис. 3), полученных при вращении соответствующих прямоугольников. Сохраняя прежние обозначения, записываем объем каждого из этих цилиндров в виде (произведение площади основания на высоту ). Сумма дает приближенное значение объема рассматриваемого тела вращения. Точное значение получится как предел таких сумм при . Значит,

. (10)

В частности, чтобы вычислить объем изображенного на рис. 4 конуса, достаточно положить в формуле (10) , и , где - угловой коэффициент вращаемой прямой. Найдя первообразную функции и воспользовавшись формулой Ньютона-Лейбница, получаем

где площадь круга, лежащего в основании конуса.

В разобранных примерах мы исчерпывали геометрическую фигуру такими фигурами, площади или объемы которых могли вычислить, а затем делали предельный переход. Этот прием, идущий от Евдокса и развитый Архимедом, называется методом исчерпывания. Это наиболее распространенный метод рассуждений в большинстве применений интеграла.

«Поскольку бочки связаны с кругом, конусом и цилиндром – фигурами правильными, тем самым они поддаются геометрическим изменениям». И. Кеплер

Смысл – там, где змеи интеграла. Меж цифр и букв, меж и ! В. Я. Брюсов

Просмотр содержимого документа
«МР комбинированного занятия для преподавателя "Основы интегрального исчисления. Определённый интеграл".»

ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ

УЧРЕЖДЕНИЕ СРЕДНЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

НОВОСИБИРСКОЙ ОБЛАСТИ

«БАРАБИНСКИЙ МЕДИЦИНСКИЙ КОЛЛЕДЖ»

МЕТОДИЧЕСКАЯ РАЗРАБОТКА

комбинированного занятия для преподавателя

ДИСЦИПЛИНА "МАТЕМАТИКА"

Раздел 1. Математический анализ

Тема 1.6. Основы интегрального исчисления. Определённый интеграл

Специальность

060101 Лечебное дело

Курс – первый

Методический лист

Формирование требований ГОС при изучении темы

« Основы интегрального исчисления. Определённый интеграл»

должен знать:

    значение математики в профессиональной деятельности и при освоении профессиональной образовательной программы;

    основные математические методы решения прикладных задач;

    основы интегрального и дифференциального исчисления.

В результате изучения темы обучающийся должен уметь:

    решать прикладные задачи в области профессиональной деятельности;

Цели занятия:

Образовательные цели: повторить и закрепить навыки вычисления неопределенного и определенного интеграла, рассмотреть методы вычисления определенных интегралов, закрепить навык нахождения определённого интеграла

Воспитательные цели : содействовать формированию культуры общения, внимания, интереса к предмету, способствовать пониманию студентом сущности и социальной значимости своей будущей профессии, проявления к ней устойчивого интереса.

Развивающие цели:

способствовать

    формированию умений применять приемы сравнения, обобщения, выделения главного;

    развитию математического кругозора, мышления и речи, внимания и памяти.

Вид занятия : комбинированное занятие

Продолжительность занятия : 90 минут

Межпредметные связи: физика, геометрия и все предметы, где используется математический аппарат

Литература:

    Гилярова М.Г. Математика для медицинских колледжей. – Ростов н/Д: Феникс, 2011. – 410, с. – (Медицина)

    Математика: учеб. пособие / В.С. Михеев [и др.]; под ред. Н.М. Демина. – Ростов н/Д: Феникс, 2009. – 896 с. – (Среднее профессиональное образование).

Оснащение занятия:

    Раздаточный материал

Ход занятия

п/п

Этап урока

Время

(мин)

Методические указания

Организационная часть

Проверка посещаемости и внешнего вида студентов.

Сообщение темы, цели и плана занятия.

Мотивация

Понятие интеграла является одним из основных в математике. К концу 17 в. Ньютоном и Лейбницем был создан аппарат дифференциального и интегрального исчисления, который составляет основу математического анализа. Изучение этой темы завершает школьный курс математического анализа, знакомит учащихся с новым инструментом познания мира, а рассмотрение в школе применения интегрального исчисления к важнейшим разделам физики показывает учащимся значение и силу высшей математики.

Необходимость полноценного изучения важнейших элементов интегрального исчисления связана с огромной значимостью и важностью этого материала при освоении профессиональной образовательной программы.

В дальнейшем вам пригодятся знание определённого интеграла при нахождении решения уравнений определяющих скорость радиоактивного распада, размножения бактерий, сокращении мышцы, растворении лекарственного вещества в таблетке и многих других задач дифференциального исчисления применяемых в медицинской практике.

Актуализация опорных знаний

Необходимо проверить вычислительные навыки и знание таблицы интегралов (Приложение 1)

Изложение нового материала

План изложения (Приложение 2)

    Определённый интеграл

    Свойства определённого интеграла

    Формула Ньютона-Лейбница

    Вычисление определенных интегралов различными методами

    Применение определенного интеграла к вычислению различных величин. Вычисление площади плоской фигуры

Практическая часть

Выполнение упражнений для закрепления материала темы

(Приложение 3)

Первичное закрепление полученных знаний и умений

Осмысление полученных знаний и умений

Подведение итогов занятия

Выставление оценок, комментируя ошибки, сделанные в ходе работы

Домашнее задание

Подготовить теоретический материал к практическому занятию и выполнить задачи раздела «Самоконтроль» (Приложение 4)

Приложение 1

Актуализация опорных знаний

Математический диктант

1 вариант

I .

II .

2 вариант

I. Вычислить неопределённые интегралы

II . Назвать метод вычисления интегралов

Приложение 2

Информационно-справочный материал

Определённый интеграл

Понятие интеграла связано с обратной задачей дифференцирования функции. Понятие определенного интеграла удобно рассматривать на решении задачи о вычислении площади криволинейной трапеции.

Для нахождения площади фигуры, ограниченной с двух сторон перпендикулярами, восстановленными в точках а и b , сверху непрерывной кривой у = f (х) и снизу осью Ох , разобьем отрезок [а, b ] на небольшие отрезки:

a = x 0 x 1 x 2 ... x n -1 x n = b .

Восстановим перпендикуляры из этих точек до пересечения с кривой у = f (х) . Тогда площадь всей фигуры будет примерно равна сумме элементарных прямоугольников, имеющих основание, равное х i = х i i -1 , а высоту, равную значению функции f (х) внутри каждого прямоугольника. Чем меньше величина х i , тем точнее будет определяться площадь фигуры S . Следовательно:

Определение. Если существует предел интегральной суммы, не зависящий от способа разбиения отрезка [а, b ] и выбора точек , то этот предел называют определенным интегралом от функции f (х) на отрезке [а, b ] и обозначают:

где f (x ) ‑ подынтегральная функция, х ‑ переменная интегрирования, а и b - пределы интегрирования (читается: определенный интеграл от a д o b эф от икс де икс).

Таким образом, геометрический смысл определенного интеграла связан с определением площади криволинейной трапеции, ограниченной сверху функцией у = f (х) , снизу осью Ох , а по бокам ‑ перпендикулярами, восстановленными в точках а и b .

Процесс вычисления определенного интеграла называют интегрированием. Числа а и b называют соответственно нижним и верхним пределами интегрирования.

Свойства определенного интеграла

    Если пределы интегрирования равны, то определенный интеграл равен нулю:

    Если переставить пределы интегрирования, то знак интеграла изменится на противоположный:

    Постоянный множитель можно выносить за знак определенного интеграла:

    Определенный интеграл от суммы конечного числа непрерывных функций f 1 (x ), f 2 (x )... f n (x ), заданных на отрезке [а, b ], равен сумме определенных интегралов от слагаемых функций:

    Отрезок интегрирования можно разбивать на части:

    Если функция всегда положительна, либо всегда отрицательна на отрезке [а, b ], то определенный интеграл представляет собой число того же знака, что и функция:

Формула Ньютона-Лейбница

Формула Ньютона-Лейбница устанавливает связь между определенным и неопределенным интегралами.

Теорема. Величина определенного интеграла от функции f (х) на отрезке [а, b ] равна приращению любой из первообразных для этой функции на данном отрезке:

Из этой теоремы следует, что определенный интеграл есть число, в то время как неопределенный ‑ совокупность первообразных функций. Таким образом, согласно формуле для нахождения определенного интеграла необходимо:

1. Найти неопределенный интеграл от данной функции, положив С = 0.

2. Подставить в выражение первообразной вместо аргумента х сначала верхний предел b , затем нижний предел а, и вычесть из первого результата второй.

Вычисление определенных интегралов различными методами

При вычислении определенных интегралов используют методы, рассмотренные для нахождения неопределенных интегралов.

Метод непосредственного интегрирования

Этот метод основан на использовании табличных интегралов и основных свойств определенного интеграла.

ПРИМЕРЫ:

1) Найти

Решение:

2) Найти

Решение:

3) Найти

Решение:

Метод замены переменной интегрирования

ПРИМЕР:

Решение. Для нахождения интеграла воспользуемся методом замены переменной. Вводим новую переменную

u =3 x ‑ 1 , тогда du = 3 dx , dx = . При введении новой переменной необходимо осуществить замену пределов интегрирования, так как новая переменная будет иметь другие границы изменения. Они находятся по формуле замены переменной. Так верхний предел будет равен и b = 32 ‑ 1 = 5 , нижний ‑ и а =31 ‑ 1 = 2 . Заменив переменную и пределы интегрирования, получим:

Метод интегрирования по частям

Этот метод основан на использовании формулы интегрирования по частям для определенного интеграла:

ПРИМЕР:

1) Найти

Решение:

Пусть u = ln x , dv = xdx , тогда

Применение определенного интеграла к вычислению различных величин.

Вычисление площади плоской фигуры

Ранее было показано, что определенный интеграл можно использовать для вычисления площади фигуры, заключенной между графиком функции у = f (x ), осью Ох и двумя прямыми х = а и х = b .

Если функция у = f (x ) находится ниже линии абсцисс, т.е. f (x )

Если функция у = f (x ) несколько раз пересекает ось Ох , то необходимо отдельно найти площади для участков, когда f (x ) 0, и сложить их с абсолютными величинами площадей, когда функция f (x )

ПРИМЕР 1. Найти площадь фигуры, ограниченной функцией у = sin х и осью Ох на участке 0 х 2.

Решение. Площадь фигуры будет равна сумме площадей:

S = S 1 + | S 2 |,

где S 1 - ; площадь при у 0 ; S 2 - площадь при у 0.

S=2 + 2 = 4 кв.ед.

ПРИМЕР 2. Найти площадь фигуры, заключенной между кривой у = х 2 , осью Ох и прямыми х = 0, х = 2.

Решение. Построим графики функций у = х 2 и х = 2.

Заштрихованная площадь и будет искомой площадью фигуры. Так как f (x ) 0,то

Вычисление длины дуги плоской кривой

Если кривая у = f (х) на отрезке [а, b ] имеет непрерывную производную, то длина дуги этой кривой находится по формуле:

ПРИМЕР

Найти длину дуги кривой y 2 = x 3 на отрезке (y0)

Решение

Уравнение кривой y = x 3/2 , тогда y’ = 1,5 x 1/2 .

Сделав замену 1+получим:

Вернёмся к первоначальной переменной:

Вычисление объёма тела вращения

Если криволинейная трапеция, ограниченная кривой у = f (x ) и прямыми х=а и х= b , вращается вокруг оси Ох , то объём вращения вычисляется по формуле:

ПРИМЕР

Найти объём тела, образованного вращением вокруг оси Ох полуволной синусоиды
y = sin x , при 0≤ х≤ .

Решение

Согласно формуле имеем:

Для вычисления этого интеграла сделаем следующие преобразования:

Приложение 3

Первичное закрепление изученного материала

1. Вычисление определённых интегралов

2. Приложения определённого интеграла

    Площадь фигуры

Вычислите площадь фигуры, ограниченной линиями:

    Путь, пройденный телом (точкой) при прямолинейном движении за промежуток времени от t 1 до t 2 (

    v =3 t 2 +2 t -1 (t в с, v в м/с). Найдите путь, пройденный телом за 10с от начала движения.

    Скорость движения точки изменяется по закону v =6 t 2 +4 (t в с, v в м/с). Найдите путь, пройденный точкой за 5с от начала движения.

    Скорость движения точки v =12 t -3 t 2 (t в с, v в м/с). Найдите путь, пройденный точкой от начала движения до её остановки.

    Два тела начали двигаться одновременно из одной точки в одном направлении по прямой. Первое тело движется со скоростью v =6 t 2 +2 t (м/с), второе
    v =4 t +5 (м/с). На каком расстоянии друг от друга они окажутся через 5с?

Приложение 4

Самоконтроль по теме

«Определённый интеграл и его применение»

1 вариант

1. Вычислите интегралы

2.

y = - x 2 + x + 6 и y = 0

3. Скорость движения точки изменяется по закону v =9 t 2 -8 t (t в с, v в м/с). Найдите путь, пройденный телом за четвёртую секунду от начала движения.

2 вариант

1. Вычислите интегралы

2. Вычислите площадь фигуры ограниченной линиями

y = - x 2 + 2 x + 3 и y = 0

3. Скорость движения точки изменяется по закону v = 8 t - 3 t 2 (t в с, v в м/с). Найдите путь, пройденный телом за пять секунд от начала движения.

Интегральное исчисление возникло в связи с решением задач определения площадей и объёмов. За 2000 лет до н.э. жители Египта и Вавилона уже умели определять приближённо площадь круга и знали правило для вычисления объёма усечённой пирамиды. Теоретическое обоснование правил вычисления площадей и объёмов впервые появились у древних греков. Философ-материалист Демокрит в V веке до н.э. рассматривает тела, как состоящие из большого числа малых частиц. То есть конус представляет собой множество весьма тонких цилиндрических дисков разных радиусов. Огромную роль в истории интегрального исчисления сыграла задача о квадратуре круга (квадратура круга – построение квадрата, площадь которого равна площади данного круга) . Точную квадратуру нескольких криволинейных фигур нашёл Гиппократ (середина V века).

Первым известным методом для вычисления интеграла является метод исчерпания Евдокса (примерно 370 до н. э.). Он пытался найти площади и объемы, разрывая их на бесконечное множество частей, для которых площадь или объем уже известен. Этот метод был подхвачен и развит Архимедом, использовался для расчета площадей парабол и приближенного расчета площади круга. В своем сочинении «Квадратура параболы» Архимед пользуется методом исчерпывания для вычисления площади сектора пара­болы. Т.е. Архимед впервые составляет суммы, которые в наше время называются интегральными суммами. Первые значимые попытки развития интеграционных методов Архимеда, увенчавшиеся успехом, были предприняты в XVII веке, когда, с одной стороны, были достигнуты значительные успехи в области алгебры, а с другой стороны – всё более интенсивно развивались экономика, техника, естествознание, а там требовались обширные и глубокие методы изучения и вычисления величин.

При вычислении площади криволинейной трапеции Ньютон и Лейбниц приходят к понятию первообразной (или примитивной) функции для данной производной функции f (х), где С могло быть любым. Та к называемая сегодня формула Ньютона-Лейбница позволяет сводить довольно сложное вычисление определенных интегралов, т.е. нахождение пределов интегральных сумм, к сравнительно простой операции отыскания первообразных. Лейбницу принадлежит символ дифференциала а п озже появился и символ интеграла Символ определённого интеграла ввёл Ж. Фурье, а термин «интеграл» (от латинского integer - целый) был предложен И. Бернулли.

Работы по исследованию основ дифференциального и интегрального исчислений начинаются в XIX веке трудами О. Коши и Б. Больцано. Тогда же в развитие интегрального исчисления внесли значительный вклад русские учёные-математики М.В. Остроградский, В.Я. Буняковский, В.Я. Чебышев. Это было время, когда современный математический анализ только создавался. Это была, пожалуй, единственная по своей интенсивности эпоха математического творчества, а Эйлер объединил обширный, но разрозненный материал нового анализа в цельную науку.

Со временем, человек приобретал все большую власть над природой, но мечта о полете к звездам оставалась все такой же несбыточной. Писатели-фантасты упоминали ракеты для осуществления космического полета. Однако эти ракеты были технически необоснованной мечтой. Честь открыть людям дорогу к звёздам выпала на долю нашего соотечественника К. Э. Циолковского. Над задачами по созданию искусственного спутника Земли, расчётов траектории выхода их на орбиту работала целая плеяда ученых, во главе с С.П. Королёвым.

Особенно интересны задачи, являющиеся прообразом задач на расчёты траекторий выхода космических аппаратов на заданную орбиту, на нахождение высоты и скорости подъёма или спуска тела и некоторые другие задачи с использованием интегрального исчисления.

Задача 1 . Скорость прямолинейного движения тела задана

уравнением . Найти уравнение пути S, если за время t = 2сек тело прошло 20м.

Решение : откудаИнтегрируем: откуда Используя данные найдём С = 4. Т.е. уравнение движения тела имеет вид .

При полете в космос, надо учесть все факторы окружающей нас среды, и чтобы попасть куда нужно, требуется рассчитать траекторию движения, используя исходные данные. Всё это нужно сделать перед тем, как совершится полёт. В 2016 году исполняется 55 лет со дня полёта на орбиту первого космонавта Юрия Алексеевича Гагарина. При расчётах приходилось решать и такие задачи.

Задача 2 . Необходимо запустить ракету весом Р = 2·10 4 Н(Т) с поверхности Земли на высоту h = 1500 км. Вычислить работу необходимую для её запуска.

Решение. f – сила притяжения тела Землёй есть функция от его расстояния х до центра Земли: , где На поверхности Земли где сила притяжения равна весу тела Р , а х = R - радиус Земли, поэтомуи При подъёме ракеты с поверхности Земли на высоту h переменная х изменяется от x = R до x = R + h . Искомую работу находим по формуле: Тогда получаем: работа для запуска ракеты равна

Задача 3 . Сила в 10 Н растягивает пружину на 2 см . Какую работу она

совершает при этом?

Решение . По закону Гука, сила F , растягивающая пружину, пропорциональна растяжению пружины, т.е. F = кх. Из условия задачи

к= 10/0,02(Н/м), то F = 500х . Работа: .

Задача 4 . Из шахты глубиной l = 100 м надо поднять равномерно клеть весом Р 1 = 10 4 Н , которая висит на канате, намотанном на барабан. Вычислить полную работу А полн , необходимую для поднятия клети, если вес одного погонного метра каната Р 2 = 20 Н .

Решение . Работа по поднятию клети: а по поднятию каната пропорциональна весу каната, т.е. Следовательно, полная работа полна:

Задача 5 . Рессора прогибается под действием силы 1,5·10 4 Н на 1см. Какую работу надо затратить для деформации рессоры на 3 см? (Деформирующая сила пропорциональна прогибу рессоры.)

Решение . F =кх, где х - прогиб рессоры. При х = 0,01м имеем: . Тогда работа для деформации равна:

Сложен и небезопасен подъём в космическое пространство, но не менее трудностей таит возвращение на Землю, когда аппарат космического корабля должен приземлиться со скоростью не более 2 м/с. Только в этом случае аппарат, приборы в нём, а главное, члены экипажа, не испытают резкого жёсткого удара. Константин Эдуардович Циолковский решил использовать торможение космического корабля воздушной оболочкой Земли. Двигаясь со скоростью 8 м/с, космический аппарат не падает на Землю. Первая стадия спуска - включение на короткое время тормозного двигателя. Скорость уменьшается на 0,2 км/с, и сразу начинается спуск. Рассмотрим пример решения задачи на составление закона движения при заданных условиях.

Задача 6 . Найти закон движения свободно падающего тела при постоянном ускорении g, если в момент движения тело находилось в покое.

Решение: Известно, что ускорение прямолинейно движущегося тела есть вторая производная пути S по времени t , или производная от скорости по времени t : , но , следовательно, , откуда . Интегрируем: , и Из условия: , откуда найдём и скорость движения: . Найдём закон движения тела: , или . Интегрируем: , . По начальным условиям: , откуда найдём Имеем уравнение движения падающего тела: - это знакомая формула физики .

Задача 7 . Тело брошено вертикально вверх с начальной скоростью

Найти уравнение движения этого тела (сопротивлением воздуха пренебречь).

Решение: Примем: направление по вертикали вверх - за положительное, а ускорение силы тяжести, как направленное вниз, - за отрицательное. Имеем: , откуда . Интегрируем: то . Т.к. и то С 1: и Уравнение скорости: Находим закон движения тела: т.к. и тогда откуда .Интегрируем: или При и найдём , и Имеем уравнение движения тела: или .

Следующий пример показывает расчет траектории сброса отработанных секций, ненужных приборов, материалов. В этом случае их отправляют на Землю, рассчитав орбиту так, чтобы при прохождении через атмосферные слои они сгорели, а несгоревшие остатки упали на Землю (чаще всего - в океан), не причинив при этом вред.

Задача 8 . Составить уравнение кривой, проходящей через точку М (2; -3) и имеющую касательную с угловым коэффициентом .

Решение: В условии задачи дано: или Интегрируя, имеем: При х = 2 и у = -3, С = - 5 , а траектория движения имеет вид: .

Строителям иногда приходится решать задачи по вычислению площадей необычных фигур, для которых нет общеизвестных формул. В этом случае снова выручают интегралы.

Задача 9 . Вычислить площадь фигуры, ограниченной линиями: и

Решение : Выполним построение чертежа (рис. 1), для чего решим систему уравнений. Найдём точки пересечения линий: А(-2;4 ) и В(4;16) . Искомая площадь представляет собой разность площадей с пределами интегрирования, а = х 1 = -2 и в = х 2 = 4. Тогда имеем площадь:

.

Космонавты и ученые, работая на орбитальной станции, для чистоты эксперимента решают и исследуют многие вопросы астрономии, физики, химии, медицины, биологии и т.д. Сопроводим следующую задачу литературным примером. В известном фантастическом романе Герберта Уэллса «Война миров» описывается нападение марсиан на планету Земля, которые решили расширить свои перенаселённые территории за счёт захвата наших, т.к. климатические условия Земли были подходящими. Начался захват территории и уничтожение землян, которые получили помощь оттуда, откуда совсем не ожидали. Наши «родные» бактерии, с которыми мы уже научились бороться, попав в организм марсиан с воздухом, пищей, водой, нашли в нём благоприятную среду для своего развития и размножения, быстренько адаптировались и, уничтожив марсиан, избавили Землю от захватчиков. Рассмотрим решение задачи, дающей понятие об этом.

Задача 10. Скорость размножения некоторых бактерий пропорциональна количеству бактерий, имеющихся в наличии в рассматриваемый момент времени t. Количество бактерий утроилось в течение 5ч. Найти зависимость количества бактерий от времени.

Решение: Пусть x (t ) есть количество бактерий в момент времени t, а в начальный момент тогда скорость их размножения. По условию имеем: или след.: Найдём С: и функция Известно, чтот.е. или откуда коэффициент пропорциональности равен: а функция имеет вид: .

В знаменитом романе А.Н. Толстого «Гиперболоид инженера Гарина» хотелось бы почувствовать, ощутить, что же это такое – гиперболоид? Какие у него размеры, форма, поверхность, объём? Следующая задача – об этом.

Задача 11. Гипербола , ограниченная линиями: у = 0, х = a , х = 2а вращается вокруг оси ОХ. Найти объём полученного гиперболоида (рис.2).

Решение. Используем формулу для вычисления объёма тел вращения вокруг оси ОХ с помощью определённого интеграла:

Учёные-уфологи занимаются изучением фактов, которые приводят «очевидцы», рассказывая о том, что видели летящий космический корабль в виде огромного светящегося диска («тарелки»), примерно такой формы как на рисунке 3. Рассмотрим решение задачи по определению объёма такой «тарелки».

Задача 12 . Вычислить объём тела, образованного вращением вокруг оси ОХ площади, ограниченной линиями у = х 2 - 9 и у = 0 .

Решение : При выполнении чертежа параболоида (рис.3) имеем пределы интегрирования от х = -3 до х = 3 . Заменим пределы интегрирования в силу симметричности фигуры относительно оси ОУ на х = 0 и х = 3 , а результат удвоим. Следовательно, объём диска равен:

Экономический смысл определённого интеграла выражает объём произведённой продукции при известной функции f (t ) - производительности труда в момент t . Тогда объём выпускаемой продукции за промежуток вычисляется по формуле Рассмотрим пример для предприятия.

Задача 13 . Найти объём продукции, произведённой за 4 года, если функция Кобба-Дугласа имеет вид

Решение . Объём произведённой предприятием продукции равен:

Подводя итоги можно сделать вывод, что применение интеграла раскрывает большие возможности. При изучении геометрии рассматривают вычисление площадей плоских фигур ограниченных отрезками прямых (треугольников, параллелограммов, трапеций, многоугольников), и объёмов тел, полученных при их вращении. Определённый интеграл позволяет вычислять площади сложных фигур, ограниченных любыми кривыми линиями, а также находить объёмы тел, получаемых при вращении криволинейных трапеций вокруг любой оси.

Также хочется отметить, что применение определенного интеграла не ограничивается только вычислением различных геометрических величин, но используется и при решении задач из различных областей физики, аэродинамики, астрономии, химии и медицины, космонавтики, а также, экономических задач.

Список литературы :

  1. Апанасов, П.Т. Сборник задач по математике: учеб. пособие/ П.Т. Апанасов, М.И. Орлов. - М.: Высшая школа, 1987.- 303 с.
  2. Беденко, Н.К. Уроки по алгебре и началам анализа: методическое пособие/ Н.К. Беденко, Л.О. Денищева. - М.: Высшая школа, 1988. - 239 с.
  3. Богомолов, Н.В. Практические занятия по высшей математике: учеб. пособие/ Н.В. Богомолов. - М.: Высшая школа, 1973.- 348 с.
  4. Высшая математика для экономистов: учебник/ под ред. Н.Ш. Кремера. – 3-е изд. – М.: ЮНИТИ-ДАНА, 2008.- 479 с.
  5. Запорожец, Г.И. Руководство к решению задач по математическому анализу: учеб. пособие/ Г.И. Запорожец.- М.: Высшая школа, 1966. – 460 с.