Что служит пищевым ресурсом для клубеньковый бактерий? Клубеньковые бактерии – симбиотические организмы, фиксирующие азот.

Для организмов рода Rhizobium характерна полиморфность, т. е формы бактерий очень разнообразны. Данные микроорганизмы могут быть подвижными и неподвижными, иметь форму кокка или палочки, нитевидную, овальную. Чаще всего молодые прокариоты имеют палочковидную форму, которая с ростом и возрастом изменяется за счет накопления питательных веществ и обездвиживания. В своем микроорганизм проходит несколько стадий, о которых можно судить по его внешнему виду. Изначально это форма палочки, затем так называемой "опоясанной палочки" (имеет пояски с жировыми включениями) и, наконец, бактериод - крупная неподвижная клетка неправильной формы.

Клубеньковые бактерии обладают специфичностью, т. е. они способны поселяться только у

определенной группы или вида растений. Это свойство у микроорганизмов сформировалось генетически. Также важной является и эффективность - способность накапливать атмосферный азот в достаточном количестве для своего растения-хозяина. Данное свойство не является постоянным и может изменяться из-за условий обитания.

О том, как клубеньковые бактерии попадают в корень, нет единого мнения, однако существует ряд гипотез о механизме их проникновения. Так, некоторые ученые считают, что прокариоты внедряются в корень через повреждения его тканей, а другие говорят о проникновении через корневые волоски. Также существует ауксинная гипотеза - предположение о клетках-спутниках, которые помогают бактериям внедряться в клетки корня.

Само же внедрение происходит в две фазы: сперва - инфицирование корневых волосков, затем - образование клубеньков. Длительность фаз различна и зависит от конкретного вида растения.

Значение бактерий, которые способны фиксировать азот, велико для сельского хозяйства, т. к. именно эти организмы могут повышать урожайность. Из данных микроорганизмов готовят которое используют для обработки семян бобовых, что способствует более быстрому инфицированию корней. Различные виды при посадке даже на бедных почвах не требуют дополнительного внесения азотных удобрений. Так, 1 га бобовых «в работе» с клубеньковыми бактериями в течение года переводит в связанное состояние 100-400 кг азота.

Таким образом, клубеньковые бактерии - симбиотические организмы, которые очень важны не только в жизни растения, но и

В большом количестве ($72\%$), но он нейтрален (абсолютно недоступен для усвоения растениями).

$10\%$ растений семейства Бобовых вступают в симбиоз с бактериями (обнаружены бактерии и на корнях ольхи семейства Берёзовых).

Клубеньковые бактерии относятся к роду Rhizodium. Их основное свойство - способность фиксировать молекулярный азот из атмосферного воздуха и синтезировать органические азотсодержащие соединения. Эти бактерии, вступая в симбиоз с бобовыми растениями способны образовывать на их корнях клубеньки. Они переводят газообразный азот в соединения, легко доступные для усвоения растениями, а цветковые растения, в свою очередь, поставляют питательные вещества для бактерий. Так же данный вид бактерий играет важную роль в процессе обогащения грунта азотом.

Размер клубеньковых бактерий $0,3 - 3$ мкм. Имеют округлую форму, слизистую консистенцию, прозрачные. В отличие от других бактерий они не образуют спор, способны двигаться и для нормальной жизнедеятельности им необходим кислород.

Проникнув в корневой волосок растения бактерии стимулируют интенсивное деление клеток корня, вследствие чего и образуется клубенёк. Сами же бактерии развиваются в этих клубеньках и участвуют в процессе ассимиляции азота. Там они трансформируются, приобретая разветвлённую форму - бактероид, который и поглощают молекулярный азот, нитраты, аминокислоты и аммонийные соли. Как источник углерода для клубеньковых бактерий служат моно- и дисахариды, органические кислоты, спирты.

Растенияже поставляют бактериям жизненно необходимые питательные органические вещества. Такая форма симбиоза позитивно отражается на обоих организмах - симбионтах:

  • бактерии получают возможность нормально пройти свой цикл развития;
  • растение развивается нормально, получая в достаточном количестве самый необходимый минеральный элемент питания - азот.

Замечание 1

Такой источник питания растений называют биологическим, а бобовые растения - культурой, обогащающей почву (по К.А. Тимирязеву).

В отличии от большинства растений, бобовые не только не обедняют почву, но и ещё и обогащают её соединениями азота. Обогащение происходит во время выращивания бобовых растений (люпин, горох, соя, клевер, люцерна, вика, донник) и при дальнейшем разложении их корней и листьев.

После отмирания корней бобовых растений клубеньковые бактерии не гибнут, а ведут сапрофитный образ жизни.

Клубеньковые бактерии способны поглощать из атмосферного воздуха до $300$ кг азота на $1$ гектаре посевов бобовых, и при этом в почве ещё остаётся более $50$ кг азотосодержащих соединений.

Замечание 2

Разные формы бактерий имеют специфическую предрасположенность к развитию на корнях определённых представителей бобовых: Rhizodium Leguminosarum – у гороха, кормовых бобов, вики; Rh. Meliloti - у донника, люцерны; Rh. Japonicum - у сои; Rh. Trifolium - у клевера.

Значение и перспективы симбиоза бактерий и бобовых растений

Этот тип симбиоза очень важен в природе и, особенно, во время выращивания растений, потому что обеспечивает их повышенную питательность и урожайность, а одновременно - обновление почвы и повышение её плодородия.

Бобовые растения являются основой современного альтернативного земледелия - без использования удобрений или же с внесением их в незначительных дозах.

К.А. Тимирязев отметил, что бобовые растения проникли всюду, куда только достигают здравые сельскохозяйственные понятия. Но вряд ли найдётся в истории много открытий, которые бы оказались такими полезными для человечества, как использование клевера и вообще бобовых растений в севообороте, чтобы иметь возможность так разительно увеличивать продуктивность сельского хозяйства.

Бобовые растения в наше время широко культивируются во всём мире. Значение их велико и будет оставаться таковым и даже возрастать, так ка они - источник экологического и экономического (фактически бесплатного) азота.

В $XXI$ столетии при наличии высокоразвитых технологий производства минеральных удобрений (важнейшие из них - азотные), до двух третей азота, использованного в мировом сельском хозяйстве, поступает из биологических источников, в основном за счёт бобовых растений и их симбионтов - клубеньковых бактерий-азотфиксаторов. Именно в в клубеньках происходит наиболее важная для симбиоза биохимическая реакция: оновление молекулярного азота воздуха до нитратов, а потом - до аммония.

Используя результаты современных исследований взаимоотношений бактерий-симбионтов с растениями микробиологи предложили на перспективу важное задание - определение путей создания сообществ для улучшения минерального питания растений биологическим азотом. Этот симбиоз является системой с разными взаимодействиями, большинство из которых связано с повышением генетической пластичности организмов, что и может привести даже к появлению принципиально новых форм жизни. Такую возможность природе предоставляет симбиоз, и это является существенной составляющей частью нового современного учения о симбиозе.

Замечание 3

С целью повышения количества клубеньковых бактерий и, соответственно, урожайности бобовых культур, при посеве в почву добавляют специальное бактериальное средство - нитрагин (происходит искусственное заражение семян клубеньковыми бактериями.

Бактерии — самая древняя группа организмов из ныне существующих на Земле. Первые бактерии появились, вероятно, более 3,5 млрд лет назад и на протяжении почти миллиарда лет были единственными живыми существами на нашей планете. Поскольку это были первые представители живой природы, их тело имело примитивное строение.

Со временем их строение усложнилось, но и поныне бактерии считаются наиболее примитивными одноклеточными организмами. Интересно, что некоторые бактерии и сейчас ещё сохранили примитивные черты своих древних предков. Это наблюдается у бактерий, обитающих в горячих серных источниках и бескислородных илах на дне водоёмов.

Большинство бактерий бесцветно. Только немногие окрашены в пурпурный или в зелёный цвет. Но колонии многих бактерий имеют яркую окраску, которая обусловливается выделением окрашенного вещества в окружающую среду или пигментированием клеток.

Первооткрывателем мира бактерий был Антоний Левенгук — голландский естествоиспытатель 17 века, впервые создавший совершенную лупу-микроскоп, увеличивающую предметы в 160-270 раз.

Бактерии относят к прокариотам и выделяют в отдельное царство — Бактерии.

Форма тела

Бактерии — многочисленные и разнообразные организмы. Они различаются по форме.

Название бактерии Форма бактерии Изображение бактерии
Кокки Шарообразная
Бацилла Палочковидная
Вибрион Изогнутая в виде запятой
Спирилла Спиралевидная
Стрептококки Цепочка из кокков
Стафилококки Грозди кокков
Диплококки Две круглые бактерии, заключённые в одной слизистой капсуле

Способы передвижения

Среди бактерий есть подвижные и неподвижные формы. Подвижные передвигаются за счёт волнообразных сокращений или при помощи жгутиков (скрученные винтообразные нити), которые состоят из особого белка флагеллина. Жгутиков может быть один или несколько. Располагаются они у одних бактерий на одном конце клетки, у других — на двух или по всей поверхности.

Но движение присуще и многим иным бактериям, у которых жгутики отсутствуют. Так, бактерии, покрытые снаружи слизью, способны к скользящему движению.

У некоторых лишённых жгутиков водных и почвенных бактерий в цитоплазме имеются газовые вакуоли. В клетке может быть 40-60 вакуолей. Каждая из них заполнена газом (предположительно — азотом). Регулируя количество газа в вакуолях, водные бактерии могут погружаться в толщу воды или подниматься на её поверхность, а почвенные бактерии — передвигаться в капиллярах почвы.

Место обитания

В силу простоты организации и неприхотливости бактерии широко распространены в природе. Бактерии обнаружены везде: в капле даже самой чистой родниковой воды, в крупинках почвы, в воздухе, на скалах, в полярных снегах, песках пустынь, на дне океана, в добытой с огромной глубины нефти и даже в воде горячих источников с температурой около 80ºС. Обитают они на растениях, плодах, у различных животных и у человека в кишечнике, ротовой полости, на конечностях, на поверхности тела.

Бактерии — самые мелкие и самые многочисленные живые существа. Благодаря малым размерам они легко проникают в любые трещины, щели, поры. Очень выносливы и приспособлены к различным условиям существования. Переносят высушивание, сильные холода, нагревание до 90ºС, не теряя при этом жизнеспособность.

Практически нет места на Земле, где не встречались бы бактерии, но в разных количествах. Условия жизни бактерий разнообразны. Одним из них необходим кислород воздуха, другие в нём не нуждаются и способны жить в бескислородной среде.

В воздухе: бактерии поднимаются в верхние слои атмосферы до 30 км. и больше.

Особенно много их в почве. В 1 г. почвы могут содержаться сотни миллионов бактерий.

В воде: в поверхностных слоях воды открытых водоёмов. Полезные водные бактерии минерализуют органические остатки.

В живых организмах: болезнетворные бактерии попадают в организм из внешней среды, но лишь в благоприятных условиях вызываю заболевания. Симбиотические живут в органах пищеварения, помогая расщеплять и усваивать пищу, синтезируют витамины.

Внешнее строение

Клетка бактерии одета особой плотной оболочкой — клеточной стенкой, которая выполняет защитную и опорную функции, а также придаёт бактерии постоянную, характерную для неё форму. Клеточная стенка бактерии напоминает оболочку растительной клетки. Она проницаема: через неё питательные вещества свободно проходят в клетку, а продукты обмена веществ выходят в окружающую среду. Часто поверх клеточной стенки у бактерий вырабатывается дополнительный защитный слой слизи — капсула. Толщина капсулы может во много раз превышать диаметр самой клетки, но может быть и очень небольшой. Капсула — не обязательная часть клетки, она образуется в зависимости от условий, в которые попадают бактерии. Она предохраняет бактерию от высыхания.

На поверхности некоторых бактерий имеются длинные жгутики (один, два или много) или короткие тонкие ворсинки. Длина жгутиков может во много раз превышать разметы тела бактерии. С помощью жгутиков и ворсинок бактерии передвигаются.

Внутреннее строение

Внутри клетки бактерии находится густая неподвижная цитоплазма. Она имеет слоистое строение, вакуолей нет, поэтому различные белки (ферменты) и запасные питательные вещества размещаются в самом веществе цитоплазмы. Клетки бактерий не имеют ядра. В центральной части их клетки сконцентрировано вещество, несущее наследственную информации. Бактерии, — нуклеиновая кислота — ДНК. Но это вещество не оформлено в ядро.

Внутренняя организация бактериальной клетки сложна и имеет свои специфические особенности. Цитоплазма отделяется от клеточной стенки цитоплазматической мембраной. В цитоплазме различают основное вещество, или матрикс, рибосомы и небольшое количество мембранных структур, выполняющих самые различные функции (аналоги митохондрий, эндоплазматической сети, аппарата Гольджи). В цитоплазме клеток бактерий часто содержатся гранулы различной формы и размеров. Гранулы могут состоять из соединений, которые служат источником энергии и углерода. В бактериальной клетке встречаются и капельки жира.

В центральной части клетки локализовано ядерное вещество — ДНК, не отграниченная от цитоплазмы мембраной. Это аналог ядра — нуклеоид. Нуклеоид не обладает мембраной, ядрышком и набором хромосом.

Способы питания

У бактерий наблюдаются разные способы питания. Среди них есть автотрофы и гетеротрофы. Автотрофы — организмы, способные самостоятельно образовывать органические вещества для своего питания.

Растения нуждаются в азоте, но сами усваивают азот воздуха не могут. Некоторые бактерии соединяют содержащиеся в воздухе молекулы азота с другими молекулами, в результате чего получаются вещества, доступные для растений.

Эти бактерии поселяются в клетках молодых корней, что приводит к образованию на корнях утолщений, называемых клубеньками. Такие клубеньки образуются на корнях растений семейства бобовых и некоторых других растений.

Корни дают бактериям углеводы, а бактерии корням — такие содержащие азот вещества, которые могут быть усвоены растением. Их сожительство взаимовыгодно.

Корни растений выделяют много органических веществ (сахара, аминокислоты и другие), которыми питаются бактерии. Поэтому в слое почвы, окружающем корни, поселяется особенно много бактерий. Эти бактерии превращают отмершие остатки растений в доступные для растения вещества. Этот слой почвы называют ризосферой.

Существует несколько гипотез о проникновении клубеньковых бактерий в ткани корня:

  • через повреждения эпидермальной и коровой ткани;
  • через корневые волоски;
  • только через молодую клеточную оболочку;
  • благодаря бактериям-спутникам, продуцирующим пектинолитические ферменты;
  • благодаря стимуляции синтеза В-индолилуксусной кислоты из триптофана, всегда имеющегося в корневых выделениях растений.

Процесс внедрения клубеньковых бактерий в ткань корня состоит из двух фаз:

  • инфицирование корневых волосков;
  • процесс образования клубеньков.

В большинстве случаев внедрившаяся клетка, активно размножается, образует так называемые инфекционные нити и уже в виде таких нитей перемещается в ткани растения. Клубеньковые бактерии, вышедшие из инфекционной нити, продолжают размножаться в ткани хозяина.

Наполняющиеся быстро размножающимися клетками клубеньковых бактерий растительные клетки начинают усиленно делиться. Связь молодого клубенька с корнем бобового растения осуществляется благодаря сосудисто-волокнистым пучкам. В период функционирования клубеньки обычно плотные. К моменту проявления оптимальной активности клубеньки приобретают розовую окраску (благодаря пигменту легоглобину). Фиксировать азот способны лишь те бактерии, которые содержат легоглобин.

Бактерии клубеньков создают десятки и сотни килограммов азотных удобрений на гектаре почвы.

Обмен веществ

Бактерии отличаются друг от друга обменом веществ. У одних он идёт при участии кислорода, у других — без его участия.

Большинство бактерий питается готовыми органическими веществами. Лишь некоторые из них (сине-зелёные, или цианобактерии), способны создавать органические вещества из неорганических. Они сыграли важную роль в накоплении кислорода в атмосфере Земли.

Бактерии впитывают вещества извне, разрывают их молекулы на части, из этих частей собирают свою оболочку и пополняют своё содержимое (так они растут), а ненужные молекулы выбрасывают наружу. Оболочка и мембрана бактерии позволяет ей впитывать только нужные вещества.

Если бы оболочка и мембрана бактерии были полностью непроницаемыми, в клетку не попали бы никакие вещества. Если бы они были проницаемыми для всех веществ, содержимое клетки перемешалось бы со средой — раствором, в которой обитает бактерия. Для выживания бактерии необходима оболочка, которая нужные вещества пропускает, а ненужные — нет.

Бактерия поглощает находящиеся близ неё питательные вещества. Что происходит потом? Если она может самостоятельно передвигаться (двигая жгутик или выталкивая назад слизь), то она перемещается, пока не найдёт необходимые вещества.

Если она двигаться не может, то ждёт, пока диффузия (способность молекул одного вещества проникать в гущу молекул другого вещества) не принесёт к ней необходимые молекулы.

Бактерии в совокупности с другими группами микроорганизмов выполняют огромную химическую работу. Превращая различные соединения, они получают необходимую для их жизнедеятельности энергию и питательные вещества. Процессы обмена веществ, способы добывания энергии и потребности в материалах для построения веществ своего тела у бактерий разнообразны.

Другие бактерии все потребности в углероде, необходимом для синтеза органических веществ тела, удовлетворяют за счёт неорганических соединений. Они называются автотрофами. Автотрофные бактерии способны синтезировать органические вещества из неорганических. Среди них различают:

Хемосинтез

Использование лучистой энергии — важнейший, но не единственный путь создания органического вещества из углекислого газа и воды. Известны бактерии, которые в качестве источника энергии для такого синтеза используют не солнечный свет, а энергию химических связей, происходящих в клетках организмов при окислении некоторых неорганических соединений — сероводорода, серы, аммиака, водорода, азотной кислоты, закисных соединений железа и марганца. Образованное с использованием этой химической энергии органическое вещество они используют для построения клеток своего тела. Поэтому такой процесс называют хемосинтезом.

Важнейшую группу хемосинтезирующих микроорганизмов составляют нитрифицирующие бактерии. Эти бактерии живут в почве и осуществляют окисление аммиака, образовавшегося при гниении органических остатков, до азотной кислоты. Последняя, реагирует с минеральными соединениями почвы, превращаются в соли азотной кислоты. Этот процесс проходит в две фазы.

Железобактерии превращают закисное железо в окисное. Образованная гидроокись железа оседает и образует так называемую болотную железную руду.

Некоторые микроорганизмы существуют за счёт окисления молекулярного водорода, обеспечивая тем самым автотрофный способ питания.

Характерной особенностью водородных бактерий является способность переключаться на гетеротрофный образ жизни при обеспечении их органическими соединениями и отсутствии водорода.

Таким образом, хемоавтотрофы являются типичными автотрофами, так как самостоятельно синтезируют из неорганических веществ необходимые органические соединения, а не берут их в готовом виде от других организмов, как гетеротрофы. От фототрофных растений хемоавтотрофные бактерии отличаются полной независимостью от света как источника энергии.

Бактериальный фотосинтез

Некоторые пигментосодержащие серобактерии (пурпурные, зелёные), содержащие специфические пигменты — бактериохлорофиллы, способны поглощать солнечную энергию, с помощью которой сероводород в их организмах расщепляется и отдаёт атомы водорода для восстановления соответствующих соединений. Этот процесс имеет много общего с фотосинтезом и отличается только тем, что у пурпурных и зелёных бактерий донором водорода является сероводород (изредка — карбоновые кислоты), а у зелёных растений — вода. У тех и других отщепление и перенесение водорода осуществляется благодаря энергии поглощённых солнечных лучей.

Такой бактериальный фотосинтез, который происходит без выделения кислорода, называется фоторедукцией. Фоторедукция углекислого газа связана с перенесением водорода не от воды, а от сероводорода:

6СО 2 +12Н 2 S+hv → С6Н 12 О 6 +12S=6Н 2 О

Биологическое значение хемосинтеза и бактериального фотосинтеза в масштабах планеты относительно невелико. Только хемосинтезирующие бактерии играют существенную роль в процессе круговорота серы в природе. Поглощаясь зелёными растениями в форме солей серной кислоты, сера восстанавливается и входит в состав белковых молекул. Далее при разрушении отмерших растительных и животных остатков гнилостными бактериями сера выделяется в виде сероводорода, который окисляется серобактериями до свободной серы (или серной кислоты), образующий в почве доступные для растения сульфиты. Хемо- и фотоавтотрофные бактерии имеют существенное значение в круговороте азота и серы.

Спорообразование

Внутри бактериальной клетки образуются споры. В процессе спорообразования бактериальная клетка претерпевает ряд биохимических процессов. В ней уменьшается количество свободной воды, снижается ферментативная активность. Это обеспечивает устойчивость спор к неблагоприятным условиям внешней среды (высокой температуре, высокой концентрации солей, высушиванию и др.). Спорообразование свойственно только небольшой группе бактерий.

Споры — не обязательная стадия жизненного цикла бактерий. Спорообразование начинается лишь при недостатке питательных веществ или накоплении продуктов обмена. Бактерии в виде спор могут длительное время находиться в состоянии покоя. Споры бактерий выдерживают продолжительное кипячение и очень длительное проммораживание. При наступлении благоприятных условий спора прорастает и становится жизнеспособной. Спора бактерий — это приспособление к выживанию в неблагоприятных условиях.

Размножение

Размножаются бактерии делением одной клетки на две. Достигнув определённого размера, бактерия делится на две одинаковые бактерии. Затем каждая из них начинает питаться, растёт, делится и так далее.

После удлинения клетки постепенно образуется поперечная перегородка, а затем дочерние клетки расходятся; у многих бактерий в определённых условиях клетки после деления остаются связанными в характерные группы. При этом в зависимости от направления плоскости деления и числа делений возникают разные формы. Размножение почкованием встречается у бактерий как исключение.

При благоприятных условиях деление клеток у многих бактерий происходит через каждые 20-30 минут. При таком быстром размножении потомство одной бактерии за 5 суток способно образовать массу, которой можно заполнить все моря и океаны. Простой подсчёт показывает, что за сутки может образоваться 72 поколения (720 000 000 000 000 000 000 клеток). Если перевести в вес — 4720 тонн. Однако в природе этого не происходит, так как большинство бактерий быстро погибают под действием солнечного света, при высушивании, недостатке пищи, нагревании до 65-100ºС, в результате борьбы между видами и т.д.

Бактерия (1), поглотившая достаточно пищи, увеличивается в размерах (2) и начинает готовиться к размножению (делению клетки). Её ДНК (у бактерии молекула ДНК замкнута в кольцо) удваивается (бактерия производит копию этой молекулы). Обе молекулы ДНК (3,4) оказываются, прикреплены к стенке бактерии и при удлинении бактерии расходятся в стороны (5,6). Сначала делится нуклеотид, затем цитоплазма.

После расхождения двух молекул ДНК на бактерии появляется перетяжка, которая постепенно разделяет тело бактерии на две части, в каждой из которых есть молекула ДНК (7).

Бывает (у сенной палочки), две бактерии слипаются, и между ними образуется перемычка (1,2).

По перемычке ДНК из одной бактерии переправляется в другую (3). Оказавшись в одной бактерии, молекулы ДНК сплетаются, слипаются в некоторых местах (4), после чего обмениваются участками (5).

Роль бактерий в природе

Круговорот

Бактерии — важнейшее звено общего круговорота веществ в природе. Растения создают сложные органические вещества из углекислого газа, воды и минеральных солей почвы. Эти вещества возвращаются в почву с отмершими грибами, растениями и трупами животных. Бактерии разлагают сложные вещества на простые, которые снова используют растения.

Бактерии разрушают сложные органические вещества отмерших растений и трупов животных, выделения живых организмов и разные отбросы. Питаясь этими органическими веществами, сапрофитные бактерии гниения превращают их в перегной. Это своеобразные санитары нашей планеты. Таким образом, бактерии активно участвуют в круговороте веществ в природе.

Почвообразование

Поскольку бактерии распространены практически повсеместно и встречаются в огромном количестве, они во многом определяют различные процессы, происходящие в природе. Осенью опадают листья деревьев и кустарников, отмирают надземные побеги трав, опадают старые ветки, время от времени падают стволы старых деревьев. Всё это постепенно превращается в перегной. В 1 см 3 . поверхностного слоя лесной почвы содержатся сотни миллионов сапрофитных почвенных бактерий нескольких видов. Эти бактерии превращают перегной в различные минеральные вещества, которые могут быть поглощены из почвы корнями растений.

Некоторые почвенные бактерии способны поглощать азот из воздуха, используя его в процессах жизнедеятельности. Эти азотофиксирующие бактерии живут самостоятельно или поселяются в корнях бобовых растений. Проникнув в корни бобовых, эти бактерии вызывают разрастание клеток корней и образование на них клубеньков.

Эти бактерии выделяют азотные соединения, которые используют растения. От растений бактерии получают углеводы и минеральные соли. Таким образом, между бобовым растением и клубеньковыми бактериями существует тесная связь, полезная как одному, так и другому организму. Это явление носит название симбиоза.

Благодаря симбиозу с клубеньковыми бактериями бобовые растения обогащают почву азотом, способствуя повышению урожая.

Распространение в природе

Микроорганизмы распространены повсеместно. Исключение составляют лишь кратеры действующих вулканов и небольшие площадки в эпицентрах взорванных атомных бомб. Ни низкие температуры Антарктики, ни кипящие струи гейзеров, ни насыщенные растворы солей в соляных бассейнах, ни сильная инсоляция горных вершин, ни жёсткое облучение атомных реакторов не мешают существованию и развитию микрофлоры. Все живые существа постоянно взаимодействуют с микроорганизмами, являясь часто не только их хранилищами, но и распространителями. Микроорганизмы — аборигены нашей планеты, активно осваивающие самые невероятные природные субстраты.

Микрофлора почвы

Количество бактерий в почве чрезвычайно велико — сотни миллионов и миллиардов особей в 1 грамме. В почве их значительно больше, чем в воде и воздухе. Общее количество бактерий в почвах меняется. Количество бактерий зависит от типа почв, их состояния, глубины расположения слоёв.

На поверхности почвенных частиц микроорганизмы располагаются небольшими микроколониями (по 20-100 клеток в каждой). Часто они развиваются в толщах сгустков органического вещества, на живых и отмирающих корнях растений, в тонких капиллярах и внутри комочков.

Микрофлора почвы очень разнообразна. Здесь встречаются разные физиологические группы бактерий: бактерии гниения, нитрифицирующие, азотфиксирующие, серобактерии и др. среди них есть аэробы и анаэробы, споровые и не споровые формы. Микрофлора — один из факторов образования почв.

Областью развития микроорганизмов в почве является зона, примыкающая к корням живых растений. Её называют ризосферой, а совокупность микроорганизмов, содержащихся в ней, — ризосферной микрофлорой.

Микрофлора водоёмов

Вода — природная среда, где в большом количестве развиваются микроорганизмы. Основная масса их попадает в воду из почвы. Фактор, определяющий количество бактерий в воде, наличие в ней питательных веществ. Наиболее чистыми являются воды артезианских скважин и родниковые. Очень богаты бактериями открытые водоёмы, реки. Наибольшее количество бактерий находится в поверхностных слоях воды, ближе к берегу. При удалении от берега и увеличении глубины количество бактерий уменьшается.

Чистая вода содержит 100-200 бактерий в 1 мл., а загрязнённая — 100-300 тыс. и более. Много бактерий в донном иле, особенно в поверхностном слое, где бактерии образуют плёнку. В этой плёнке много серо- и железобактерий, которые окисляют сероводород до серной кислоты и тем самым предотвращают замор рыбы. В иле больше спороносных форм, в то время как в воде преобладают неспороносные.

По видовому составу микрофлора воды сходна с микрофлорой почвы, но встречаются и специфические формы. Разрушая различные отбросы, попавшие в воду, микроорганизмы постепенно осуществляют так называемое биологическое очищение воды.

Микрофлора воздуха

Микрофлора воздуха менее многочисленна, чем микрофлора почвы и воды. Бактерии поднимаются в воздух с пылью, некоторое время могут находиться там, а затем оседают на поверхность земли и гибнут от недостатка питания или под действием ультрафиолетовых лучей. Количество микроорганизмов в воздухе зависит от географической зоны, местности, времени года, загрязнённостью пылью и др. каждая пылинка является носителем микроорганизмов. Больше всего бактерий в воздухе над промышленными предприятиями. Воздух сельской местности чище. Наиболее чистый воздух над лесами, горами, снежными пространствами. Верхние слои воздуха содержат меньше микробов. В микрофлоре воздуха много пигментированных и спороносных бактерий, которые более устойчивы, чем другие, к ультрафиолетовым лучам.

Микрофлора организма человека

Тело человека, даже полностью здорового, всегда является носителем микрофлоры. При соприкосновении тела человека с воздухом и почвой на одежде и коже оседают разнообразные микроорганизмы, в том числе и патогенные (палочки столбняка, газовой гангрены и др.). Наиболее часто загрязняются открытые части человеческого тела. На руках обнаруживают кишечные палочки, стафилококки. В ротовой полости насчитывают свыше 100 видов микробов. Рот с его температурой, влажностью, питательными остатками — прекрасная среда для развития микроорганизмов.

Желудок имеет кислую реакцию, поэтому основная масса микроорганизмов в нём гибнет. Начиная с тонкого кишечника реакция становится щелочной, т.е. благоприятной для микробов. В толстых кишках микрофлора очень разнообразна. Каждый взрослый человек выделяет ежедневно с экскрементами около 18 млрд. бактерий, т.е. больше особей, чем людей на земном шаре.

Внутренние органы, не соединяющиеся с внешней средой (мозг, сердце, печень, мочевой пузырь и др.), обычно свободны от микробов. В эти органы микробы попадают только во время болезни.

Бактерии в круговороте веществ

Микроорганизмы вообще и бактерии в частности играют большую роль в биологически важных круговоротах веществ на Земле, осуществляя химические превращения, совершенно недоступные ни растениям, ни животным. Различные этапы круговорота элементов осуществляются организмами разного типа. Существование каждой отдельной группы организмов зависит от химического превращения элементов, осуществляемого другими группами.

Круговорот азота

Циклическое превращение азотистых соединений играет первостепенную роль в снабжении необходимыми формами азота различных по пищевым потребностям организмов биосферы. Свыше 90% общей фиксации азота обусловлено метаболической активностью определённых бактерий.

Круговорот углерода

Биологическое превращение органического углерода в углекислый газ, сопровождающееся восстановлением молекулярного кислорода, требует совместной метаболической активности разнообразных микроорганизмов. Многие аэробные бактерии осуществляют полное окисление органических веществ. В аэробных условиях органические соединения первоначально расщепляются путём сбраживания, а органические конечные продукты брожения окисляются далее в результате анаэробного дыхания, если имеются неорганические акцепторы водорода (нитрат, сульфат или СО 2).

Круговорот серы

Для живых организмов сера доступна в основном в форме растворимых сульфатов или восстановленных органических соединений серы.

Круговорот железа

В некоторых водоёмах с пресной водой содержатся в высоких концентрациях восстановленные соли железа. В таких местах развивается специфическая бактериальная микрофлора — железобактерии, окисляющие восстановленное железо. Они участвуют в образовании болотных железных руд и водных источников, богатых солями железа.

Бактерии являются самыми древними организмами, появившимися около 3,5 млрд. лет назад в архее. Около 2,5 млрд. лет они доминировали на Земле, формируя биосферу, участвовали в образовании кислородной атмосферы.

Бактерии являются одними из наиболее просто устроенных живых организмов (кроме вирусов). Полагают, что они - первые организмы, появившиеся на Земле.

1. плотва 2. водоросль 3. цапля 4. окунь

2) Укажите какой из организмов пропущен в цепи питания: растение--тундровая куропатка--...--белый медведь
1. песец 2. заяц 3. лемминг 4. северный олень

3) Что является пищевым ресурсом для продуцентов?
1.кислород 2. минеральные соли 3. животная пища 4. растительная пища

4) Благодаря деятельности дождевых цервей в экосистеме почвы происходит:
1. распространение возбудителей заболеваний растений
2. переработка перегноя
3. повреждение корней растений
4. подавление развития почвенных бактерий

1)Память, связанная с глубоким анализом смысла информации 2)Кость растет в длина за счет деления клеток 3) Короткий отросток нейрона

p>4)Процесс образования новых видов и подвидов называют

5)Отец систематики органического мира

6) Сахар в ДНК

7) Увеличение численности особей, систематическое разнообразие и расширение

8)Органоиды способные разрушать органические в-ва до мономеров

9) Стадия зародышевого развития присущая только хордовым

10) Стадия развития зародыша, когда происходит формирование тканейи органов

11) Дыхательная система образуется из

12)Процесс развития позволяющий организамам уменьшить конкуренцию за пищевые ресурсы

13) Формируются новые виды и подвиды при отборе

15) С. Миллер воспроизвел в колбе

16)Снаружи мышцы покрыты

17)Пониженное давление крови

18) Вход в гортань во время глотания закрывает

19) При недостаточной функции щитовидной железы у детей развивается

20) Фотосинтез назвал "Космическим процессом"

21) Критерий вида, определяющий все, что связано с размножением

22) Неорганические в-ва клетки (какие из них: вода, минеральные соли, белки, жиры, углеводы, поваренная соль

23) Клеточный центр аэробного дыхания

24)Виды-Двойники - это

25)Гены, находящиеся в половой хромосоме наследуются

26)Скачкообразные изменения генетического материала особи

27)Всплеск гибридной мощности

28)По способу получения энергии болезнетворные бактерии относятся к

29)Функция фибриногена и аппарата Гольджи

30) Скрещивание при котором родительские формы отличаются только по одной паре признаков

31) Социальный фактор развития человека. Биологический фактор развития человека

32)Эра зарождения жизни

1.Живое вещество биосферы планеты - это совокупность всех

1- всех растений и животных

2- многоклеточных организмов

3- микроорганизмов

4-живых организмов

2.Границы биосферы определяются

1- условиями, непригодными для жизни

2- колебаниями положительных температур

3- количеством выпадающих осадков

4- облачностью атмосферы

3. В соответствии с представлениями В.И. Вернадского к биокосным телам относят

2- полезные ископаемые

3- газы атмосферы

4- животных

4.Окислительно-восстановительная функция биосферы планеты связана

1- с эволюцией живых организмов

2- с климатическими условиями

3- с обменом веществ и энергии

4- с освоением организмами новых мест обитания

5. В состав биосферы входят

1- живое вещество и биокосные тела

2- живое и косное вещество

3- биокосное и косное вещество

4- живое и косное вещество, биокосные тела

6. Клубеньковые бактерии, используя молекулярный азот атмосферы для синтеза органических веществ, выполняют в биосфере функцию

1- концентрационную

2- газовую

3- окислительную

4- восстановительную

7. Основную часть биомассы океана составляют

1- растения

2- животные

4- бактерии

8.Основное отличие биосферы от других оболочек Земли заключается в том, что

1- в биосфере не происходят геохимические процессы, а только идет биологическая эволюция

2- для биосферы характерна только геологическая эволюция

3- геологическая и биологическая эволюция идут одновременно

4- биологическая эволюция оказывает сильное влияние на геологическую эволюцию

Первые почвенные бактерии, которые заметило человечество – клубеньковые. Из 13 тыс. растений формируют клубенек около 1300, а в сельском хозяйстве используются 200. Из них все обладают функцией фиксировать атмосферный азот. В почве на клубеньке поселяются и размножаются микроорганизмы – симбионты, которые заменяют удобрения.

Что такое клубеньковые бактерии

Больше 2 тыс. лет назад земледельцы заметили, что бедные, выработавшие ресурс почвы дают урожаи после возделывания на них бобовых культур. Следующие попытки раскрыть секрет были в 1838 г.: Ж.-Б. Буссенго решил, что листья бобовых фиксируют азот, однако опыты с неблагоприятной водной средой не подтвердили это. В 1901 г. была открыта Azotobacter chroococcum (6 видов из рода азотобактер). Первый препарат на основе «земляных» бактерий Нитрагин был создан в 1897-м.

Все клубеньковые бактерии – это микроаэрофилы. Им свойственна палочковидная/овальная форма. Относятся Rhizobium (Rhizobiales) к способным переводить газообразную форму азота в усвояемую растениями – растворимую. Факты:

  1. По тому, насколько влияют микроорганизмы на урожай, их разделяют на активные (эффективно обогащают почву), малоактивные и неактивные (неэффективные).
  2. Когда нет влаги, они не размножаются, поэтому при засушливом климате специально зараженные растения вводят в почву глубже.
  3. Оптимальная температура для размножения всех представителей азотфиксирующих – 20-30°С, но рост продолжается и при 0-35°С. Лучшая среда (pH) – нейтральная, порядка 6,5-7,1, а вот кислая вызывает гибель колоний.
  4. Благодаря опытам Московской сельхозакадемии выяснилось, что даже при условии отсутствия «доноров» бактериальный материал не покидает почву до 50 лет.
  5. Микроорганизмы способны пережить даже условия после атомного взрыва, выдержать гамма-излучение и ультрафиолет, солнечную радиацию, но не могут обитать при высокой температуре.
  6. Максимальное значение микроорганизмы имеют для развития корня.

Роль клубеньковых бактерий в природе

Помимо фиксации атмосферного азота роль клубеньковых бактерий в природе очень велика. В процессе размножения они «занимаются» синтезом витаминов, природных антибиотиков, способствуют развитию сначала корня, а затем и ботвы. Польза заключается в том, что почвенные бактерии азотфиксирующего типа за счет симбиоза с растениями:

  • являются частью круговорота вещества – азота;
  • синтезируют фитогормоны, стимулируя рост растений;
  • могут использоваться как способ самоочищения загрязненных тяжелыми металлами почв при минерализующих факторах (природных/предприятиях);
  • разлагают некоторые хлорсодержащие соединения.

Бобовые растения и клубеньковые бактерии

  • через повреждение тканей;
  • проникновением через корневые волоски;
  • внедрением через молодые верхушки корня;
  • благодаря бактериям-спутницам.

Симбиотические бактерии рода Ризобиум, проникнув в корень, перемещаются в его ткани, легко преодолевая межклеточное пространство группами или одиночными клетками (как у люпина). Чаще же клетка при размножении образовывают инфекционные нити (тяжи, колонии). Их количество различается по типам растений. Часто встречаются общие нити заражения, формирующие один клубенек.

Фиксация азота бактериями

Ценность, которую представляет фиксация азота бактериями, огромна: это не только восстанавливает почву, но и позволяет получать более богатые урожаи, чем на перегное или химических удобрениях. Происходит взаимодействие вещества и азотфиксатора:

  • у Azotobacter («автономных», не требующих наличия растения) – ферментами, за счет кислорода в клетке;
  • у Rhizobium (клубеньковые бактерии) – только в присутствии магния, серы, железа.