Ложные срабатывания сигнализации. Почему на машине срабатывает без причины сигнализация: возможные неполадки и их устранение

5. ТЕХНИЧЕСКИЕ СРЕДСТВА ОХРАННОЙ СИГНАЛИЗАЦИИ. УСЛОВИЯ ЭКСПЛУАТАЦИИ

5.1. ИЗВЕЩАТЕЛИ

При выборе извещателей, в первую очередь, необходимо учитывать условия эксплуатации на объекте:

Воздействие на их работу помех производственно-технологических процессов, бытовых приборов, транспорта;

Вероятность присутствия в непосредственной близости людей, животных (например, в смежных помещениях, за стеклами, вблизи охраняемого периметра, территории), насекомых и других факторов, негативно влияющих на работу извещателей;

Реальное состояние сети переменного тока на объекте и возможность резервирования электропитания;

Способ возможного криминального воздействия на охраняемый объект или строительную конструкцию.

На объектах с высоким уровнем помех необходимо устанавливать извещатели, имеющие более высокие характеристики надежности, помехоустойчивый алгоритм обработки сигнала, самоконтроль канала в процессе работы, возможность более точно формировать зону обнаружения или устанавливать оптимальную чувствительность.

Контроль зоны обнаружения, выхода ее за пределы, допустимые границы рекомендуется проводить не реже одного раза в месяц. При неустойчивой работе извещателя этот контроль следует провести два раза в сутки - при максимальной и минимальной температуре воздуха в охраняемом помещении.

5.1.1. Магнитоконтактные

Магнитоконтактные извещатели предназначены для блокировки подвижных строительных конструкций на открывание. Они могут использоваться и в качестве датчиков-ловушек для блокировки отдельных предметов. Для блокировки металлических (стальных) строительных конструкций, со стальной металлической обвязкой, отдельных стальных предметов (сейфы, шкафы и т. п.) рекомендуется использовать магнитоконтактные извещатели, специально предназначенные для этих целей.

К ложным срабатываниям извещателей может привести: вибрация строительных конструкций, их слабая техническая укрепленность, превышение расстояния между модулями извещателя, нарушение их параллельности или соосности, нежесткое крепление, некачественная пайка или замена ее скруткой, отсутствие гибкого перехода.

Воздействие этих факторов на работоспособность извещателей исключается строгим выполнением требований к монтажу, проведением работ по инженерно-технической укреплености строительных конструкций, своевременным техническим обслуживанием.

Рекомендуемое место установки извещателя - верхняя часть блокируемой конструкции. Допускается установка извещателя на боковой (противоположной петлям) стороне конструкции, а для блокировки окон - на нижних частях рамы. Извещатель устанавливается на конструкции со стороны охраняемого помещения. Извещатель следует размещать на расстоянии не более 20 см от вертикальной линии раствора блокируемой конструкции.

Магнит и геркон (модули извещателя) могут устанавливаться как на подвижной, так и на неподвижной части конструкции. Однако предпочтительнее геркон устанавливать на неподвижной конструкции, так как в этом случае исключается гибкий переход, подверженный механическим воздействиям и как следствие повреждениям;

Модули устанавливаются параллельно друг другу (извещатели для открытого монтажа) или соосно (извещатели для скрытого монтажа). При этом расстояние между модулями не должно превышать граничные значения (таблица 4.1);

Выводы геркона соединяются с ШС проводами типа НВМ-0,35 скруткой с обязательной пропайкой мест соединения. Переход ШС с подвижной части конструкции на неподвижную должен выполняться гибким специальным переходом типа УС. Допускается для перехода использовать провод типа МГШВ диаметром 0,35 мм, защищенный поливинилхлоридной трубкой;

5.1.2. Ударноконтактные

Ударноконтактные извещатели предназначены для блокировки остекленных строительных конструкций на разрушение, при толщине стекла от 2,5 мм до 8,0 мм. Извещатели могут быть использованы для блокировки внутренних витрин, экспозиций, витражей и других остекленных конструкций. Для блокировки стекол, покрытых защитной полимерной пленкой, обеспечивающей класс защиты А1 - A3, следует использовать ударноконтактные извещатели, специально предназначенные для этих целей (таблица 4.1).

К ложным срабатываниям извещателей может привести: ненадежное крепление, вибрация строительных конструкций, их слабая инженерно-техническая укрепленность, а также некачественная пайка или замена ее скруткой, отсутствие гибкого перехода.

Рекомендуемое место установки извещателя - на расстоянии 10 - 15 см от обвязки, в таком месте, чтобы расстояние от ДРС до самой удаленной точки стекла не превышало 2,8 м (1,5 м для стекла, защищенного пленкой).

Для обеспечения устойчивой работы извещателей рекомендуется придерживаться следующих правил:

При блокировке остекленных проемов, состоящих из ряда небольших по площади стекол (не более 0,05 м 2) количество ДРС может превышать, указанное в паспорте, при условии выполнения требования к суммарной длине соединительных линий ДРС с БОС;

Ориентация стрелки на корпусе ДРС должна быть направлена параллельно плоскости стекла в сторону охраняемой поверхности;

Взаимное расположение БОС и ДРС должно обеспечивать минимально возможную длину соединяющих их линий, суммарная длина которых не должна превышать указанную в паспорте на извещатель;

Извещатели других типов рекомендуется включать в ШС между последним БОС и оконечном устройством. В противном случае срабатывание этих извещателей может привести к потере возможности достоверного определения причины срабатывания ППК;

Не допускается включать в линию питания ДРС инерционные электроконтактные извещатели или релейные выходы извещателей и ППК, так как возможный "дребезг" их контактов, вызываемый помехами, может привести к ложным срабатываниям БОС;

Все соединения проводов извещателя, особенно в линии питания ДРС, должны быть выполнены пайкой или под винт в соединительной коробке. Места паек должны быть тщательно изолированы;

В случае прохождения силовых цепей с напряжением 220 В вблизи ШС и линией питания ДРС, расстояние между ними должно быть не менее 0,5 м;

Величина сопротивления линии связи с подключенными ДРС к БОС не должна быть более 10 Ом;

Все блокируемые конструкции должны быть надежно закреплены и иметь исправные запирающие устройства.

5.1.3. Акустические

Акустические извещатели по рабочему диапазону частот подразделяются на пассивные звуковые и ультразвуковые.

Пассивные звуковые извещатели предназначены для дистанционного (бесконтактного) обнаружения разрушения остекления конструкций здания и элементов интерьера помещения.

К ложным срабатываниям этих извещателей может привести: наличие акустических и электромагнитных помех в помещении, вибрация строительных конструкций, а также изменения свободного пространства охраняемой зоны за счет внесения, вынесения крупногабаритных предметов, обладающих повышенной способностью поглощения или отражения акустического сигнала.

Извещатель рекомендуется устанавливать на стене (на высоте не менее 2 м) или на потолке таким образом, чтобы все остекленные части блокируемой конструкции находились в пределах прямой видимости (угол обзора извещателя 90°). Расстояние от извещателя до самой удаленной точки охраняемого стекла должно быть не более 6 м.

Для обеспечения устойчивой работы извещателей рекомендуется придерживаться следующих правил:

Вибрирующие и крупногабаритные предметы, способные создавать "мертвые" зоны, не должны попадать в зону обнаружения;

При изменении обстановки в помещении, вносе, выносе, перестановке мебели необходимо провести перенастройку извещателя;

На период охраны закрывать на запирающие устройства двери, окна, форточки, фрамуги, люки, выключать вентиляционные и силовые переключающие установки, калориферы, телефоны, звонки, репродукторы и т.п.

Ультразвуковые извещатели предназначены для блокировки объемов закрытых отапливаемых помещений, отдельных локальных зон объемов помещений, мест сосредоточения ценностей, музейных экспонатов. Для блокировки витрин объемом от 0,03 до 1 м 3 рекомендуется использовать извещатели, специально предназначенные для этих целей.

К ложным срабатываниям ультразвуковых извещателей может привести: наличие акустических и электромагнитных помех в помещении, вибрация строительных конструкций, а также изменения свободного пространства охраняемой зоны за счет внесения, вынесения крупногабаритных предметов, обладающих повышенной способностью поглощения или отражения акустического сигнала, движение воздуха (сквозняков), присутствия животных в зоне обнаружения.

Для обеспечения устойчивой работы извещателей рекомендуется придерживаться следующих правил:

Не применять при уровне акустического шума в помещении свыше 60 дБ;

Не устанавливать над батареями отопления, на подоконниках, вблизи оконных штор и комнатных растений;

Контроль зоны обнаружения, выхода ее за пределы охраняемого объекта рекомендуется проводить не реже одного раза в месяц. При неустойчивой работе извещателя этот контроль следует провести два раза в сутки - при максимальной и минимальной температуре воздуха в охраняемом помещении;

Вынести за пределы зоны обнаружения вибрирующие и крупногабаритные предметы, способные создавать "мертвые" зоны или сформировать зону обнаружения таким образом, чтобы эти предметы в нее не попадали;

При изменении обстановки в помещении, вносе, выносе, перестановке мебели необходимо провести перенастройку извещателя;

На период охраны закрывать на запирающие устройства двери, окна, форточки, фрамуги, люки, выключать вентиляционные и силовые переключающие установки, калориферы, телефоны, звонки, репродукторы и т.п.;

Не допускать нахождения в охраняемом помещении животных и птиц;

Не применять в помещениях объемом менее 4 м 2 извещатели, не предназначенные для этих целей;

Не размещать в одном помещении два и более извещателей или отрегулировать их таким образом, чтобы их зоны обнаружения не пересекались при максимальной чувствительности.

5.1.4. Радиоволновые

Радиоволновые извещатели предназначены для блокировки объемов закрытых помещений, локальных зон объемов помещений, мест сосредоточения ценностей, музейных экспонатов, а также периметров территории и открытых площадок.

К ложным срабатываниям этих извещателей может привести: наличие электромагнитных помех в помещении, вибрация строительных конструкций, а также изменение свободного пространства охраняемой зоны за счет внесения, вынесения крупногабаритных предметов, обладающих повышенной способностью поглощения или отражения электромагнитных волн, проезжающий транспорт, люди, животные, находящиеся за пределами (вблизи) зоны обнаружения, люминесцентное освещение.

Рекомендуемое место установки извещателя - на стене, на высоте 2 - 2,5 м. Зона обнаружения извещателя должна перекрывать вероятные направления движения нарушителя. При установке на объекте нескольких радиоволновых извещателей, должны применяться извещатели с разными частотными литерами. При использовании нескольких извещателей в одном помещении с одним литером, во избежание ложных срабатываний, рекомендуется устанавливать извещатели так, чтобы их зоны обнаружения не пересекались.

Для обеспечения устойчивой работы радиоволновых извещателей рекомендуется придерживаться следующих правил:

Устанавливать извещатели так, чтобы их зоны обнаружения не выходили за пределы блокируемых помещений (через оконные проемы, тонкие деревянные перегородки, стены и потолок) или использовать извещатели с большей частотой излучения (более 24 ГГц), которое не проходит через стекло и тонкие перегородки;

Вынести за пределы зоны обнаружения колеблющиеся или движущиеся предметы, имеющие значительную отражающую поверхность, а также крупногабаритные предметы, способные создавать "мертвые" зоны, или сформировать зону обнаружения таким образом, чтобы эти предметы в нее не попадали. При наличии "мертвых" зон необходимо следить за тем, чтобы они не образовали нарушителю непрерывный путь к материальным ценностям;

На период охраны закрывать на запирающие устройства двери, окна, форточки, фрамуги, люки, выключать вентиляционные и силовые переключающие установки;

Не допускать в зоне обнаружения наличия пластмассовых труб, по которым возможно движение воды;

На период охраны выключать люминесцентные и неоновые лампы или применять извещатели, схемные решения которых исключают влияние этих помех;

Учитывать, что при установке извещателя в коридорах шириной менее 3 м, дальность обнаружения может увеличиваться в 1,5 - 2 раза.

Для обеспечения устойчивой работы радиоволновых извещателей на периметре (открытых площадках), дополнительно рекомендуется учитывать следующие факторы:

Вблизи места установки извещателя не должны проходить автомобильные (не ближе 5 м от зоны обнаружения) и железнодорожные (не ближе 20 м от зоны обнаружения) дороги, пешеходные (не ближе 1,5 м от зоны обнаружения) тротуары, дорожки, тропинки, а расстояние до высоковольтных линий электропередач должно быть не менее 20 м;

В зоне (вблизи) обнаружения не должны размещаться крупные металлические конструкции. Они способны переотражать СВЧ энергию за пределы периметра и могут вызвать ложное срабатывание;

Не допускать случайное попадание в зону обнаружения извещателя людей и животных.

5.1.5. Оптико-электронные

Оптико-электронные извещатели подразделяются на активные и пассивные.

Активные оптико-электронные извещатели предназначены для блокировки окон, дверей, стен, потолков, полов, коридоров и отдельных предметов на проникновение или на подход.

К ложным срабатываниям этих извещателей может привести: наличие электромагнитных помех в помещении, вибрация строительных конструкций, совместная работа в одном помещении нескольких извещателей при пересечении зон обнаружения, засветка светом солнца, фар транспортных средств и других источников света.

Место установки извещателя выбирается исходя из архитектурных и строительных особенностей блокируемых конструкций. Извещатели можно устанавливать как на стенах помещения, так и на потолке (для защиты пола - только на стенах).

Для обеспечения устойчивой работы активных оптико-электронных извещателей рекомендуется придерживаться следующих правил:

Не допускать нахождения в зоне обнаружения животных, колеблющихся предметов.

К факторам, приводящим к ЛС извещателей, установленных на периметре, территории, можно отнести ненадежное функционирование в экстремальных условиях (образование снежной корки на светофильтрах, сильный порывистый дождь, снег, густой туман, повышенные запыленность и загазованность).

Пассивные оптико-электронные извещатели с линейной, поверхностной или объемной зоной обнаружения предназначены для блокировки объемов помещений, мест сосредоточения ценностей и подходов к ним, коридоров, внутренних периметров, оконных и дверных проемов, потолков и полов.

К ложным срабатываниям этих извещателей может привести: наличие электромагнитных помех в помещении, вибрация строительных конструкций, сквозняки, тепловые потоки от батарей отопления, мелкие животные, насекомые, ползающие по линзе извещателя, изменения свободного пространства охраняемой зоны за счет внесения, вынесения крупногабаритных предметов, обладающих повышенной способностью поглощения или отражения инфракрасного света, засветка светом солнца, фар транспортных средств и других источников света, изменение температуры фона.

Место установки извещателя выбирается исходя из архитектурных особенностей блокируемых конструкций. Извещатели, как правило, устанавливаются на стенах помещения. Высота установки определяется типом извещателя.

Для обеспечения устойчивой работы пассивных оптико-электронных извещателей рекомендуется придерживаться следующих правил:

Не устанавливать извещатель над отопительными приборами;

Не направлять извещатель на вентиляторы теплого воздуха, двигатели автомашин, находящихся в боксах, прожекторы, лампы накаливания и другие источники, вызывающие быстрые изменения температуры;

Не допускать попадания на извещатель прямых солнечных лучей;

Не допускать нахождения в зоне обнаружения животных, предметов (штор, перегородок, шкафов и т.п.), способных создавать "мертвые" зоны.

5.1.6. Емкостные

Емкостные извещатели предназначены для блокировки металлических шкафов, сейфов, решеток, а также оконных и дверных проемов.

К ложным срабатываниям этих извещателей может привести: вибрация строительных конструкций, наличие электромагнитных помех в помещении, работающие в непосредственной близости электросварочные аппараты, электроустановки мощностью более 15 кВА.

Рекомендуемое место установки извещателя - на стене в непосредственной близости от блокируемого предмета так, чтобы при установленной чувствительности извещателя доступ к нему был невозможен без выдачи сигнала тревоги.

Для обеспечения устойчивой работы емкостных извещателей рекомендуется придерживаться следующих правил:

Не устанавливать извещатели вблизи мощных электроустановок, которые не могут быть отключены на период охраны;

Необходимо обеспечить надежный контакт антенны и заземления в местах их подсоединения;

Устанавливать блокируемые предметы на хорошо изолируемые от "земли" основания (резиновая, гетинаксовая прокладка);

Устанавливать блокируемые предметы на расстоянии не менее 0,2 м от стен, окон и перегородок, за которыми возможно появление людей или животных;

Не устанавливать извещатели на конструкциях, подверженных вибрации;

Сопротивление утечки между блокируемым предметом и соединительными проводами по отношению к "земле" должно быть не менее 8 кОм;

Соединение извещателя с блокируемым предметом должно быть выполнено проводом диаметром не менее 0,5 мм с изоляцией на рабочее напряжение не менее 250 В;

В качестве заземлителя можно использовать выводы металлических конструкций электрощита, заземленную арматуру железобетонных сооружений;

Не использовать в качестве заземлителя трубопроводы горячей и холодной воды, горючих жидкостей, газов, теплоснабжения. Сопротивление заземления извещателя должно быть не более 4 Ом.

5.1.7. Вибрационные

Вибрационные извещатели предназначены для обнаружения разрушения монолитных бетонных и кирпичных стен и перекрытий, деревянных конструкций из досок, фанеры, металлических сейфов и шкафов.

К ложным срабатываниям этих извещателей может привести: наличие акустических и электромагнитных помех в помещении, вибрация строительных и защищаемых конструкций, превышение длины линии связи между ДРС и БОС, их ненадежное крепление, некачественная пайка или замена ее скруткой, отсутствие гибкого перехода.

Место установки и количество датчиков (извещателей) выбирают с таким расчетом, чтобы площадь незащищенных участков блокируемой конструкции не превышала 0,1 м 2 .

Для обеспечения устойчивой работы извещателей рекомендуется придерживаться следующих правил:

Знать специфические особенности объекта (форма и размеры помещений, расположение дверей, толщина и материал стен, перекрытий, расположение водопроводных и отопительных труб);

Не применять извещатели при уровне акустического шума в помещении свыше 60 дБ;

Длина двухпроводной линии связи ДСВ с БОС извещателей типа "Грань" не должна превышать 50 м;

Места установки ДСВ1 и звуковода для ДСВ2 должны быть не ближе 1,0 м от мест крепления батарей и труб систем водоснабжения и отопления.

5.1.8. Комбинированные

Комбинированные извещатели сочетают в себе несколько принципов обнаружения проникновения нарушителя, позволяющие значительно снизить количество ложных тревог. Наибольшее распространение получили извещатели, сочетающие пассивный оптико-электронный и радиоволновой принципы обнаружения.

Для обеспечения устойчивой работы не рекомендуется устанавливать извещатель напротив окон, дверей, перегородок, за которыми возможно движение людей, транспорта, а также в непосредственной близости от вентиляционных отверстий, радиаторов отопления, других источников тепловых помех, оставлять на период охраны включенным люминесцентное освещение.

5.1.9. Совмещенные

Совмещенные извещатели сочетают функции двух извещателей: пассивного звукового и пассивного оптико-электронного. Извещатель предназначен для обнаружения разрушения остекления конструкций и проникновения нарушителя.

Воздействие мешающих факторов на каждый канал извещателя, способы их нейтрализации изложены в разделах 5.1.3, 5.1.5.

5.1.10. Электроконтактные

Электроконтактные (омические) извещатели предназначены для блокировки остекленных конструкций от разбития, строительных конструкций (двери, люки, ворота, некапитальные стены, перегородки и т. п.) на разрушение (пролом). Они могут использоваться и в качестве датчиков-ловушек для блокировки отдельных предметов.

На работоспособность извещателей практически не влияет воздействие помех, приведенных в таблице 3.2. К ложным срабатываниям этих извещателей может привести: вибрация с большой амплитудой строительных конструкций, их слабая инженерно-техническая укрепленность, некачественное крепление, отсутствие пайки проводов или замена ее скруткой, отсутствие гибкого перехода.

Воздействие этих факторов на работоспособность извещателей исключается строгим выполнением требований монтажа, проведением работ по инженерно-технической укрепленности строительных конструкций, своевременным техническим обслуживанием.

Для обеспечения устойчивой работы электроконтактных извещателей рекомендуется придерживаться следующих правил:

Алюминиевая фольга приклеивается по периметру стеклянных полотен, по центру стеклоблоков или стеклопакетов;

Провод прокладывается по внутренней стороне строительных конструкций по всей площади параллельно контурным линиям и крепится скобами с шагом не более 200 мм. Под скобу должна быть подложена неразрезанная полихлорвиниловая трубка длиной 10 мм;

Блокировка металлических решеток производится обвиванием горизонтальных и вертикальных прутьев проводом с шагом витка 30...70 мм. В местах пересечения прутьев решетки проводом делается узел, который должен охватывать оба прута. Решетки из металлических трубок следует блокировать пропусканием провода через все трубки.

5.2. ПРИБОРЫ ПРИЕМНО-КОНТРОЛЬНЫЕ

Приборы приемно-контрольные предназначены для контроля состояния параметров ШС как в автономном режиме работы с включением устройств оповещения, так и/или с передачей служебных и тревожных извещений на пульт централизованного наблюдения.

Информационная емкость приборов определяется размерами и значимостью объекта охраны.

К ложным срабатываниям ППК может привести: заниженная задержка времени реакции (таблица 4.2) на нарушение ШС (или ее отсутствие), изменения основных параметров ШС в течение суток. Чем выше эти параметры, тем больше импульсных помех отсеивается на входе прибора и, как следствие, меньше ложных тревог.

При выборе ППК следует отдавать предпочтение приборам, имеющим селекцию входных сигналов по длительности, отслеживание медленного изменения сопротивления ШС, сохранение работоспособности при пониженном напряжении сети переменного тока.

Установка ППК должна производиться в местах, где он защищен от механических повреждений и вмешательства в его работу посторонних лиц:

При отсутствии специально выделенного помещения - на стенах, на высоте не менее 2,2 м от уровня пола (не актуально, если на корпусе ПКП установлены кнопки управления и имеется индикация);

При наличии специального помещения - на высоте не менее 1,5 м или на столе.

Установка приборов в местах, доступных посторонним лицам, должна производиться в запираемых металлических шкафах, конструкция которых не влияет на их работоспособность. Не допускается установка приборов в сгораемых шкафах, а также на расстоянии менее 1 м от отопительных систем и приборов.

Для обеспечения устойчивой работы ППК рекомендуется придерживаться следующих правил:

На объектах с высоким уровнем помех необходимо устанавливать ППК, имеющие более высокие характеристики надежности, помехоустойчивый алгоритм обработки сигнала, контроль параметров ШС в процессе работы;

Применять ППК со встроенным аккумулятором для исключения ложных срабатываний при отключении или снижении напряжения сети переменного тока;

Применять ППК со световой и/или звуковой сигнализацией, напоминающей собственнику о необходимости снятия прибора с охраны;

Для исключения ложных срабатываний, возникающих из-за нестабильности параметров сети переменного тока, применять ППК с питанием непосредственно от ретрансляторов СПИ;

Устанавливать на объекте ППК, позволяющие организовать локальную объектовую сеть;

Применять резервные источники питания, имеющие расширенный рабочий диапазон напряжений сети переменного тока (от 100 до 250 В), позволяющие снизить количество ложных срабатываний ТС ОС, работающих от этого источника.

5.4. СИСТЕМЫ ПЕРЕДАЧИ ИЗВЕЩЕНИЙ

Системы передачи извещений, в том числе и радиосистемы, предназначены для сбора, обработки, передачи и регистрации извещений о состоянии ШС охраняемых объектов.

К ложным срабатываниям СПИ могут привести:

Уменьшение сопротивления утечки абонентской линии;

Изменения тока в абонентской линии (тока "охраны");

Помехи в каналах связи, цепях питания.

Влияние этих факторов устраняется в процессе проведения технического обслуживания.

Следует иметь в виду, что кроме импульсных помех в линиях имеют место кратковременные нарушения соединений на громполосах, в муфтах, распределительных шкафах и коробах, окисление контактов реле, короткие замыкания линий. Эти явления носят случайный характер и оказывают на систему такое же влияние, как и импульсные помехи, однако имеют длительность до секунд. Для снижения числа ложных срабатываний по вине сотрудников АТС необходимо четко проработать договорную базу работы охраны с сотрудниками АТС.

Для обеспечения устойчивой работы СПИ рекомендуется придерживаться следующих правил:

Заменять СПИ, выработавшие установленные сроки службы, на современные, использующие для передачи извещения о тревоге на ПЦН специальные кодированные сигналы и помехозащищенные протоколы обмена УО с ретранслятором и ретранслятора с ПЦН;

Проводить модернизацию СПИ старых типов, не выработавших установленные сроки службы;

Поэтапно оснащать действующий парк аппаратуры ПЦО автоматизированными рабочими местами;

Для обеспечения устойчивой работы РСПИ рекомендуется придерживаться следующих правил:

Исследовать, в разрешенном для работы РСПИ диапазоне радиочастот, электромагнитную обстановку в районе эксплуатации оборудования;

Выбрать для работы РСПИ радиочастоты, на которых присутствует минимальный уровень помех;

Получить разрешение на использование выбранных радиочастот в региональном отделении Госсвязьнадзора;

Применять РСПИ с контролем исправности и/или качества канала радиосвязи;

Применять для передачи извещений на ПЦН специальные кодированные сигналы и помехоустойчивые протоколы их передачи и обработки с УО на ПЦН или с УО через ретранслятор на ПЦН;

Использовать антенны, направленные или всенаправленные с большим коэффициентом усиления, в разрешенном частотном диапазоне, рассчитанные на эксплуатацию в соответствующих погодных и климатических условиях;

Периодически контролировать электромагнитную обстановку в районе функционирования РСПИ;

Периодически проводить измерение величины мощности, излучаемой передатчиками РСПИ, и величины коэффициента стоячей волны в фидере, величина которого не должна превышать величины 1,5.

5.4.1. Повышение имитостойкости СПИ

В большинстве случаев существующие СПИ, использующие телефонную сеть для связи между разнесенными устройствами, имеют структуру, приведенную на рисунке 5.1.

Рисунок 5.1 - Структура СПИ

Устройства оконечные, установленные на охраняемых объектах, через абонентские линии подключены к ретранслятору СПИ. Ретранслятор выполняет циклический опрос состояний подключенных на охрану УО и, при изменении этих состояний, формирует соответствующие извещения для передачи их на ПЦН. Извещения от Р на ПЦН передаются по выделенным линиям связи.

Очевидно, что если между УО и Р осуществляется цифровая передача данных, это существенно упрощает борьбу с ложными срабатываниями на этом участке за счет использования полезных свойств цифрового сигнала.

Развертывание пультового оборудования радиосистем следует начинать с установки базовой антенны.

Базовую антенну необходимо устанавливать как можно выше, так как увеличение высоты подъема пропорционально увеличению дальности устойчивой радиосвязи. В качестве базовой рекомендуется использовать коллинеарную антенну (типа ANLI А-1000 и т. п.). Кабель для этой антенны надо выбирать с малыми потерями (типа РК 50-4-47 или Н 1000). В таблице 5.2. приведены типичные параметры затухания радиосигнала для различных типов кабелей, а также приведены параметры отечественных высокочастотных (ВЧ) кабелей.

К антенне необходимо устанавливать противовесы. Эксплуатация антенны без прикручивания штырей противовеса приводит к рассогласованию антенны и неустойчивой работе всей системы. Труба мачты антенны должна находиться ниже плоскости противовесов, иначе мачта будет экранировать базовую антенну. Следует убедиться в том, что на крыше здания отсутствуют антенны других мощных радиосредств, которые могут создать помехи при работе.

Таблица 5.2 - Параметры затухания радиосигнала для различных типов кабелей

Тип кабеля

Наружный Ø мм

Затухание ВЧ сигнала (дБ/м)

200 МГц

500 МГц

РК 50-2-21

0,2 - 0,3

0,45

РК 50-2-11

0,50

РК 50-3-11

0,40

РК 50-4-11

0,10

0,20

РК 50-7-11

10,0

0,09

0,20

РК 50-4-47

10,0

0,06 - 0,07

0,14

РК 50-7-58

11,2 ±0,6

0,05

0,10

Н 1000

0,05

0,09

Н 155

0,11

0,19

Н 1000

10,3

0,048

0,09

10D-A-R

10,3

0,04

0,09

RG 58 A/U

0,17 - 0,20

0,40

RG 213 U

10,5

0,07

0,14

Если нет возможности установить антенну вне влияния иных радиопередающих средств связи, следует максимально использовать "разнос" по высоте и по горизонту, а при необходимости - полосовой или режекторный фильтры.

При развертывании радиосистемы радиус устойчивой работы можно определить исходя из соотношения сигнал/шум (не ниже 20 дБ), для чего используют анализаторы спектра или сканирующие радиоприемники. При их отсутствии соотношение сигнал/шум можно проверить по упрощенной методике. Для этого необходимо подключить к выходу передатчика, установленного на предполагаемом объекте, ослабитель сигнала на 15 - 20 дБ. Ослабитель следует включить между выходом передатчика и антенной. Затем, убедившись по пульту РСПИ, что в течение трех суток с этого объекта не было извещений "Авария", включить антенну на вход передатчика, предварительно убрав ослабитель.

Этот метод не может гарантировать 100% надежность устойчивой работы объекта охраны, поскольку не является инструментальным методом измерения соотношения сигнал/шум. Однако он позволяет в большинстве случаев получить достоверный результат.

При развертывании пультового оборудования не следует располагать приемники непосредственно у плат блоков цифровой обработки сигналов пульта или иных устройств, которые могут создавать сильные радиопомехи (например, дроссели ламп люминесцентного освещения). Чувствительность приемника составляет 0,35 мкВ, поэтому уровень помех должен быть ниже этой величины.

При развертывании объектового оборудования необходимо строго соблюдать положения Руководства по эксплуатации. Вместе с тем имеются некоторые особенности, отраженные в документации, которые часто упускают из виду при работе. Например:

При развертывании прибора приемно-контрольного (ППК) "Струна-801" не рекомендуется устанавливать антенну считывателя кода брелока на металлическую поверхность, так как резко сокращается радиус действия брелока;

Не забывать устанавливать номер системы, одинаковый на пульте и в объектовом устройстве (ППК). Для изменения номера системы в пульте централизованного наблюдения необходимо вынуть разъем питания на 30 - 40 с. Если отключить питание пульта и не вынуть разъем питания, он сохранит прежний номер системы;

Не забывать устанавливать одинаковые рабочие радиочастоты приемника и передатчика.

Нельзя устанавливать в помещениях антенны объектовых устройств ближе 0,5 м от массивных металлических поверхностей.

6. ОРГАНИЗАЦИЯ РАБОТ ПО СНИЖЕНИЮ КОЛИЧЕСТВА
ЛОЖНЫХ СРАБАТЫВАНИЙ

6.1. ОСНОВНЫЕ РАБОТЫ

Значительное сокращение ЛС можно получить за счет организационно-технических мероприятий, направленных на повышение качества проектно-монтажных работ, технической укрепленности объектов, технического обслуживания, квалификации персонала, а также улучшения контроля работ, проводимыми службой связи на АТС и собственником на охраняемом объекте.

Уменьшение влияния ошибок ответственного лица объекта можно добиться:

Проведением периодического инструктажа;

Повышением ответственности за сдачу объекта под охрану и снятие с охраны;

Автоматизацией процесса "взятия - снятия" и индикацией состояния ТС ОС.

В Договор с АТС (если там установлено оборудование) рекомендуется включить пункты:

О своевременном предупреждении начала профилактических и восстановительных работ на кроссе и кабельном хозяйстве АТС;

О проведении измерений параметров абонентских линий с передачей результатов в подразделение вневедомственной охраны.

6.2. ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

Техническое обслуживание - это комплекс работ по поддержанию ТС ОС в работоспособном состоянии в течение всего срока эксплуатации.

Проведение технического обслуживания и его цели и задачи были рассмотрены в отдельной лекции.

7. ПОРЯДОК ПРОВЕДЕНИЯ РАБОТ ПО РЕЗУЛЬТАТАМ АНАЛИЗА

Для проведения внеочередных регламентных работ по пультовым номерам (объектам, квартирам), поставленным в результате анализа на контроль, следует временно создавать оперативные бригады. В состав бригады должны входить: электромонтер ОПС, обслуживающий объект, его бригадир, электромонтер ПЦН. Руководитель работ должен организовать обеспечение бригад необходимыми запасными частями, материалами, инструментом и измерительными приборами, а также ТС ОС из обменного фонда.

На каждом контролируемом объекте должны быть проведены неплановые работы в объеме регламента № 2 для ППК и извещателей и регламента № 3 для шлейфа сигнализации. Результаты измерений параметров ТС ОС. Контроль качества выполнения работ на объекте должен осуществляться инженерно-техническими работниками охраны.

Измерение параметров телефонных линий, используемых для подключения объектов к ПЦО (сопротивление абонентской линии, её утечки и емкости), проводится работниками измерительных лабораторий АТС по заявкам охраны или абонента.Наряду с внеочередными регламентными работами проводится обследование объектов для определения технического состояния элементов строительных конструкций, оказывающих влияние на работу ТС ОС.

8. АЛГОРИТМЫ ПОИСКА ПРИЧИН ЛОЖНЫХ СРАБАТЫВАНИЙ

Эффективность борьбы с ложными срабатываниями, а также оперативность их устранения во многом определяется алгоритмом (или последовательностью) поиска причин ложных срабатываний.

Алгоритм поиска ложного срабатывания ТС ОС для группы задержания на объекте приведен на рисунке 8.1.

При поступлении сигнала тревога с охраняемого объекта, к нему оперативно направляется группа задержания. Важной задачей группы задержания при перевзятии объекта, с которого поступил сигнал тревоги, является точное определение причины срабатывания ТС ОС с целью ее устранения и предотвращения повторных ложных выездов группы задержания на данный объект.

Методика поиска причин ЛС построена на анализе состояния индикаторов и выносных световых и звуковых оповещателей ППК, состояния линии электропитания и телефонной связи. При отсутствии следов проникновения и нахождения преступника на объекте в зависимости от варианта охраны объекта возможны следующие причины.

Световые оповещатели на объекте находятся в режиме постоянного свечения, что соответствует режиму "норма", то есть объект автономно охраняется. Наиболее вероятной причиной поступления на ПЦО сигнала "тревога" является нарушение телефонной линии объекта либо изменение ее параметров сверх граничных значений. Причиной ЛС так же может стать самовосстановление системы сигнализации в результате перепада или кратковременного отключения напряжения сетевого питания.

Рисунок 8.1 - Алгоритм поиска причины ложного срабатывания ТС ОС для группы задержания.

Световые оповещатели на объектах находятся в нерабочем состоянии (отсутствует свечение). Причиной может являться отсутствие электропитания на объекте вследствие нарушения магистральной линии. Подтверждением служит, как правило, отсутствие электроэнергии в ближайших домах или организациях, а также одновременное поступление на ПЦО сигналов тревоги с нескольких объектов, расположенных в одном квартале. Другой причиной может быть неисправность ППК, обычно связанная с отсутствием подачи питания на прибор (перегорание предохранителей, электрических пробок) либо неисправность выходных цепей питания оповещателей при использовании ламп накаливания с мощностью, превышающей паспортную, а также выход из строя самого оповещателя (перегорания лампы).

Световые оповещатели ППК, на которые подключены шлейфы периметра объекта (фасад, тыл, датчики-ловушки, промежуточные двери, люки и вентиляционные короба) находятся в состоянии прерывистого свечения - "тревога", световые оповещатели дополнительных рубежей охраны (объемные извещатели) в режиме постоянного свечения - "норма". Причиной ЛС может стать:

Размыкание магнитоконтактных извещателей, вследствие неудовлетворительной технической укрепленности (неисправность дверных и оконных конструкций, самопроизвольное открывание форточек и т.п.);

Самопроизвольное срабатывание извещателей "Окно" вследствие неисправности либо повышенной чувствительности БОС или близости проезжей части улиц с интенсивным движением большегрузного транспорта;

Изменение сопротивления шлейфа, его изоляции вследствие недоброкачественного технического обслуживания, физического износа кабельных линий;

Условия эксплуатации, не соответствующие техническим характеристикам ТС ОС (повышенная влажность, температура в помещениях объекта);

Неустойчивая работа ППК.

Световые оповещатели первого рубежа "горят" ровным светом, а второго рубежа - в режиме "тревога". В этом случае наиболее вероятными причинами ложного срабатывания ТС ОС являются:

Возможность появления на объекте мелких животных (кошки и т. п.);

Возможность засветки оптикоэлектронных извещателей светом автомобильных фар, солнечными лучами;

Несоблюдение технических условий при установке извещателей второго рубежа охраны (наличие произвольно открывающихся строительных элементов и конструкций, близость батарей отопления и т.п.);

Неправильная установка чувствительности и мощности излучения ультразвуковых и радиоволновых извещателей.

Все световые оповещатели первого и дополнительных рубежей охраны "горят" прерывистым светом. Кроме совместного возникновения вышеперечисленных причин, наиболее вероятной можно считать кратковременный перепад напряжения питания электрической сети, приведший к невосстановлению первоначального состояния ППК.

В свою очередь звуковые оповещатели на объектах, подключенные к ППК последних лет выпуска, подают сигнал "тревога" с задержкой до 30 секунд от момента посылки тревожного сообщения на ПЦН и ограниченным временем звучания - до 4 минут. Эти особенности необходимо учитывать при анализе состояния оповещателей на объектах.

Сделать попытку постановки системы охраны в автономный режим и при положительном результате сдать объект под централизованную охрану, связавшись с ПЦО с данного объекта, одновременно дополнительно проконтролировав работоспособность канала связи.

При невзятии объекта на ПЦО, необходимо, электромонтеру проверить исправность ППК, активных извещателей, оконечного устройства СПИ, а также состояние блоков подключения (фильтров) этой аппаратуры путем замеров величины напряжения выходного сигнала и контроля подачи питания на блоки.

Алгоритм поиска причин ложных срабатываний для электромонтера приведен на рисунке 8.2.


Рисунок 8.2 - Алгоритм поиска причины ложного срабатывания ТС ОС для электромонтера

Поиск причины ложного срабатывания рекомендуется начинать с проверки основных параметров шлейфа сигнализации.

8.1. ПРОВЕРКА ШЛЕЙФА СИГНАЛИЗАЦИИ

Проверьте исправность шлейфа сигнализации с целью выявления повреждений простейших извещателей, соединительных линий, распределительных коробок, выносных элементов. Поврежденные элементы шлейфа и участки соединительных линий следует заменить исправными, холодные скрутки - пропаять и заизолировать. Если на участке шлейфа длиной до 10 м (от одной распределительной коробки до другой) имеется две и более скруток, этот участок шлейфа следует заменить.

Измерьте электрические параметры шлейфа сигнализации. Если параметр не соответствует граничным значениям, необходимо, последовательно отключая в распределительных коробках участки шлейфа сигнализации, определить участок, имеющий большую утечку /минимальное сопротивление "провод-земля", определите и устраните имеющиеся повреждения изоляции проводников или замените участок шлейфа. Особое внимание при этом следует уделять местам крепления провода к стене. В случае если место повреждения изоляции не обнаружено, данный участок шлейфа следует полностью заменить.

При проведении регламентных работ необходимо добиваться максимально возможного увеличения сопротивления утечки шлейфа с целью повышения помехоустойчивости ППК.

Проверьте состояние монтажа линий, подведенных к ППК. Обратите внимание на то, чтобы пультовая линия, шлейф сигнализации с сетями электропитания 220 В не были проложены в одном жгуте, а были разнесены как можно дальше друг от друга. Близкое расположение этих линий способствует появлению в них взаимных наводок и помех.

Одновременно с проверкой шлейфов сигнализации следует проверить состояние абонентской телефонной линии (от телефонного аппарата до коробки телефонной распределительной). При неудовлетворительном состоянии этого участка линий принять меры к его замене (по заявке на АТС или самостоятельно по согласованию с АТС).

Примерный перечень основных работ по техническому обслуживанию шлейфа сигнализации в объеме регламентов № 1 (ТО-1) и № 2 (ТО-2) приводился в лекции по ТО.

8.2. ПРОВЕРКА ИЗВЕЩАТЕЛЕЙ

При обнаружении неустойчивой работы извещателей проверьте правильность их установки и настройки, выявите источники помех, мешающие факторы.

Контроль правильности настройки извещателей должен проводиться при регламентных работах на охраняемых объектах. В тех случаях, когда извещатель выдает ложные срабатывания, необходимо провести его дополнительную подстройку в межрегламентный период. Прежде чем приступить к настройке извещателей:

Проверьте соответствие монтажа аппаратуры требованиям, указанным в технической документации;

Измерьте величину питающих напряжений;

Измерьте величину напряжения резервного источника питания и в случае несоответствия указанной в технической документации, замените батареи (аккумуляторы) на новые;

Убедитесь, что температура окружающего воздуха на объекте соответствует паспортным температурам прибора;

Измерьте величину потребляемой мощности (тока) извещателем, которая не должна выходить за граничные значения.

Проконтролируйте зону обнаружения (установочные размеры) извещателя, убедитесь, что она не выходит за пределы охраняемого объекта и перекрывает все пути возможного проникновения нарушителя. Рекомендуется, чтобы зоны обнаружения однотипных извещателей не пересекались. При необходимости подрегулировать извещатель. Контроль размеров зоны обнаружения рекомендуется проводить при максимальной и минимальной температуре воздуха на объекте.

По окончании настройки следует поставить объект на контроль отсутствия ложных срабатываний в течение 2-3 дежурных периодов. При неустойчивой работе извещателей в контрольный период их необходимо демонтировать и заменить.

Примерный перечень основных работ по техническому обслуживанию извещателей в объеме регламентов № 1 (ТО-1) и № 2 (ТО-2) приводился в лекции по ТО.

8.3. ПРОВЕРКА ПРИБОРОВ ПРИЕМНО-КОНТРОЛЬНЫХ

Проведите внешний осмотр прибора с целью выявления повреждений его корпуса и проводов в месте ввода внешних линий. При наличии повреждений, которые могут повлиять на работу прибора, устраните их;

Осмотрите световой и звуковой оповещатели, убедитесь в их исправности;

Выключите прибор, снимите крышку, закрывающую клеммную колодку, и осмотрите элементы, к которым открыт доступ. При наличии повреждений съемных элементов замените их исправными;

Проверьте качество подключения линий к клеммам колодки. Провода должны быть припаяны к ламелям (если на колодке предусмотрено крепление под "винт", винты должны быть завернуты до упора);

Включите прибор и восстановите шлейф сигнализации. Выборочно нарушьте шлейф сигнализации (открыть дверь, форточку и т. п.) и убедитесь в работоспособности прибора;

Измерьте величину потребляемой мощности, тока ППК, которые не должны выходить за граничные значения.

Примерный перечень основных работ по техническому обслуживанию ППК и устройств уплотнения в объеме регламентов № 1 (ТО-1) и № 2 (ТО-2) приводился в лекции по ТО.

8.4. ПРОВЕРКА СИСТЕМ ПЕРЕДАЧИ ИЗВЕЩЕНИЙ

На первом этапе проверяется совместное функционирование СПИ с объектовым комплексом во всех режимах работы. При неустойчивом функционировании рекомендуется выполнить следующие работы:

Проверьте исправность СПИ в объеме методик регламентов технического обслуживания или инструкций по среднему ремонту;

Выполните проверку состояния соединительных кабелей и разъемов;

Измерьте величину потребляемой мощности, тока устройствами СПИ, которые не должны выходить за граничные значения.

Примерный перечень основных работ по техническому обслуживанию устройств (блоков), входящих в состав СПИ в объеме регламентов № 1 (ТО-1) и № 2 (ТО-2) приводился в лекции по ТО.

8.5. ПРОВЕРКА РАДИОСИСТЕМ ПЕРЕДАЧИ ИЗВЕЩЕНИЙ

Перед началом проведения монтажных работ на объекте для РСПИ:

Рекомендуется проведение тестирования приборов на "столе" перед развертыванием объектового оборудования. Требуется смоделировать прохождение сигнала по радиоканалу. Чтобы избежать перегрузки приемника от близко расположенного передатчика, на выход передатчика следует подключить "заглушку", которую можно изготовить из резистора номиналом 50 Ом мощностью 0,25 Вт. Затем подключить один выход резистора на центральную жилу кабеля, а другой - на "экран". При этом необходимо изолировать открытые токоведущие части резистора. Помните, что короткое замыкание и работа передатчика без нагрузки приведут к выходу его из строя. Антенну приемника можно не подключать, так как с расстояния в несколько метров двухваттный передатчик (даже на резистивную нагрузку) излучает достаточно энергии для работы приемника и без антенны;

Если не удалось проверить работу оборудования по радиоканалу, следует проконтролировать функционирование объектового устройства и пульта, исключив радиоканал. Для этого нужно соединить проводами клеммы объектового устройства "Данные на передатчик" и "Вход" пульта РСПИ.

Если после этого не удалось "запустить" оборудование, необходимо произвести последовательную замену узлов РСПИ (объектовых блоков, радиоприемных, радиопередающих устройств, ПЦН и т. п.) на заведомо исправное оборудование или на оборудование, не бывшее в эксплуатации. Таким образом удастся локализовать неисправность до отдельного узла радиосистемы.

Большинство неисправностей связано с нарушением контакта, - это:

Нарушение электрического соединения в клеммах подключения;

Обрыв проводов или их неправильное подключение;

Неисправность в антенно-фидерном хозяйстве (особенно в разъемах);

Обрыв центральной жилы кабеля или неисправность антенны.

При обрыве центральной жилы в кабеле может сложиться впечатление о нормальной работе радиосистемы при незначительном расстоянии между объектом охраны и ПЦО.

Для проверки качества антенно-фидерного тракта необходимо иметь измеритель коэффициента стоячей волны (КСВ). Лучше, если измеритель КСВ будет дополнен измерителем мощности, которым можно определить и мощность передатчика. Иногда пробой выходного транзистора передатчика приводит не к полному отсутствию высокочастотного сигнала, а только к падению его уровня в десятки раз. Поэтому рекомендуется измерить мощность передатчика.

Коэффициент стоячей волны показывает долю энергии передатчика, которая отдается в антенну. В идеале КСВ = 1. В реальных условиях КСВ антенны должен находиться в диапазоне от 1 до 1,5, а при больших длинах кабеля до 2,5.

Необходимо учитывать потери радиосигнала при прохождении через конструкции зданий.

В таблице 8.1 приведены типовые величины затухания радиосигнала УКВ - диапазона в зданиях различной конструкции.

Таблица 8.1. - Типовые величины затухания радиосигнала УКВ - диапазона

Конструкция здания

Затухание сигнала внутри помещения, дБ

Деревянная

менее 5

Кирпичная

5...10

Железобетонная

10...20

Железный бокс

Свыше 25

Прокладывать линии питания и управления передатчиком следует проводом как можно большего сечения. Особенно это важно для проводов питания передатчика. Рекомендуется использовать многожильный медный провод, обладающий требуемой механической прочностью.

Мощность передатчика зависит от уровня питающего напряжения, при значительном падении этого напряжения на проводах передатчик не развивает полную мощность. Максимальные длины проводов при их различных сечениях и диаметрах приведены в таблице 8.2. Для повышения дальности действия и помехозащищенности канала передачи радиосистемы рекомендуется использовать ретранслятор.

Таблица 8.2. - Зависимость длины провода от диаметра жилы, сечения провода

Диаметр жилы медного провода, мм

Сечение провода, мм 2

Длина провода, м

0,0707

0,126

0,196

0,282

0,385

0,503

0,635

0,785

Рекомендуется устанавливать ретранслятор на крыше жилого высотного дома, точнее в его чердачных помещениях или лифтовой комнате, где есть электропитание и приемлемые условия эксплуатации. Перед установкой ретранслятора необходимо убедиться в отсутствии рядом антенн других радиопередающих средств.

При наличии вблизи других радиопередающих станций, необходимо использовать "разнос" антенн либо по вертикали, либо по горизонтали. Из-за ограниченной площади крыши рекомендуется использовать "разнос" антенн как по вертикали, так и по горизонтали. "Разнос" по горизонтали в 15 - 20 м дает ослабление мешающего сигнала на 20 дБ или по вертикали в 4 - 5 м дает ослабление мешающего сигнала на 40 дБ. "Разнос" по вертикали дает лучшие результаты, так как расположение одной антенны строго под другой не оказывает влияния друг на друга.

При "разносе" антенн по горизонтали на 15 - 20 м наблюдается ослабление сигнала на 20 дБ.

При невозможности разнести антенны радиосредств в пространстве следует использовать полосовые или режекторные ВЧ - фильтры.

При использовании направленных антенн кабель подключения необходимо прокладывать параллельно траверсе антенны.

9. ОРГАНИЗАЦИЯ ЭЛЕКТРОПИТАНИЯ

9.1. ПУЛЬТОВАЯ АППАРАТУРА СИСТЕМ ПЕРЕДАЧИ ИЗВЕЩЕНИЙ

Полное резервирование электропитания аппаратуры СПИ на ПЦО - блоков индикации, диспетчерских полукомплектов, пультов управления и т. п. обеспечивает гарантированную защиту от кратковременного и полного отключения электроэнергии в сети переменного тока.

Непрерывность электропитания аппаратуры обеспечивается в соответствии с таблицей 9.1

Таблица 9.1 - Резервирование электропитания

Функция

Оборудование

Основная линия

Штатная схема электропитания аппаратуры ПЦО

Щит электрический с предохранителями и электросчетчиком

Кратковременное резервирование

Аккумуляторная батарея с ресурсом обеспечения электропитания не менее 4 часов

Кислотные аккумуляторы в проветриваемом помещении, непрерывно подключенные к аппаратуре ПЦО

Долговременное резервирование

Фидер электропитания от дополнительной подстанции или распределительного шкафа

Многосекционный рубильник с индикаторами наличия напряжения на силовых вводах

Автономное долговременное электропитание

Бензоэлектрический генератор необходимой мощности

Отдельный ввод с защитой от одновременного включения

При отсутствии либо несоответствии параметров напряжения на основной линии питания автоматически должны включаться аккумуляторные батареи, которые обеспечат работу СПИ, средств радиосвязи, сервисного оборудования ПЦО при кратковременных отключениях напряжения питания.

Целесообразно так же обеспечить помещение ПЦО дополнительными фидерами (линиями) электропитания от нескольких независимых подстанций. При локальном отключении электропитания на одном фидере и автоматическом переходе аппаратуры на аккумуляторное питание необходимо убедиться в наличии напряжения на дополнительном фидере (сигнализатор с использованием неоновых индикаторных ламп) и при положительном результате перевести электропитание на исправный фидер.

Резервирование электропитания пультовой части аппаратуры централизованного наблюдения рекомендуется организовать двумя ступенями:

Использование аккумуляторных батарей либо блоков бесперебойного сетевого питания для исключения влияния кратковременных отключений и провалов питающего напряжения;

Использование бензоэлектрического агрегата для обеспечения долговременной автономной работы аппаратуры.

9.2. СТАНЦИОННАЯ АППАРАТУРА ОХРАННОЙ СИГНАЛИЗАЦИИ

Комплекс аппаратуры охранной сигнализации, установленной в помещениях кросса АТС, должен быть обеспечен резервируемой линией электропитания от станционных источников питания напряжением 60 В через отдельный распределительный щит.

9.3. ОБЪЕКТОВАЯ АППАРАТУРА ОХРАННОЙ СИГНАЛИЗАЦИИ

Полное резервирование электропитания объектовой аппаратуры - это решение проблемы борьбы с ложными срабатываниями по цепи электропитания.

При наличии возможности подключения ТС ОС к различным силовым сетям, их рекомендуется подключать к тем, в которых отсутствуют мощные силовые устройства. Наибольшая помехозащищенность ТС ОС обеспечивается при подключении непосредственно к вводно-распределительному устройству объекта. Основные технические характеристики распространенных источников питания приведены в таблице 10.2.

При использовании импортных источников питания следует помнить, что они предназначены для работы в электросетях с более стабильными параметрами напряжения. Амплитудное значение пульсаций выходного напряжения достигает у них 1 - 2 В. Все это может привести к ЛС.

Стабильная работа резервных источников питания гарантируется своевременным выполнением работ по их техническому обслуживанию. Примерный перечень основных работ по техническому обслуживанию источников питания приводился в лекции по ТО.

При организации резервного питания на объектах рекомендуется использовать герметичные свинцово-кислотные не обслуживаемые аккумуляторные батареи, как импортного, так и отечественного производства.

Большая протяженность линий питания создает возможность возникновения в них различных электромагнитных помех и недопустимо большого падения величины напряжения на конце линии питания, поэтому источники питания и ТС ОС необходимо размещать на минимально близком расстоянии друг от друга. Для борьбы с электромагнитными помехами при длине электропроводок более 50 м необходимо использовать экранированные кабели и провода, витые пары. Уменьшить падение величины напряжения питания на проводах позволяет правильный выбор сечения (диаметра) провода. Сечение проводников следует выбирать учитывая длину электропроводки, падение напряжения на проводах, тока нагрузки в соответствии с таблицей 9.3.

Таблица 9.2 - Технические характеристики источников питания

Параметры

Скат- 1200Д

Скат- 2400М

Скат- 2412

Аксай

ББП 12/2А

Напряжение:

Сети, В;

187...242

187...242

187...242

150...242

100...250

Резерва, В

12; 24

Выходное напряжение, В

11,4...12,6

22,8...25,2

11,4...12,6
26...27

10...14

10,2...13,8

Амплитуда пульсаций выходного напряжения, мВ

Выходной ток, А

0,5/2,0

Напряжение отключение аккумулятора при его разряде, В

10...10,5

21...22

21...22

10,5...10,9

10,2...10,6

Емкость встроенного аккумулятора, Ач

4,5
2 шт.

7-12
2 шт.

Мощность, потребляемая от сети, ВА

Температура окружающей среды, °С

10...+40

10...+40

10...+40

10...+40

20...+50

Ток срабатывания защиты, А

Индикация

U вых

U вых

U вых

U вых

U вых

U сеть

U сеть

U сеть

U сеть

U сеть

Таблица 9.3 - Выбор диаметра, сечения проводов, жил кабеля

Диаметр медной жилы, мм (площадь сечения, мм 2)

Сопротивление 100 м петли кабеля, Ом

Падение напряжения на 100 м кабеля при различных токах, В

100 мА

250 мА

500 мА

2,5 (5)

0,73

0,073

0,18

0,36

2 (3,5)

1,04

0,25

1,8 (2,5)

1,48

0,15

0,37

0,74

1,4 (1,5)

2,42

0,24

1,12 (1,0)

0,36

1 (0,75)

0,49

1,23

2,46

0,5 (0,2)

18,8

1,88

0,4 (0,13)

29,6

2,96

14,8

10. ЗАЗЕМЛЕНИЕ

Для надежной работы ТС ОС, особенно извещателей, установленных на периметре территории, требуется заземление. В большинстве случаев на объектах заземление отсутствует или выполнено не верно.

Заземляющее устройство должно быть спроектировано в соответствии с требованиями эксплуатационной документации на ТС ОС и требованиями ПУЭ.

Заземлению подлежат ТС ОС с напряжением питания переменного тока выше 42 В и постоянного тока выше 110 В - в помещениях с повышенной опасностью и особо опасных, а также при их наружных установках.

Заземление не требуется, если это не оговорено в технической документации на применяемую аппаратуру, при напряжении питания до 42 В переменного тока и до 110 В постоянного тока.

Сопротивление заземляющего устройства должно быть не более 4 Ом.

Заземляющие устройства состоят из заземляющих проводников и электродов заземления. В качестве проводников рекомендуется использовать:

Сталь полосовую 40x4 мм или 40x6 мм;

Сталь арматурную стержневую диаметром от 10 до 16 мм;

Проволоку стальную оцинкованную диаметром не менее 6 мм;

Изолированный проводник сечением не менее 1,5 мм2 для меди и не менее 2,5 мм2 - для алюминия.

Сталь угловую 50x50x5 мм или 63x63x6 мм;

Стержни из круглой стали диаметром от 10 до 16 мм;

Сталь полосовую 40x4 мм или 40x6 мм.

Допускается использовать естественные заземляющие устройства:

Проложенные в земле водопроводные и другие металлические трубопроводы, за исключением трубопроводов горючих жидкостей, горючих или взрывчатых газов и смесей;

Металлические конструкции железобетонных зданий и сооружений, находящиеся в соприкосновении с землей;

Обсадные трубы скважин;

Свинцовые оболочки кабелей, проложенные в земле.

Запрещается применять в качестве заземлителей алюминиевые оболочки кабелей.

В сухих помещениях без агрессивных сред заземляющие проводники прокладываются по стенам, в остальных помещениях - на расстоянии не менее 10 мм от стен.

ТС ОС должны подключаться к заземлению при помощи отдельного ответвления. Последовательное включение в заземляющий проводник ТС ОС не допустимо.

Экран экранированного провода должен быть заземлен в одной точке на одном из концов.

На периметре территории для уменьшения взаимного влияния заземляющих устройств рекомендуется располагать их не ближе 40 м друг от друга.

11. МОНТАЖ ЭЛЕКТРОПРОВОДОК

11.1. ШЛЕЙФ СИГНАЛИЗАЦИИ

Размещение и монтаж ТС ОС, выбор проводов и кабелей для шлейфов сигнализации и соединительных линий следует производить в соответствии с ПУЭ, РД 78.145-93, технической документацией на применяемое изделие и требованиями настоящего документа.

Прокладка электропроводок по наружным стенам объектов с внешней стороны или по периметру территории должна быть выполнена скрытым способом или в металлических трубах, коробах. Металлические трубы, короба должны быть заземлены.

Прокладка электропроводок между охраняемыми объектами и пунктом охраны должна осуществляться в канализации или траншеях. Воздушную прокладку рекомендуется не применять.

При параллельной прокладке электропроводок и цепей питания 220 В переменного тока расстояние между ними должно быть не менее 0,5 м, а их пересечение должно производиться под прямым углом не более двух раз. При пересечении цепей питания 220 В переменного тока электропроводки должны быть защищены резиновыми или полихлорвиниловыми трубками, концы которых должны выступать на 4- 5 мм с каждой стороны перехода.

Прокладка электропроводок по стенам внутри охраняемых объектов должна производиться на расстоянии не менее 0,1 м от потолка и, как правило, на высоте не менее 2,2 м от пола. При прокладке на высоте менее 2,2 м от пола должна быть предусмотрена механическая защита (короба, трубы) электропроводок от повреждений. Не допускается установка пластмассовых труб и коробов в помещениях с температурой воздуха ниже минус 20°С и выше +60°С.

Провода и кабели в трубах, коробах должны лежать свободно, без натяжения, суммарное сечение проводов, кабелей, рассчитанное по их наружным диаметрам, не должно превышать 20-30% от внутреннего диаметра трубы, 35% внутреннего сечения глухих коробов и 40% - для коробов с открываемыми крышками.

11.2. ЛОКАЛЬНАЯ ВЫЧИСЛИТЕЛЬНАЯ СЕТЬ

В случае использования в качестве линий связи стандартного интерфейса RS 485 монтаж линий связи между приборами должен осуществляться: сигнальных проводов - витой парой; возвратного провода (объединяет логические нули приборов) - проводом любой марки. Логический ноль приборов должен быть заземлен. Разность потенциалов логических нулей приборов относительно "земли" должна быть не более 1 В.

В качестве линии связи интерфейса запрещается использовать свободные пары в любом низковольтном кабеле.

Прокладку линий связи интерфейса на объекте рекомендуется производить в металлических трубах, коробах по стенам, ограждению объекта, в земле. Прокладка линий связи интерфейса воздушным путем не рекомендуется.

Перечень нормативно-технической документации, требования которой необходимо учитывать при изучении данной темы.

1. РД 78.145-93. Системы и комплексы охранной, пожарной и охранно-пожарной сигнализации. Правила производства и приемки работ.

2. Пособие к РД 78.145-93.

3. Р 78.36.013-2002 – «Рекомендации. Ложные срабатывания технических средств охраны и методы борьбы с ними».

4. Р 78.36.023-2012 «Методика классификации и анализа причин ложных срабатываний».

5. Р 78.36.031-2013 «Обследование объектов, квартир и МХИГ, принимаемых под центра лизованную охрану».

6. Р 78.36.022-2012 «Методическое пособие по применению радиоволновых и комбинированных извещателей с целью повышения обнаруживающей способности и помехозащищенности».

7. Р 78.36.036-2013 «Методическое пособие по выбору и применению пассивных оптико-электронных инфракрасных извещателей».

8. ГОСТ Р 50009-2000 Совместимость технических средств электромагнитная. Технические средства охранной сигнализации. Требования и методы испытаний.

9. ГОСТ Р 54455-2011 Системы охранной сигнализации. Методы испытаний на устойчивость к внешним воздействующим факторам.

10. ГОСТ 4.188-85 Системы показателей качества продукции. Средства охранной и охранно-пожарной сигнализации. Номенклатура показателей.

Вопросы для самопроверки.

1. Перечислите помехи и основные мешающие факторы работе ТСО.

2. Каких правил следует придерживаться при монтаже СМК?

3. Каких правил следует придерживаться при монтаже ПИК?

4. Каков алгоритм поиска причин ложных срабатываний для электромонтера ?

5. Какие уровни резервирования электропитания целесообразно применять на ПЦО?

Бывают случаи, когда периодически выдает сигналы о неисправности или сработке . Когда-же наладчик приходит по вызову прибор ведет себя послушно и шлейф на который поступали жалобы стабильно выдает состояние "норма", но только стоит уйти с объекта снова поступают звонки от заказчика. Наиболее часто такая ситуация происходит в неадресных шлейфах пожарной или охранной сигнализации. Давайте попробуем совместно составить методику поиска таких неисправностей подходящую для большинства систем.

Даже если шлейф уже в норме, первым делом необходимо отключить его и проверить при помощи мультиметра сопротивление. Сопротивление должно быть стабильным и не сильно отличаться от сопротивления оконечного резистора, это отличие в среднем составляет 30 Ом на 100 метров шлейфа (для медного провода 0.4 мм).

Если дымовой шлейф выдавал сигнал "неисправность", для определения возможного плохого контакта в розетке одного из извещателей или в соединении платы внутри извещателя иногда полезно провести такую процедуру: один наладчик подключает мультиметр (лучше стрелочный но можно и цифровой) к отключенному от прибора шлейфу в режиме измерения сопротивления и непрерывно наблюдает за показаниями, другой наладчик в это время проходит по шлейфу, слегка постукивая по каждому дымовому извещателю. На проблемном извещателе будут наблюдаться изменения сопротивления.

Если измерения сопротивления не дали результата, можно замерять ток включив мультиметр в режиме миллиамперметра в разрыв шлейфа. Этот метод особенно актуален если прибор периодически выдает сигнал "Пожар" в шлейфе с токопотребляющими извещателями а индикатор ни на одном датчике не светится.
Показания должны лежать в допустимых пределах состояния "норма" для вашего приемоконтрольного прибора, желательно не на границе этих значений. Если паспортные значения вашего приемо-контрольного прибора не известны, можно сравнить показания проблемного шлейфа с нормально работающими такого-же типа. Если имеется повышенные показания тока при нормальном сопротивлении шлейфа, возможно какой-то из токопотребляющих датчиков шлейфа неисправен. Неисправный датчик "вычисляют" поочередным их отключением с одновременным контролем показаний, при отключении неисправного извещателя должно быть зафиксировано резкое снижение тока в шлейфе.

Методом измерения тока можно попытаться определить наличие утечки шлейфа на землю, для чего измеряют ток в плюсовом и минусовом проводах шлефа. При отсутствии утечки показания должны быть полностью одинаковы.

Если вышеописанные способы не дали результата, можно попробовать поменять шлейф местами с другим, такого-же типа. Это исключит неисправность самого приемо-контрольного прибора.

Если в проблемном шлейфе включены токопотребляющие датчики (например дымовые) через "реле сброса", его также можно временно исключить из схемы. Как правило после исключения реле сброса легче определить кратковременно подрабатывающий дымовой извещатель. Если-же после исключения реле сброса, ложные срабатывания шлейфа прекратились то возможно причина в большом количестве токопотребляющих датчиков в этом шлейфе либо в неисправности одного из датчиков. (В момент подачи напряжения на дымовой шлейф, часто наблюдается скачек потребления тока, который спадает до нормального значения в течении 1-2 сек). Некоторые приборы, например АСПС "Бирюза" позволяют изменять время восстановления шлейфа после срабатывания реле сброса, что иногда позволяет решить проблему.

Если ничего не помогает, причины не удается найти, а шлейф переодически продолжает выдавать ложные сработки, в пожарном шлейфе можно попробовать на время отключить все датчики и проконтролировать работоспособность чистого шлейфа без датчиков. Если сработок в таком шлейфе не будет- подключать по одному или несколько извещателей через некоторый промежуток времени, до выявления проблемных.

Либо можно "выкорачивать" шлейф по частям, чтобы определить проблемный участок.

В охранных шлейфах, где вскрытие датчиков контролируется отдельной линией, ее часто используют для выявления подрабатывающего датчика.

Наш постоянный читатель делится опытом по выбору и настройке GSM-сигнализации. Надеемся, что этот текст может пригодиться тем, кто задумывается о современной и легко управляемой сигнализации для дома или офиса.

Наш постоянный читатель делится опытом по выбору и настройке GSM-сигнализации. Надеемся, что этот текст может пригодиться тем, кто задумывается о современной и легко управляемой сигнализации для дома или офиса. «Беспроводная GSM сигнализация - штука относительно недорогая и при этом мегаудобная. Функциональные возможности сигнализации легко адаптируются под конкретные потребности домохозяйства. Количество подключаемых датчиков в принципе не ограничено, а использование набора датчиков различного принципа действия и назначения позволяет контролировать все потенциально уязвимые места в доме»...

Почему

Зима. По дачам, торжествуя, шастают мыши и… разные непонятные особи. Обнаружив попытку вскрытия металлической входной двери на даче, мы решили как-то действовать. Ставить растяжку? Опасно – дети, соседи, да и дачу жалко. Нанимать охранника? Очень дорого. Даже если не покупать ему кулемет. И тут я вспомнил про беспроводные GSM сигнализации. В случае тревоги сигнализация уведомит нас, а мы уже позвоним постоянно проживающим в дачном поселке соседям, которые с помощью дробовика и доброго слова cмогут быстро выяснить, кто шастает по чужим дворам.

Конечно, проводная пультовая сигнализация также была бы отличным вариантом. Но дачный поселок банально не обслуживается «проводными» охранными компаниями из-за значительного удаления от городских коммуникаций. Вообще для пригородных домов, дач и арендованных квартир беспроводная GSM сигнализация будет оптимальным вариантом. Такая сигнализация не потребует заключения договоров, а переезжая в новую квартиру или дом ее легко и просто забрать с собой. Обо всех тревожных событиях сигнализация информирует по практически вездесущей мобильной GSM-связи. Причем при желании и дополнительных финансовых вливаниях сигнализация способна информировать не только о проникновении посторонних в вашу обитель, но и об угрозе пожара или утечке бытового газа, прорыве водопровода и т.д. Получив на свой мобильный соответствующий SMS или голосовой вызов, тут же решаете – звонить в милицию, к соседям, к пожарным, в службу газа или бежать за бутылкой сантехнику.

Трудности выбора

Буду откровенен, в сигнализациях я недавно разбирался не больше, чем в природе темной материи. Изначально, как всегда, хотелось сэкономить денег. Поэтому выбор стартовал с GSM сигнализации OKO-U с очень привлекательной ценой в $50. Но я очень быстро понял, что скупой переплатит трижды. Убогая комплектация даже без датчиков, подозрительная куча разных прошивок под какие-то варианты использования и наконец стремноватый внешний вид «юный техник» вынудили меня сказать жабе и OKO-U решительное нет.

Сигнализация должна быть красивой – так думает моя супруга. Хотя я всю жизнь пытаюсь убедить ее что любая вещь должна быть практичной, но пока бесполезно. Прикольный экранчик с голубой подсветкой плюс бонус в виде встроенной клавиатуры оказались у GSM сигнализации ALFA Vip 606C стоимостью $144. Но честно, с экраном и клавиатурой на даче вообще никто не будет заморачиваться. Работа с сигнализацией будет беспроводной - с помощью брелока или смартфона, а централь вообще будет спрятана подальше от любопытных глаз. Зачем все эти рюшки? Плюс, повертев в руках сигнализацию, я не очень впечатлился качеством сборки централи, а также свойствами экрана. Наконец отсутствие официального сайта весьма подозрительно и характерно для фирм-однодневок и производителей «последнего эшелона», поэтому «альфу» я так и не купил.

Но Китай рулит рынком. Следующим в поле зрения попал китайский Tenex Guard 3220G GSM ценой $125. Продавец долго втолковывал мне, какая это классная вещь. Но я давно не ведусь на пустые слова. И предпочитаю дополнительно покопаться в интернете. На родном сайте сигнализацию называют идеальным решением. Но вероятно идеальным для кого-то другого, а не для меня. Необходимость ручной пайки контактов для получения совместимого с сигнализацией кода у датчиков (даже у тех, что в комплекте!), отсутствие нужных датчиков в продаже, наконец невозможность срабатывания сирены при автономном питании от встроенного аккумулятора окончательно убедили меня, что Tenex не тот вариант, который нужно брать.

Чтобы вы понимали, что такое пайка контактов и альтернативная настройка кода централи перемычками, привожу два снимка: в первом случае контакты запаяны, во втором соединены перемычками. Как думаете, что делается проще, быстрее и с меньшим риском повредить датчик?

Вообще мне кажется, что дешевизна китайских сигнализаций из разряда «сделай сам» объясняется тем, что значительная часть покупателей обращаются в сервис, где с них сдирают дополнительную плату за пропайку датчиков.

Затем я добрался до «витчизняного виробника». Первой в руки попала GSM сигнализация Страж Avizor Kit стоимостью $135. Но отсутствие в комплекте кабеля для подключения к ПК меня несколько смутило. Как-то привычнее настраивать «железку» имея перед глазами удобный пользовательский интерфейс. Поэтому была выбрана сигнализация Страж Evolution Kit , которая имела не только USB-кабель, но и более современный вид, а также внушительный аккумулятор в комплекте, что для меня было весьма важным. Итого за $180 был приобретен вполне устраивающий меня вариант с приличной для сигнализаций такого уровня комплектацией. Поскольку у соседей по даче был двухгодичный положительный опыт эксплуатации охранной сигнализации «Аякс» этого же производителя, выбор был окончательно финализирован.

Чем понравилась сигнализация Страж Evolution Kit? Она, в отличие от китайских поделок аналогичного класса, из коробки настроена на нормальную совместную работу централи и датчиков в комплекте не требует возни с паяльником. Свободное наличие дополнительных датчиков в продаже, наличие сервисной поддержки и вменяемая годовая гарантия. Приличный официальный сайт. Для установки не нужны монтажные или ремонтные работы, а модульный принцип расширения дает возможность гибко наращивать возможности сигнализации за счет подключения новых датчиков (количество которых практически не ограниченно), брелоков, усилителей сигнала и даже управляемых по реле устройств. К этой сигнализации легко подключить даже мощные инфракрасные барьеры, если всерьез озаботится охраной загородного дома. Ну и, наконец, автономные беспроводные датчики – это плюс, они продолжают работать, когда отсутствует напряжение в электросети, что для дачи не редкость. Собственно, все это и побудило купить сигнализацию Страж. Вы, разумеется, вольны выбирать модель сигнализации сами, тем более что принципы работы разных сигнализаций и особенно датчиков весьма похожи.

В комплект поставки сигнализации Страж Evolution Kit входят только «охранные» датчики – открытия и движения. Дополнительные датчики, такие как датчики пожара, протечки воды, утечки газа и др. придется приобретать отдельно. К счастью, датчики эти относительно недороги и часто даже способны работать автономно. То есть вообще без централи сигнализации. Для поднятия тревоги автономные датчики оснащены собственными встроенными сиренами. Впрочем, без централи эти датчики не способны информировать о тревоге по GSM связи, что сильно ограничивает их функциональность. Например, пока вы «зависаете» у друзей, забытая на дачной кухне кастрюля может залить плиту, и дом наполнится газом из баллона. Сирена включится, но вы не будете знать почему. Осталось второпях забежать в дом с сигаретой, и фейерверк гарантирован.

1. Функции охраны

В комплект поставки сигнализации Страж Evolution Kit включена центральная консоль, блок питания для нее, аккумулятор резервного питания (от него сигнализация работает, когда нет напряжения в электросети), два брелока, два датчика выполняющие охранные функции (датчик открытия и датчик движения), сирена и USB шнур для настройки охранной системы с помощью ПК. Помимо дополнительных датчиков, к сигнализации подключаются специальные клавиатуры и тревожные кнопки. На них смело можно сэкономить за ненадобностью.
Все сказанное ниже о сирене и датчиках будет справедливо для 99,9% комплектов недорогих GSM-сигнализаций, присутствующих на украинском рынке. Поэтому информация будет полезна владельцам сигнализаций разных марок.

1.1. Сирена

Сирена включается централью в случае поступления сигнала тревоги от датчиков. Своим сильным воем (110 дБ) сирена и отпугнет злодея (мощный звук реально «бьет» по ушам), и подаст сигнал соседям. Единственный верный способ злоумышленнику отключить воющую сирену – выдернуть или перерезать провода, соединяющие сирену с централью. Поэтому не стоит размещать сирену и централь сигнализации слишком уж на виду. Не исключено, что, не выдержав оглушающего воя невидимой сирены, вор предпочтет ретироваться, просто чтобы не тратится на лечение у отоларинголога.

На сирену сзади приклеен двухсторонний скотч для быстрого крепления, но рекомендую все же прикрутить ее на саморезы. Скотч со временем высыхает, и сирена (или любой датчик, закрепленный на аналогичный скотч) может упасть.

1.2 Брелоки

Удобные беспроводные брелоки Страж М-101 предназначены для постановки (кнопка закрытый замок) и снятия (кнопка открытый замок) сигнализации с охраны. Брелок также оснащен тревожной кнопкой (с рисунком молнии) и кнопкой выключения тревоги (зачеркнутая сирена). Тревожная кнопка при нажатии мгновенно включает тревогу с оглушительным воем сирены. Это можно использовать, когда, подойдя к дому, вы заметили там чужих. А чтобы включение сирены не произошло случайно, сдвижная защелка закрывает все кнопки брелока во избежание непреднамеренного нажатия. В комплекте всего 2 брелока, дополнительный экземпляр обойдется примерно в $6,5. Вообще брелок – удобная штука с предельно интуитивным управлением, этакий ДУ от сигнализации в кармане. Особенно рекомендуется детям и пенсионерам.

Фиксация несанкционированного проникновения в охраняемое сигнализацией помещение осуществляется с помощью датчиков открытия, датчиков разбития стекла и датчиков движения.

1.3 Датчик открытия

В комплекте один датчик открытия Страж М-401, цена дополнительного датчика - $6,3 за единицу. Если в доме металлическая входная дверь или нужно защитить гаражные ворота, то понадобится другой тип датчика - Страж М-402, ценой уже $16,5. Такой датчик уже способен работать с массивными металлическими объектами, тогда как Страж М-401 может не срабатывать в присутствии значительных масс металла. Датчик открытия Страж М-401 предназначен исключительно для отслеживания открытия деревянных или металлопластиковых дверей и окон.

Конструктивно датчик открытия состоит из двух элементов: магнита и собственно блока датчика с герконом. Магнит крепится на подвижную часть двери/окна, а датчик – монтируется напротив магнита на неподвижную часть. Геркон под действием магнитного поля начинает проводить ток. Как только магнит удаляется от геркона, – открывается дверь или окно, – геркон размыкается и перестает пропускать ток. Датчик выдает сигнал тревоги.

Совершенно очевидно, что такой примитивный тип датчика легко обмануть. Злоумышленник, заметив наличие датчика открытия, просто прилепит двухсторонним скотчем или даже пластилином магнит к его основному блоку. И смело можно открывать дверь или окно настежь – датчик открытия не сработает. Поэтому для подстраховки охранной системы используется еще датчик движения.

1.4. Датчик движения

Беспроводной датчик движения предназначен для отслеживания перемещения людей в помещении. В комплекте сигнализации идет один такой датчик Страж М-302, каждый дополнительный экземпляр обойдется в $31. Работа датчика основана на выявлении инфракрасного излучения от живых существ. Как только датчик замечает движение живого существа (предусмотрена возможность игнорирования небольших домашних животных весом примерно до 25 кг), он отправляет сигнал тревоги. Если в помещении переместится какой-то неодушевленный предмет (например, упадет куртка с вешалки) датчик не среагирует. Датчик определяет движение на расстоянии до 12 м и должен быть установлен так, чтобы движущийся человек пересекал «поле зрения» датчика. Ни в коем случае нельзя загораживать обзор датчику мебелью, домашними растениями, стеклянными конструкциями. Датчик работает в дальнем ИК-диапазоне спектра, и обычное стекло для него так же непрозрачно, как бетонная стена. Собственно, поэтому датчик не может идентифицировать движение за закрытым окном или стеклянной дверью. Естественно, смышленый злоумышленник попытается нейтрализовать датчик движения – быстро закрыть его одеждой или залить краской из баллончика. После этого датчик станет бесполезен. Разбивать или снимать датчик не имеет смысла, обычно устройство защищено тампером и попытка его вскрыть приведет к срабатыванию сигнализации.

Чтобы нейтрализовать датчик движения было трудно, маскируйте его под элементы интерьера, устанавливайте на высоте 2-2,5м, где датчик будет труднее (неудобно) прикрыть или испортить. После визита незнакомых людей, якобы из службы газа, энергокомпании, водоканала и еще невесть каких организаций, обязательно проводите визуальный осмотр датчиков движения.

1.5. Датчик разбития стекла

Датчик разбития стекла Страж М-601 предназначен для обнаружения разбития стекла. Такой датчик может быть актуальным для загородных домов и квартир на первом и последнем этажах многоэтажек – когда воры могут попытаться проникнуть через окно или балкон. Цена вопроса - около $25 за датчик. Любопытно, что датчик оказался изготовлен в Канаде, а не Китае. В этом датчике встроен специальный микрофон, выявляющий звуки характерные при разбитии стекла. Когда разбивают стекло окна или балкона, датчик посылает сигнал тревоги на централь сигнализации. Дальность обнаружения разбития стекла составляет до 9 м от датчика, при этом устройство не реагирует на иные, в т.ч. громкие звуки. Минус датчика – он требует источника питания 12 В. В комплекте имеется блок питания. Но если таких датчиков требуется несколько, решение уже трудно назвать беспроводным. «Обезвредить» такие датчики проще простого – достаточно отключить дом от электросети. Сигнализация увидит пропажу напряжения в сети, но она не будет знать преднамеренное ли это отключение или просто случайное.

Полезные функции

Угрозы от пожара, протечки воды и утечки газа не стоит недооценивать. Все названные проблемы - настоящие стихийные бедствия. Ущерб, наносимый перечисленными факторами, в разы превышает потери от краж. При пожаре, потопе или взрыве бытового газа страдает все: напольное покрытие и стены, двери, мебель, домашняя электроника и бытовая техника. Плюс есть серьезная угроза ущерба соседям, когда сумма убытков возрастает в несколько раз. Датчики пожара, протечки воды и утечки газа крайне желательны в составе сигнализации!

Защита от пожара

Датчик пожара дает возможность быстро обнаружить возгорание, чтобы оперативно оповестить владельцев и предотвратить убытки. Беспроводной датчик пожара (дыма) Страж М-501 предназначен для отслеживания присутствия дыма в помещении. Существуют датчики, способные выявлять возгорание по резкому повышению температуры, так как пламя может гореть и без дыма. Но наш датчик более прост и рассчитан на выявление именно дыма, как признака пожара. Датчик стоимостью около $28 способен работать абсолютно автономно, а не только в составе сигнализации, он имеет регулируемую чувствительность и встроенную сирену. Устройство обнаруживает дым с помощью инфракрасного излучателя и фотоприемника. При попадании частичек дыма в дымовую камеру, фотоприемник обнаруживает искажение инфракрасного луча. Если дыма становится много, искажения луча становится сильнее, и датчик отсылает сообщение о пожарной тревоге на централь сигнализации и включает встроенную звуковую сирену. Датчик отлично способен следить за тем, чтобы на кухне ничего не подгорало, громко напоминая нерадивым домохозяйкам о забытых на плите продуктах. Не рекомендуется устанавливать датчик в месте, где часто и сильно курят, так как возможны ложные срабатывания.

Защита от протечки воды

Протекшая вода коробит пол, портит мебель и стены, часто страдает бытовая техника. Плюс протечка чревата оплатой ремонта соседям, живущим «снизу», если потоп возник в многоквартирном доме. Увы, беспроводного датчика протечки к сигнализации я не нашел. Уже подумывал о приобретении более дорогой сигнализации Ajax где такой датчик точно есть. Но жаба, экономический кризис и семейный совет не позволили мне этого сделать, тем более что на даче зимой подача воды (насосом из скважины) отключается. GSM сигнализация Страж пока обходится без слежения за протечкой воды. Возможно в будущем на летний сезон докупим автономный датчик протечки, например, красавчик Fibaro Flood Sensor FGFS-101.

Принцип работы всех датчиков протечки прост: детектор устанавливается на пол, и при появлении воды между ножками-контактами происходит замыкание электрической цепи, формирующее сигнал тревоги. По опыту друзей, случайные ложные срабатывания таких датчиков, установленных в ванной, могут быть очень частыми. К этому нужно быть морально готовым. Для ложной сработки достаточно напустить в ванной пара или плеснуть на пол воды.

Защита от утечки газа

Хорошо известно, какую опасность представляет накопившийся в помещении газ. Разрушения от взрыва бытового газа могут быть настолько сильными, что пострадает не только кухня или квартира, а весь дом. Благодаря датчику утечки газа всегда можно быть уверенным, что в помещении нет опасности отравления бытовым газом или взрыва газово-воздушной смеси. Беспроводной датчик Страж М-502 обнаруживает присутствие природного газа, пропана, бутана. Этот датчик умет работать самостоятельно, без централи, и при тревоге включает встроенную звуковую сирену. Единственный минус датчика - он хоть и беспроводной, но питается от сети 220 В. Поэтому для него на кухне нужно выделять розетку. Цена датчика - $23. Как датчик выявляет газ? В устройстве есть специальная пластина - катализатор. При попадании газа на катализатор пластина начинает греться. При превышении определенного порога концентрации газа и нагревания пластины происходит срабатывание датчика - он посылает сигнал тревоги на центральный блок сигнализации и включает встроенную сирену. При проверке с использованием газового баллона на даче сирену (85 дБ) было нормально слышно в пределах средних размеров 3-этажного здания (при отсутствии сильного фонового шума, например, работающего радиоприемника или телевизора).

Централь

Централь, или контрольная панель является основой сигнализации. Она отвечает за получение сигналов от всех датчиков и способна отправить SMS и голосовые сообщения сразу по нескольким телефонным номерам. Централь имеет своеобразную поддержку элементов «Умного дома»: наличие релейных выходов позволяет подключать к сигнализации различные устройства и активировать их по определенному типу тревоги: это могут быть клапаны автоматического перекрытия воды или газа, система автоматического пожаротушения и т.д. Только учтите, что при ложном срабатывании сигнализации (а такие срабатывания иногда происходят) перекрытие воды или газа пройдет в целом без последствий, а вот напрасная работа системы пожаротушения может принести убытков на уровне самого пожара, залив дом.

Для работы сигнализации нужно установить в нее SIM-карту любого оператора, предварительно удалив с нее все номера и убрав запрос PIN – кода. Для этого сначала нужно установить SIM-карту в телефон, так как на самой сигнализации такие операции провести невозможно. Эти процедуры необходимо проделать, чтобы при автоматической перезагрузке сигнализации после прошивки, сбоя и т.д. она не теряла работоспособность и автоматически устанавливала GSM-связь с сетью оператора.
На задней панели предусмотрены входы для подключения проводных датчиков. Которые обычно дешевле беспроводных. Но удобство использования беспроводных датчиков на порядок выше. Например, тянуть проводные датчики протечки на 2 этажа – тот еще геморрой.

Не забудьте подключить резервное питание централи от аккумулятора. Это дает возможность сохранить работоспособность сигнализации в случае пропажи напряжения в электросети, например, если злоумышленники обесточат дом или квартиру.

Мобильное управление сигнализацией очень удобно. Например, постановка на охрану или снятие охраны осуществляется при помощи звонка с указанного номера «хозяина» на SIM – карту сигнализации, причем без соединения, то есть абсолютно бесплатно. При входящем звонке сигнализация просто сбросит вызов и автоматически изменит свой статус на противоположный. Если сигнализация находилась в режиме «бездействие», то она перейдет в режим «охрана». И наоборот: если сигнализация находилась в режиме «охрана», после входящего звонка она перейдет в режим «бездействие». Просто и достаточно комфортно. Вышел, набрал номер – дом под охраной. Перед приходом позвонил – и не надо вручную снимать сигнализацию с охраны. Более гибко управлять сигнализацией можно, отсылая специальные SMS команды.

Итог

Беспроводная GSM сигнализация – штука относительно недорогая и при этом мегаудобная. Функциональные возможности сигнализации легко адаптируются под конкретные потребности домохозяйства. Количество подключаемых датчиков в принципе не ограничено, а использование набора датчиков различного принципа действия и назначения позволяет контролировать все потенциально уязвимые места в доме.

Ложные тревоги – самый неприятный недостаток, который может быть у системы охранно-пожарной сигнализации . К сожалению, нигде в рекламных материалах вы не найдете никаких параметров, позволяющих оценить вероятность возникновения ложных тревог. Еще хуже то, что любая, сколь угодно замечательная техника может оказаться жертвой плохого монтажа, воздействия времени или помех. А потому монтажники и особенно эксплуатационщики должны знать возможные причины ложных тревог и уметь их искать.
Самой распространенной причиной ложных тревог является плохой контакт в шлейфе сигнализации. Недаром электронику в шутку называют наукой о контактах: об их отсутствии, где они нужны, и их наличии, где их быть не должно. Скрутки, дешевые стальные клеммники, переламывающиеся одножильные провода – и вот вам через год-другой уже начинает пропадать контакт. Очень неприятная неисправность, в зависимости от температуры или влажности воздуха она может месяцами не проявляться, а вылезет на поверхность, например, при минус 30 на улице, чтобы «приятней» было ее искать. Или будет проявляться по ночам, а днем приходит ремонтник – все в порядке, все работает. Такую неисправность очень трудно выявить и устранить.
Нередко причиной являются электромагнитные помехи. Причем помехи могут влиять как на прибор приемно-контрольный, так и (чаще) на сами датчики (извещатели). Эта неприятность характерна для пожарных дымовых извещателей, установленных на подвесном потолке. В таком случае кабель шлейфа часто просто лежит на каркасе потолка, вперемешку с кабелями освещения. Да и сами газоразрядные лампы с высокочастотными (бездроссельными) балластами нередко являются источником ужасающих помех, а расположены они совсем рядом с пожарными извещателями.
Третьей по распространенности причиной являются огрехи монтажа. В данном случае я имею в виду не плохое подключение проводов, а именно некачественный механический монтаж устройств.
Например, геркон поставлен криво, магнит от времени слегка размагнитился, деревянная дверь рассохлась и перекосилась, и вот уже геркон честно выдает сигнал «дверь открыта». Прижмете посильнее – норма, слегка потянете запертую дверь – тревога. У большинства герконов дистанция надежного срабатывания всего 1–2 см. Такую неисправность легко выявить, если приклеить к геркону магнит (не забывайте, что вы тем самым фактически отключили геркон – он перестал обнаруживать открывание двери). Если ложные тревоги на время проверки прекратились, значит, проблема именно в этом, более тщательно смонтируйте геркон и ответную часть (магнит) на двери или вообще замените геркон на более «дальнодействующий».
Кстати, нередка и обратная неисправность: геркон перестает сигнализировать об открытии двери. Это бывает на стальных дверях, если сама рама достаточно намагнитится.
Кроме герконов некачественный монтаж может сказываться и, например, на инфракрасные датчики движения. Висит датчик на одном шурупе и колышется от хлопанья дверьми в соседних комнатах. А в поле его зрения батарея отопления. Был бы датчик жестко закреплен – батарея ему бы не мешала. А так – вот вам ложные тревоги.
Вообще инфракрасные датчики легко поставить неправильно – напротив окна и батареи отопления. Теоретически он все равно будет работать, но хлопающая на ветру форточка или развевающаяся занавеска объективно обеспечивает быстрое изменение распределения температуры в поле зрения датчика. Это даже нельзя назвать ложной тревогой – датчик честно фиксирует движение чего-то теплого на фоне холодного. Аналогично акустический датчик разбития стекла объективно может реагировать на очень сильный резкий звук (практически любой можно загнать в тревогу, если непосредственно перед ним хлопнуть в ладоши). Не надо безоговорочно верить тому, что говорят и пишут о сложном спектральном анализе. Да, компьютерные программы могут очень точно различать звуки. Но для того чтобы серийные датчики могли так хорошо отличать звук стекла от других похожих звуков, надо, чтобы в них тоже стоял Pentium на несколько гигагерц. Правда, они бы потребляли тогда, как компьютер, и стоили столько же. Поэтому я даже не считаю ложными тревогами срабатывания датчика разбития стекла в столовой, где постоянно ножи на кафель роняют. Если для вас это проблема, прикрутите чувствительность. Или поставьте датчик за шторами возле окна – тогда он будет хорошо слышать звук разбиваемого стекла и не будет слышать звуки предновогоднего корпоратива из помещения.
Теперь разберем, каким образом можно искать и устранять неисправность. Главный принцип: источник ложных тревог надо сначала локализовать. Это непросто, ложные тревоги, как уже говорилось, могут происходить довольно редко (но достаточно часто, чтобы это нервировало заказчика). Вы приезжаете на объект, подтянули все винты в соединениях, проверили целостность проводов, даже прозвонили шлейф тестером (омметром) и убедились, что все вроде в норме, а через неделю вам вновь говорят, что два раза была ложная тревога. Что ж, пора браться за проблему систематически.
Первый вопрос: ложные тревоги всегда происходят в одном шлейфе или в разных? Если ППК имеет хороший журнал событий и вы можете его просмотреть – замечательно. Если нет, придется договариваться с дежурными охранниками, чтобы они записывали, когда и какая лампочка горела при тревоге. Как договариваться, вопрос не ко мне. Если не умеете, читайте об искусстве ладить с людьми или другие подобные опусы. В результате вы узнаете, где происходят тревоги и когда. Иногда удается сопоставить время тревог с включениями, например, промышленного оборудования – значит, проблема в электромагнитных помехах и надо по рекомендациям производителя экранировать, заземлять или, наоборот, запитывать от отдельных источников питания. Меры борьбы обсуждайте с разработчиком системы, они будут не рады, но что-нибудь присоветуют. Или можно просто заменить сбоящие извещатели на другие типы (например, дымовые на тепловые) – это тоже может помочь.
Если ложные тревоги происходят более-менее равномерно во всех шлейфах, вероятно, проблема с ППК. Замените его, лучше всего на другую модель. Если не помогло, считаем, что система просто запущенная в целом (или везде стоят одинаково некачественные извещатели), и начинаем бороться по очереди с каждым шлейфом (если шлейфов в системе много, то лучше сразу по нескольку). Во время такой борьбы на некоторое время отключаются части системы и снижается безопасность объекта, так что не забудьте согласовать это с ответственным за безопасность. Возможно, даже придется временно развернуть резервную систему, например, радиоканальную, ее легче быстро смонтировать, а потом демонтировать.
Итак, поиск неисправности в отдельном шлейфе. Единственный научный метод – это метод деления пополам. Разрываете шлейф посередине, переносите туда оконечный резистор (а лучше ставите новый оконечный резистор) и ждете некоторое время. Если раньше ложные тревоги случались где-то раз в неделю, ждать надо примерно месяц. Нет ложных тревог – проблема в отрезанном куске шлейфа. Подключаем его обратно и перерезаем этот кусок посередине, так что теперь остается подключенным ¾ шлейфа.
Если на первом этапе ложные тревоги были, значит, проблема на подключенной части (в отрезанном куске тоже могут быть проблемы, но мы для начала постараемся поймать за хвост хотя бы одну). Делим ближний кусок еще раз пополам (подключенной остается ¼ шлейфа) и снова ждем.
И так до тех пор, пока не найдем конкретный датчик, дающий ложные тревоги. Внимание: если у вас, например, электромагнитные помехи и ложные тревоги дают равномерно все датчики, то по мере отрезания кусков шлейфа тревоги будут случаться все реже и реже. Если это так, увеличивайте время выдержки. Вся эпопея, если ложные тревоги не очень частые, а шлейфы имеют много датчиков на каждом, может растянуться на месяцы.
Второй способ – замена оборудования. Он особенно уместен, если ложных тревог много на разных шлейфах. Выбираете один из шлейфов и меняете на нем все датчики на самые надежные и дорогие, какие только можете себе позволить. Для одного шлейфа это, как правило, не так уж дорого. Хотя и весьма трудоемко и частенько некрасиво в части самых дешевых – герконовых охранных датчиков. Если помогло, то в случае охранного шлейфа с разнотипными датчиками можно постепенно ставить обратно разные типы датчиков и так выяснить, в каких именно датчиках проблема. С пожарными сложнее – там обычно весь шлейф состоит из одинаковых датчиков, и если помогла замена на хорошие, то, значит, раньше просто стояли все плохие. Не то чтобы они были совсем все безнадежно плохие. Быть может, в других ситуациях они и могут работать, но конкретно в вашей, на этом объекте, они непригодны.
В случае пожарных датчиков бывает еще и такая причина: дешевые изделия могут иметь очень большой разброс параметров. Половина из них, например, вполне устойчивы к помехам, а некоторые срабатывают, что называется, от косого взгляда. Если это экономически оправдано, можно постепенно, по нескольку штук, ставить обратно старые датчики. Возможно, вам удастся отобрать те, которые не дают ложных тревог.
Особый случай – адресные системы. Конечно, адресные извещатели, как правило, более дорогие и более качественные, чем обычные. Но идеальных изделий не бывает. Во многих случаях они также могут давать ложные тревоги. Зато поиск проблем значительно облегчается. Во-первых, вам не нужно мучиться с делением шлейфа пополам, вы изначально знаете, какие именно извещатели выдают ложную тревогу. Это уже сэкономит вам несколько месяцев. Во-вторых, все известные мне адресные системы имеют хорошие средства протоколирования событий, так что вы можете получить информацию с точностью до минут или даже секунд, когда происходили ложные тревоги. Наконец, адресные извещатели нередко предоставляют возможности подробной диагностики или настройки своих параметров. Можно изменить какие-то параметры, как минимум просто загрубить чувствительность. Конкретные рекомендации давать не буду, все зависит от типов устройств.
В целом поиск неисправностей в адресной системе значительно приятнее, чем в неадресной. Вместо бегания по объекту со стремянкой и инструментами большинство операций могут производиться с пульта управления системой. Однако и в адресной системе может понадобиться все тот же трудоемкий и длительный метод деления пополам. Обычно это необходимо, если проблема в нерегулярной потере связи с отдельными извещателями. Если дело в плохом контакте (разрыве шлейфа), то место повреждения шлейфа можно вычислить, проанализировав, с какими извещателями связь теряется, а с какими она всегда стабильна. Если же причина в коротком замыкании линии связи, то придется делить пополам. Впрочем, даже в этом случае ситуация легче, чем в неадресной. При делении пополам необязательно полностью отключать остальной кусок шлейфа, достаточно вставить один или несколько изоляторов короткого замыкания. Когда замыкание даст о себе знать, он отключит поврежденную секцию, а вы узнаете, где искать проблему.
В заключение опишем рекомендации по борьбе с электромагнитными помехами. Эта деятельность не столько наука, сколько искусство. Некоторые считают ее шаманством. Действительно, в сложных системах, состоящих из сотен изделий, соединенных километрами кабеля и расположенных среди множества других электроустановок, точно рассчитать влияние одного устройства на другое просто невозможно. Одни и те же действия в одном случае могут помочь, в другом только ухудшат ситуацию. Но есть общие принципы, которые следует понимать, чтобы не перебирать все возможные комбинации методом проб и ошибок.
Первая рекомендация от производителей всех систем – использовать экранированный кабель. Да, это часто помогает. Хотя в действующей системе заменить уже проложенный кабель на экранированный, как правило, практически невозможно. Тем не менее рассмотрим некоторые детали. Сам по себе экран на кабеле может сильно помочь. Даже если его никуда не подключать. Нередко это даже лучшее решение – оставить экран кабеля неподключенным. В любом случае экран выравнивает влияние помех на все провода в кабеле, и потому уменьшаются разностные помеховые сигналы, приложенные к устройствам. Ни в коем случае нельзя экран заземлять (или вообще куда-то подключать) с двух концов. Потому что при этом экран становится не экраном, а дополнительным проводником, по которому течет слабопредсказуемый ток. Это называется земляная петля, об этом ниже. Часто оптимальное решение – заземлить или занулить экран со стороны ППК. Именно ППК принимает сигнал со шлейфа, и если экран подключить к опорной точке внутри ППК, то помехи на всех жилах кабеля относительно этой точки будут минимальны. В зависимости от схемотехники оптимальным может быть не заземление, а подключение, например, к корпусу ППК, к минусовому проводу питания ППК или даже к минусовому проводу шлейфа. Кстати, корпус ППК, если он металлический, по идее, необходимо заземлять. Но на практике, если земля (третий провод в сети питания) не слишком качественная (сама содержит множество помех), может оказаться, что лучше не подключать никуда, чем к такой земле.
Помимо экранирования кабеля иногда применяют экранирование подверженного помехам извещателя. Лист медной фольги или оцинкованной жести подкладывается под извещатель со стороны предполагаемого источника помех (например, если за стеной стоит мотор лифта или фрезерный станок). Алюминиевая фольга от шоколадки малоэффективна, ибо имеет довольно низкую проводимость. Такой экран часто полезно соединить с минусом питания извещателя отдельным достаточно толстым проводом.
Нередко путем проникновения помех является незапланированный контакт. Хуже всего, когда один или разные провода в системе оказываются заземленными в разных местах. Та самая упомянутая выше земляная петля. Разные точки земли имеют весьма разный потенциал (земля является не слишком хорошим проводником), в результате по проводу, заземленному в нескольких местах, потечет так называемый выравнивающий ток. В том числе это может быть обратный ток от проезжающего трамвая (по идее, он должен течь по рельсам, но, если там плохой контакт, он замечательно потечет по вашему кабелю) или симметрирующий ток трехфазного двигателя прокатного стана. Известны случаи, когда такой ток испарял неудачно заземленные кабели и напрочь выводил из строя оборудование. Результат, как правило, не настолько трагичен, но влияние помех возрастает многократно.
Обратите внимание: множественное заземление может произойти помимо вашего желания. Например, шлейф, проложенный лапшой, крепили гвоздями. Гвоздь коснулся одного из проводов и заземленной штукатурной сетки – и готово, вот она неожиданная точка вторичного заземления. По идее (согласно ГОСТ), все ППК рассчитаны на работу при сопротивлении утечки в шлейфе до 50 или даже 20 кОм. Но возможное влияние помех при такой утечке на землю непредсказуемо. Нередко при проверке шлейфов проверяют лишь сопротивление и изоляцию между проводами. Не забывайте проверять утечку на землю – с точки зрения помех это еще важнее. Если сопротивление на землю менее 1 Мом, проблемы весьма вероятны.
Еще один путь для проникновения помех – прокладка линии питания извещателей и линии сигнальной в разных кабелях. Это встречается, если удаленные извещатели подключаются к отдельному, расположенному рядом с ними источнику питания. В таком случае помехи, наводимые на линию питания и на линию сигнала, разные, и эта разность потенциалов оказывается приложена к извещателю. Опять же по идее (точнее, по ГОСТу), извещатели должны легко переносить помехи со стороны шлейфа. Но возможные помехи намного разнообразнее, чем тестовые, применяемые во время испытаний. Может быть, все будет хорошо, а может быть, и нет.
Кстати, потенциальным источником проблем является популярный в пожарной сигнализации кольцевой шлейф. Такой шлейф может оказаться огромной петлевой антенной, весьма восприимчивой и к магнитным, и к электрическим полям в широком диапазоне. Если ППК не обеспечивает достаточной степени изоляции между двумя концами кольцевого шлейфа (а многие ППК вообще никак их не изолируют), то при наличии подозрений на электромагнитные помехи можно попробовать разорвать кольцо. Может помочь.
Еще один источник помех – сеть питания. Попробуйте его отключить. Совсем, оба провода. Пусть какое-то время система поработает на аккумуляторе. Если помогло, ложные тревоги прекратились – ставьте развязывающий трансформатор, стабилизатор, online UPS – все это возможные способы изолироваться от помех, приходящих из сети питания.
И уж совсем напоследок, как последнюю меру, могу посоветовать попытаться разбить одну большую систему на несколько небольших. Вместо одного 48-шлейфового прибора поставить три 16-шлейфовых, подключенных к разным блокам питания. Или одну интегрированную систему разделить на несколько автономных. Возможно, проблема в том, что размеры системы непосредственно соединенных устройств превысили допустимые в данном месте. Опять же если помогло, то впоследствии можно с соблюдением мер предосторожности, например с гальванической развязкой линий связи, соединить систему вновь в единую. Главное – определить источник проблемы, тогда можно будет найти подходящее решение.

Современные автомобилисты настолько боятся того, что их машину угонят либо повредят, что сегодня практически не существует транспортных средств, которые не оснащены противоугонной системой, особенно в последнее время, когда рынок переполнился недорогими сигнализациями и их ещё более дешёвыми китайскими аналогами. Автомобили бюджетного сегмента, а таких в нашей стране преобладающее большинство, оснащаются именно такими охранными системами, а это приводит к частым жалобам со стороны автомобильных владельцев.

Чувствительность автомобильной сигнализации

Прежде чем заняться настройкой чувствительности сигнализации, нужно выявить причины, по которым она неправильно функционирует. Среди наиболее распространённых причин повышенной чувствительности автомобильной сигнализации можно отметить только две:

- настройки восприимчивости сигнализации слишком завышены;

Плохо закреплены блок защитной системы и её датчики, поэтому сигнализация часто включается ошибочно.

Очень низкая чувствительность может быть вызвана аналогичными причинами, только с тем лишь исключением, что её настройки слишком занижены. Перед началом каких-либо манипуляций, мы настоятельно рекомендуем изучить инструкцию к охранной системе. Если не предусмотрены простые решения регулировки сигнализации, тогда проведите следующие манипуляции:

1. Отключите аккумуляторную батарею. Если инструкция этого не предусматривает, тогда удалите предохранитель салонного освещения. Это не позволит аккумулятору быстро разрядиться в процессе настройки.

2. Найдите место крепления датчика в салоне. Зачастую, он располагается под панелью, но порой это не так. Придётся поискать. В любом случае, он располагается в передней части салона и скрыт от взгляда. Найти его, как правило, не сложно. Обратите внимание на то, что в мануале он обозначается обычно словом «VALET». Это Вам должно помочь в поисках.

3. Чтобы произвести настройку, охранный режим нужно отключить и войти в программный режим. Внесённые изменения сохраняются в памяти устройства. Старые сигнализации оборудованы специальным винтом для регулировки чувствительности. Только с его помощью можно настроить их чувствительность. Более новые же оборудованы кнопками. В любом случае, это не влияет на простоту эксплуатации.

4. Шкала чувствительности разделена на несколько уровней. Как правило, их количество колеблется в пределах десяти. Следовательно, ноль – это полностью деактивированный счётчик, а 10 – максимальная чувствительность. Заводская настройка обычно стоит на 4 или 5 уровне, не выше.

5. Во время регулировки не советуем слишком повышать чувствительность, ведь многие охранные системы за один цикл могут сработать лишь 10 раз. После окончания этого лимита Вам придётся снова поставить автомобиль на охрану и только после этого продолжать регулировать сигнализацию.

6. Во время настройки учитывайте вес автомобиля без дополнительных нагрузок – чистый вес, способ крепления блока охранной системы, а также особенности обстановки в обычной парковочной среде Вашего автомобиля.

7. В зависимости от стороны регулировки сигнализации Вашего автомобиля, постепенно увеличивайте либо уменьшайте степень восприятия датчиком удара. Ударьте несколько раз по кузову и определите, при какой силе физического воздействия сработает датчик. При необходимости проведите дополнительную, более точную корректировку.

8. Запомните: чтобы проверка правильности настройки прошла наиболее точно, необходимо не трогать автомобиль на протяжении двух минут, а не проверять сразу. В некоторых системах датчик определённое время пребывает в режиме повышенной чувствительности, если кузов только что был подвержен какому-то механическому воздействию. Иногда же этот режим запускается автоматически после запуска охраны. Подождите и постучите по лобовому стеклу, желательно по его центру.

9. Главным неудобством настройки является необходимость частого переключения охранной системы. Кроме этого, приготовьтесь к тому, что система с десяток раз будет громко вопить. Не рекомендуем из-за этого факта проводить работы поздно ночью либо рано утром.

10. Порой возможна полуавтоматическая настройка чувствительности . При этом всём время настройки системы датчика переводится в режим запоминания и обучения, а после следует несколько раз ударить по кузову с разной силой. Амплитуда ударов и их сила запоминаются микропроцессором и потом применяются при распознавании ударов. Всё просто и понятно на первый взгляд, но имеет место быть один существенный недостаток: на удар с одной силой, но по разным частям автомобиля реакция датчика будет неодинаковой.

И если в режиме запоминания был произведён удар по капоту, то это не будет гарантировать отклика датчика при ударе по колесу, например. Или наоборот, слабый удар по , например, вместо того, чтобы насторожить систему, спровоцирует срабатывание громкой сирены.

Причины ложного срабатывания сигнализации

Ложная тревога является количественной характеристикой несовершенства средств обнаружения. Взамен данной вероятностной характеристики в практике существует понятие «среднее нарабатывание на ложное срабатывание».

Основные причины ложных срабатываний

1. Нарушение технических требований к монтажу средств охранно-пожарной сигнализации (ОПС).

2. Несоответствие требований эксплуатации техническим условиям на аппаратуру ОПС.

3. Некачественное техническое обслуживание и несвоевременный ремонт.

4. Отключение электропитания на объектах и отклонение напряжения от нормы.

5. Неправильные действия «Хозоргана».

6. Недостатки в технической укреплённости объекта.

7. Сбои или отказы в работе аппаратуры ОПС.

8. Состояние каналов связи.

9. Мелкие животные, грызуны, насекомые.

10. Влияние различных мешающих факторов:

А) акустические помехи и шумы;

Б) перемещение воздуха в охраняемой зоне;

В) электромагнитные помехи;

Г) помехи от сети электропитания;

Д) изменение температуры и влажности окружающей среды;

Е) световые помехи.

Вышесказанное означает (по пунктам):

1. В погоне за количеством объектов может уделяться меньше внимания качеству монтажа.

4. Из-за сети 220 происходит около 30% ложных срабатываний. Из них: 87% - при уменьшении питания до 160В, 13% - при повышении до 240В. В последнее время появляется всё больше и больше импульсных блоков питания с диапазоном входного напряжения 160-240 Вольт; из-за чего эта цифра (30%) уменьшается.

5. Клиент забыл снять с охраны, ввёл неправильный код доступа и т.д. и т.п.

8. Раньше любое ложное срабатывание было «по линии АТС».

9. Пауки и тараканы иногда любят залазить в датчики. Если залезли в инфракрасный датчик движения, то могут быть ложные срабатывания.

10. А) гроза или петарды за окном могут быть причиной ложных срабатываний датчиков разбития стекла (ДРС);

Б) забыли выключить кондиционер или инфракрасный датчик установили в бойлерной;

В) включение ламп накаливания или люминесцентных в тёмном помещении может быть причиной срабатывания инфракрасного датчика движения.

От ложных срабатываний нужно избавляться. Для того чтобы их свести к минимуму, нужен анализ.