Электронный микроскоп появился в. Электронный микроскоп

ЭЛЕКТРОННЫЙ МИКРОСКОП - высоковольтный, вакуумный прибор, в котором увеличенное изображение объекта получают с помощью потока электронов. Предназначен для исследования и фотографирования объектов при больших увеличениях. Электронные микроскопы имеют высокую разрешающую способность. Электронные микроскопы находят широкое применение в науке, технике, биологии и медицине.

По принципу действия различают просвечивающие (трансмиссионные), сканирующие, (растровые) и комбинированные электронные микроскопы. Последние могут работать в просвечивающем, сканирующем либо в двух режимах одновременно.

Отечественная промышленность приступила к выпуску просвечивающих электронных микроскопов в конце 40-х годов 20 века Необходимость создания электронного микроскопа была вызвана низкой разрешающей способностью световых микроскопов. Для увеличения разрешающей способности требовался более коротковолновый источник излучения. Решение проблемы стало возможным только с применением в качестве осветителя пучка электронов. Длина волны потока электронов, ускоренных в электрическом поле с разностью потенциалов 50 000 в, составляет 0,005 нм. В настоящее время на просвечивающем электронном микроскопе достигнуто разрешение для пленок золота 0,01 нм.

Схема электронного микроскопа просвечивающего типа: 1 - электронная пушка; 2 - конденсорные линзы; 3 - объектив; 4 - проекционные линзы; 5 - тубус со смотровыми окнами, через которые можно наблюдать изображение; 6 - высоковольтный кабель; 7 - вакуумная система; 8 - пульт управления; 9 - стенд; 10 - высоковольтное питающее устройство; 11 - источник питания электромагнитных линз.

Принципиальная схема просвечивающего электронного микроскопа мало чем отличается от схемы светового микроскопа (см.). Ход лучей и основные элементы конструкции обоих микроскопов аналогичны. Несмотря на большое разнообразие выпускаемых электронных микроскопов, все они построены по одной схеме. Основным элементом конструкции просвечивающего электронного микроскопа является колонна микроскопа, состоящая из источника электронов (электронной пушки), набора электромагнитных линз, предметного столика с объектодержателем, люминесцентного экрана и фоторегистрирующего устройства (см. схему). Все элементы конструкции колонны микроскопа собраны герметично. Системой вакуумных насосов в колонне создается глубокий вакуум для беспрепятственного прохождения электронов и защиты образца от разрушения.

Поток электронов образуется в пушке микроскопа, построенной по принципу трехэлектродной лампы (катод, анод, управляющий электрод). В результате термоэмиссии с разогретого V-образного вольфрамового катода высвобождаются электроны, которые разгоняются до высоких энергий в электрическом поле с разностью потенциалов от нескольких десятков до нескольких сотен киловольт. Через отверстие в аноде поток электронов устремляется в просвет электромагнитных линз.

Наряду с вольфрамовыми термоэмиссионными катодами в электронном микроскопе применяют стержневые и автоэмиссионные катоды, обеспечивающие значительно большую плотность пучка электронов. Однако для их работы необходим вакуум не ниже 10^-7 мм рт. ст., что создает дополнительные конструктивные и эксплуатационные трудности.

Другой основной элемент конструкции колонны микроскопа - электромагнитная линза, представляющая собой катушку с большим числом витков тонкого медного провода, помещенную в панцирь из мягкого железа. При прохождении через обмотку линзы электрического тока в ней образуется электромагнитное поле, силовые линии которого концентрируются во внутреннем кольцевом разрыве панциря. Для усиления магнитного поля в область разрыва помещен полюсный наконечник, позволяющий получать мощное, симметричное поле при минимальном токе в обмотке линзы. Недостатком электромагнитных линз являются различные аберрации, влияющие на разрешающую способность микроскопа. Наибольшее значение имеет астигматизм, вызванный асимметрией магнитного поля линзы. Для его устранения применяют механические и электрические стигматоры.

Задача сдвоенных конденсорных линз, как и конденсора светового микроскопа, состоит в изменении освещенности объекта за счет изменения плотности потока электронов. Диафрагма конденсорной линзы диаметром 40-80 мкм выбирает центральную, наиболее однородную часть мучка электронов. Объективная линза - самая короткофокусная линза с мощным магнитным полем. Ее задача состоит в фокусировании и первичном увеличении угла движения электронов, прошедших через объект. От качества изготовления и однородности материала полюсного наконечника объективной линзы во многом зависит разрешающая способность микроскопа. В промежуточной и проекционной линзах происходит дальнейшее увеличение угла движения электронов.

Особые требования предъявляются к качеству изготовления предметного столика и объектодержателя, так как они должны не только перемещать и наклонять образец в заданных направлениях при большом увеличении, но и при необходимости подвергать его растяжению, нагреву или охлаждению.

Довольно сложным электронно-механическим устройством является фоторегистрирующая часть микроскопа, которая позволяет осуществлять автоматическую экспозицию, замену отснятого фотоматериала, производить на нем запись необходимых режимов микроскопирования.

В отличие от светового микроскопа объект исследования в просвечивающем электронном микроскопе крепится на тонких сетках, изготовленных из немагнитного материала (медь, палладий, платина, золото). На сетки крепится пленка-подложка из коллодия, формвара или углерода толщиной несколько десятков нанометров, затем наносится материал, подвергаемый микроскопическому исследованию. Взаимодействие падающих электронов с атомами образца приводит к изменению направления их движения, отклонению на незначительные углы, отражению или полному поглощению. В формировании изображения на люминесцентном экране или фотоматериале принимают участие только те электроны, которые были отклонены веществом образца на незначительные углы и смогли пройти через апертурную диафрагму объективной линзы. Контрастность изображения зависит от наличия в образце тяжелых атомов, сильно влияющих на направление движения электронов. Для усиления контрастности биологических объектов, построенных в основном из легких элементов, применяют различные методы контрастирования (см. Электронная микроскопия).

В просвечивающем электронном микроскопе предусмотрена возможность получать темнопольное изображение образца при освещении его наклонным пучком электронов. В этом случае через апертурную диафрагму проходят рассеянные образцом электроны. Темно-польная микроскопия увеличивает контрастность изображения при высоком разрешении деталей образца. В просвечивающем электронном микроскопе предусмотрен также режим микродифракции минимальных кристаллов. Переход от светлопольного к темнопольному режиму и микродифракции не требует значительных изменений в схеме микроскопа.

В сканирующем электронном микроскопе поток электронов формируется высоковольтной пушкой. С помощью сдвоенных конденсорных линз получают тонкий пучок электронов (электронный зонд). Посредством отклоняющих катушек электронный зонд разворачивается на поверхности образца, вызывая излучение. Система сканирования в сканирующем электронном микроскопе напоминает систему, с помощью которой получают телевизионное изображение. Взаимодействие электронного луча с образцом приводит к появлению рассеянных электронов, потерявших часть энергии при взаимодействии с атомами образца. Для построения объемного изображения в сканирующем электронном микроскопе электроны собираются специальным детектором, усиливаются и подаются на генератор развертки. Количество отраженных и вторичных электронов в каждой отдельной точке зависит от рельефа и химического состава образца, соответственно меняется яркость и контрастность изображения объекта на кинескопе. Разрешающая способность сканирующего электронного микроскопа достигает 3 нм, увеличение - 300 000. Глубокий вакуум в колонне сканирующего электронного микроскопа предусматривает обязательное обезвоживание биологических образцов с помощью органических растворителей либо их лиофилизацию из замороженного состояния.

Комбинированный электронный микроскоп может быть создан на базе просвечивающего или сканирующего электронного микроскопа. Пользуясь комбинированным электронным микроскопом, можно одновременно изучать образец в просвечивающем и сканирующем режимах. В комбинированном электронном микроскопе, как и в сканирующем, предусмотрена возможность для рентгеноструктурного, энергодисперсионного анализа химического состава вещества объекта, а также для оптико-структурного машинного анализа изображений.

Для увеличения эффективности использования всех видов электронных микроскопов созданы системы, позволяющие переводить электронно-микроскопическое изображение в цифровую форму с последующей обработкой этой информации на ЭВМ Оптико-структурный машинный анализ позволяет производить статистический анализ изображения непосредственно с микроскопа, минуя традиционный метод «негатив-отпечаток».

Библиогр.: Стоянова И. Г. и Анаскнн И. Ф. Физические основы методов просвечивающей электронной микроскопии, М., 1972; Суворов А. Л. Микроскопия в науке и технике, М., 1981; Финеан Дж. Биологические ультраструктуры, пер. с англ., М., 1970; Шиммель Г. Методика электронной микроскопии, пер. с нем.. М., 1972. См. также библиогр. к ст. Электронная микроскопия.

Оглавление темы "Электронная микроскопия. Мембрана.":









Электронные микроскопы появились в 1930-х годах и вошли в повсеместное употребление в 1950-х.

На рисунке изображен современный трансмиссионный (просвечивающий) электронный микроскоп , а на рисунке показан путь электронного пучка в этом микроскопе. В трансмиссионном электронном микроскопе электроны, прежде чем сформируется изображение, проходят сквозь образец. Такой электронный микроскоп был сконструирован первым.

Электронный микроскоп перевернут «вверх дном» по сравнению со световым микроскопом. Излучение подается на образец сверху, а изображение формируется внизу. Принцип действия электронного микроскопа в сущности тот же, что и светового микроскопа. Электронный пучок направляется конденсорными линзами на образец, а полученное изображение затем увеличивается с помощью других линз.

В таблице суммированы некоторые сходства и различия между световым и электронным микроскопами . В верхней части колонны электронного микроскопа находится источник электронов - вольфрамовая нить накала, сходная с той, какая имеется в обычной электрической лампочке. На нее подается высокое напряжение (например, 50 000 В), и нить накала излучает поток электронов. Электромагниты фокусируют электронный пучок.

Внутри колонны создается глубокий вакуум. Это необходимо для того, чтобы сократить до минимума рассеивание электронов из-за столкновения их с частицами воздуха. Для изучения в электронном микроскопе можно использовать только очень тонкие срезы или частицы, так как более крупными объектами электронный пучок почти полностью поглощается. Части объекта, отличающиеся относительно более высокой плотностью, поглощают электроны и потому на сформировавшемся изображении кажутся более темными. Для окрашивания образца с целью увеличения контраста используют тяжелые металлы, такие как свинец и уран.

Электроны невидимы для человеческого глаза, поэтому они направляются на флуоресцирующий , который воспроизводит видимое (черно-белое) изображение. Чтобы получить фотоснимок, экран убирают и направляют электроны непосредственно на фотопленку. Полученный в электронном микроскопе фотоснимок называется электронной микрофотографией.

Преимущество электронного микроскопа :
1) высокое разрешение (0,5 нм на практике)


Недостатки электронного микроскопа :
1) подготовленный к исследованию материал должен быть мертвым, так как в процессе наблюдения он находится в вакууме;
2) трудно быть уверенным, что объект воспроизводит живую клетку во всех ее деталях, поскольку фиксация и окрашивание исследуемого материала могут изменить или повредить ее структуру;
3) дорого стоит и сам электронный микроскоп и его обслуживание;
4) подготовка материала для работы с микроскопом отнимает много времени и требует высокой квалификации персонала;
5) исследуемые образцы под действием пучка электронов постепенно разрушаются. Поэтому, если требуется детальное изучение образца, необходимо его фотографировать.

Электронная микроскопия - это метод исследования структур, находящихся вне пределов видимости светового микроскопа и имеющих размеры менее одного микрона (от 1 мк до 1-5 Å).

Действие электронного микроскопа (рис.) основано на использовании направленного потока , который выполняет роль светового луча в световом микроскопе, а роль линз играют магниты (магнитные линзы).

Вследствие того, что различные участки исследуемого объекта по-разному задерживают электроны, на экране электронного микроскопа получается черно-белое изображение изучаемого объекта, увеличенное в десятки и сотни тысяч раз. В биологии и медицине в основном используются электронные микроскопы просвечивающего типа.

Электронная микроскопия возникла в 30-х годах, когда были получены первые изображения некоторых вирусов (вируса табачной мозаики и бактериофагов). В настоящее время электронная микроскопия нашла наиболее широкое применение в , и вирусологии, обусловив создание новых отраслей науки. При электронной микроскопии биологических объектов применяют специальные методы приготовления препаратов. Это необходимо для выявления отдельных компонентов изучаемых объектов (клетки, бактерии, вируса и т. д.), а также для сохранения их структуры в условиях высокого вакуума под пучком электронов. При помощи электронной микроскопии изучается внешняя форма объекта, молекулярная организация его поверхности, с помощью метода ультратонких срезов исследуется внутреннее строение объекта.

Электронная микроскопия в сочетании с биохимическими, цитохимическими методами исследования, иммунофлюоресценцией, а также рентгеноструктурным анализом позволяют судить о составе и функции структурных элементов клеток и вирусов.

Электронный микроскоп 70-х годов прошлого века

Электронная микроскопия - изучение микроскопических объектов при помощи электронного микроскопа.

Электронный микроскоп представляет электронно-оптический инструмент, обладающий разрешающей способностью в несколько ангстрем и позволяющий визуально изучать тонкое строение микроскопических структур и даже некоторых молекул.

В качестве источника электронов для создания электронного пучка, заменяющего световой пучок, служит трехэлектродная пушка, состоящая из катода, управляющего электрода и анода (рис. 1).


Рис. 1. Трехэлектродная пушка: 1 - катод; 2 - управляющий электрод; 3 - пучок электронов; 4 - анод.

Электромагнитные линзы, применяемые в электронном микроскопе вместо оптических, представляют многослойные соленоиды, заключенные в панцири из магнитно-мягкого материала, имеющие на внутренней стороне немагнитный зазор (рис. 2).


Рис. 2. Электромагнитная линза: 1 - полюсной наконечник; 2 - латунное кольцо; 3 - обмотка; 4 - панцирь.

Электрические и магнитные поля, создаваемые в электронном микроскопе, являются аксиально симметричными. Благодаря действию этих полей заряженные частицы (электроны), выходящие из одной точки объекта в пределах небольшого угла, вновь собираются в плоскости изображения. Вся электронно-оптическая система заключена в колонне электронного микроскопа (рис. 3).

Рис. 3. Электронно-оптическая система: 1 - управляющий электрод; 2 - диафрагма первого конденсатора; 3 - диафрагма второго конденсатора; 4 - стигматор второго конденсатора; 5 - объект; 6 - линза объектива; 7 - стигматор линзы объектива; 8 - стигматор промежуточной линзы; 9 - диафрагма проекционной линзы; 10 - катод; 11 - анод; 12 - первый конденсатор; 13 - второй конденсатор; 14 - корректор фокусировки; 15 - столик объектодержателя; 16 - диафрагма линзы объектива; 17 - селекторная диафрагма; 18 - промежуточная линза; 19 - проекционная линза; 20 - экран.

Созданный электронной пушкой пучок электронов направляется в поле действия конденсорных линз, которые позволяют в широких пределах изменять плотность, диаметр и апертуру пучка, падающего на исследуемый объект. В камере объекта установлен столик, конструкция которого обеспечивает перемещение объекта во взаимно перпендикулярных направлениях. При этом можно последовательно осмотреть площадь, равную 4 мм 2 , и выбрать наиболее интересные участки.

За камерой объекта расположена линза объектива, которая позволяет достигать резкого изображения объекта. Она же дает первое увеличенное изображение объекта, и с помощью последующих, промежуточной и проекционной, линз общее увеличение можно довести до максимального. Изображение объекта возникает на экране, люминесцирующем под действием электронов. За экраном расположены фотопластины. Стабильность действия электронной пушки, а также четкость изображения наряду с другими факторами (постоянство высокого напряжения и др.) во многом зависят от глубины разрежения в колонне электронного микроскопа, поэтому качество работы прибора в значительной степени определяется вакуумной системой (насосы, каналы откачки, краны, клапаны, уплотнения) (рис. 4). Необходимое разрежение внутри колонны достигается благодаря высокой эффективности вакуумных насосов.

Предварительное разрежение во всей вакуумной системе создает механический форвакуумный насос, затем вступает в действие масляный диффузионный насос; оба насоса включены последовательно и обеспечивают в колонне микроскопа высокое разрежение. Введение в систему электронного микроскопа масляного бустерного насоса позволило на длительное время отключать форвакуумный насос.


Рис. 4. Вакуумная схема электронного микроскопа: 1 - ловушка, охлаждаемая жидким азотом (хладопровод); 2 - высоковакуумный кран; 3 - диффузионный насос; 4 - обходной клапан; 5 - малый буферный баллон; 6 - бустерный насос; 7 - механический форвакуумный насос предварительного разрежения; 8 - четырехходовой клапанный кран; 9 - большой буферный баллон; 10 - колонна электронного микроскопа; 11 - клапан напуска воздуха в колонну микроскопа.

Электрическая схема микроскопа состоит из источников высокого напряжения, накала катода, питания электромагнитных линз, а также системы, обеспечивающей переменным сетевым напряжением электродвигатель форвакуумного насоса, печь диффузионного насоса и освещение пульта управления. К питающему устройству предъявляются очень высокие требования: например, для высокоразрешающего электронного микроскопа степень нестабильности высокого напряжения не должна превышать 5·10 -6 за 30 сек.

Интенсивный электронный пучок образуется в результате термоэмиссии. Источником накала катода, который представляет собой V-образную вольфрамовую нить, служит высокочастотный генератор. Генерируемое напряжение с частотой колебаний 100-200 кГц обеспечивает получение монохроматического электронного пучка. Питание линз электронного микроскопа обеспечивается постоянным высокостабилизированным током.


Рис. 5. Электронный микроскоп УЭМВ-100Б для исследования живых микроорганизмов.

Выпускаются приборы (рис. 5) с гарантированной разрешающей способностью 4,5 Å; на отдельных уникальных снимках получено разрешение 1,27 Å, приближающееся к размеру атома. Полезное увеличение при этом равно 200 000.

Электронный микроскоп - прецезионный прибор, который требует особых методов приготовления препаратов. Биологические объекты малоконтрастны, поэтому приходится искусственно усиливать контраст препарата. Имеется несколько способов повышения контрастности препаратов. При оттенении препарата под углом платиной, вольфрамом, углеродом и т. д. становится возможным определять на электронномикроскопических снимках размеры по всем трем осям пространственной системы координат. При позитивном контрастировании препарат соединяется с водорастворимыми солями тяжелых металлов (уранилацетат, моноокись свинца, перманганат калия и др.). При негативном контрастировании препарат окружают тонким слоем аморфного вещества высокой плотности, непроницаемого для электронов (молибденовокислый аммоний, уранилацетат, фосфорно-вольфрамовая кислота и др.).

Электронная микроскопия вирусов (вирусоскопия) обусловила значительный прогресс в изучении ультратонкой, субмолекулярной структуры вирусов (см.). Наряду с физическими, биохимическими и генетическими методами исследования применение электронной микроскопии способствовало также возникновению и развитию молекулярной биологии. Предметом изучения этого нового раздела биологии является субмикроскопическая организация и функционирование клеток человека, животных, растений, бактерий и микоплазм, а также организация риккетсий и вирусов (рис. 6). Вирусы, крупные молекулы белка и нуклеиновых кислот (РНК, ДНК), отдельные фрагменты клеток (например, молекулярное строение оболочки бактериальных клеток) можно исследовать при помощи электронного микроскопа после специальной обработки: оттенения металлом, позитивного или негативного контрастирования уранилацетатом или фосфорно-вольфрамовой кислотой, а также другими соединениями (рис. 7).

Рис. 6. Клетка культуры ткани сердца обезьяны циномольгус, инфицированная вирусом натуральной оспы (X 12 000): 1 - ядро; 2 - митохондрии; 3 - цитоплазма; 4 - вирус.
Рис. 7. Вирус гриппа (негативное контрастирование (Х450 000): 1 - оболочка; 2 - рибонуклеопротеид.

Методом негативного контрастирования на поверхности многих вирусов были обнаружены закономерно расположенные группы белковых молекул - капсомеры (рис. 8).

Рис. 8. Фрагмент поверхности капсида вируса герпеса. Видны отдельные капсомеры (X500 000): 1 - вид сбоку; 2 - вид сверху.
Рис. 9. Ультратонкий срез бактерии Salmonella typhimurium (Х80 000): 1 - ядро; 2 - оболочка; 3 - цитоплазма.

Внутреннее строение бактерий и вирусов, а также других более крупных биологических объектов можно изучать только после рассечения их при помощи ультратома и приготовления тончайших срезов толщиной 100-300 Å. (рис. 9). Благодаря улучшению методов фиксации, заливки и полимеризации биологических объектов, применению алмазных и стеклянных ножей при ультратомировании, а также использованию высококонтрастирующих соединений для окрашивания серийных срезов удалось получить ультратонкие срезы не только крупных, но и самых мелких вирусов человека, животных, растений и бактерий.

Как же устроен электронный микроскоп? В чём его отличие от оптического микроскопа, существует ли между ними какая-нибудь аналогия?

В основе работы электронного микроскопа лежит свойство неоднородных электрических и магнитных полей, обладающих вращательной симметрией, оказывать на электронные пучки фокусирующее действие. Таким образом, роль линз в электронном микроскопе играет совокупность соответствующим образом рассчитанных электрических и магнитных полей; соответствующие устройства, создающие эти поля, называют «электронными линзами».

В зависимости от вида электронных линз электронные микроскопы делятся на магнитные, электростатические и комбинированные.

Какого же типа объекты могут быть исследованы с помощью электронного микроскопа?

Так же как и в случае оптического микроскопа объекты, во-первых, могут быть «самосветящимися», т. е. служить источником электронов. Это, например, накаленный катод или освещаемый фотоэлектронный катод. Во-вторых, могут быть использованы объекты, «прозрачные» для электронов, обладающих определённой скоростью. Иными словами, при работе на просвет объекты должны быть достаточно тонкими, а электроны достаточно быстрыми, чтобы они проходили сквозь объекты и поступали в систему электронных линз. Кроме того, путём использования отражённых электронных лучей могут быть изучены поверхности массивных объектов (в основном металлов и металлизированных образцов). Такой способ наблюдения аналогичен методам отражательной оптической микроскопии.

По характеру исследования объектов электронные микроскопы разделяют на просвечивающие, отражательные, эмиссионные, растровые, теневые и зеркальные.

Наиболее распространёнными в настоящее время являются электромагнитные микроскопы просвечивающего типа, в которых изображение создаётся электронами, проходящими сквозь объект наблюдения. Он состоит из следующих основных узлов: осветительной системы, камеры объекта, фокусирующей системы и блока регистрации конечного изображения, состоящего из фотокамеры и флуоресцирующего экрана. Все эти узлы соединены друг с другом, образуя так называемую колонну микроскопа, внутри которой поддерживается давление. Осветительная система обычно состоит из трёхэлектродной электронной пушки (катод, фокусирующий электрод, анод) и конденсорной линзы (речь идёт об электронных линзах). Она формирует пучок быстрых электронов нужного сечения и интенсивности и направляет его на исследуемый объект, находящийся в камере объектов. Пучок электронов, прошедший сквозь объект, поступает в фокусирующую (проекционную) систему, состоящую из объективной линзы и одной или нескольких проекционных линз.

прибор для наблюдения и фотографирования многократно (до 10 6 раз) увеличенного изображения объектов, в котором вместо световых лучей используются пучки , ускоренных до больших энергий (30-100 кэв и более) в условиях глубокого вакуума. Физические основы корпускулярно-лучевых оптических приборов были заложены в 1834 (почти за сто лет до появления Электронный микроскоп) У. Р. , установившим аналогии между световых лучей в оптически неоднородных средах и траекториями частиц в силовых полях. Целесообразность создания Электронный микроскоп стала очевидной после выдвижения в 1924 о , а технические предпосылки были созданы немецким физиком X. Бушем, который исследовал фокусирующие осесимметричных полей и разработал магнитную электронную линзу (1926). В 1928 немецкие учёные М. Кнолль и Э. Руска приступили к созданию первого магнитного просвечивающего Электронный микроскоп (ПЭМ) и спустя три года получили изображение объекта, сформированное пучками . В последующие годы (М. фон Арденне, 1938; В. К. , 1942) были построены первые растровые Электронный микроскоп (РЭМ), работающие по принципу сканирования (развёртывания), т. е. последовательного от точки к точке перемещения тонкого электронного пучка (зонда) по объекту. К середине 1960-х гг. РЭМ достигли высокого технического совершенства, и с этого времени началось их применение в научных исследованиях. ПЭМ обладают самой высокой (PC), превосходя по этому параметру световые микроскопы в несколько тыс. раз. Т. н. предел разрешения, характеризующий прибора отобразить раздельно мелкие максимально близко расположенные детали объекта, у ПЭМ составляет 2-3 . При благоприятных условиях можно сфотографировать отдельные тяжёлые атомы. При фотографировании периодических структур, таких как атомные решёток кристаллов, удаётся реализовать разрешение менее 1 . Столь высокие разрешения достигаются благодаря чрезвычайно малой длине (см. ). Оптимальным диафрагмированием [см. в электронной (и ионной) оптике] удаётся снизить (влияющую на PC Электронный микроскоп) при достаточно малой дифракционной ошибке. Эффективных методов коррекции в Электронный микроскоп (см. ) не найдено. Поэтому в ПЭМ магнитные (ЭЛ), обладающие меньшими , полностью вытеснили электростатические ЭЛ. Выпускаются ПЭМ различного назначения. Их молено разделить на 3 группы: Электронный микроскоп высокого разрешения, упрощённые ПЭМ и Электронный микроскоп с повышенным ускоряющим .

ПЭМ с высокой разрешающей способностью (2-3 Å ) - как , приборы многоцелевого назначения. С помощью дополнительных устройств и приставок в них можно наклонять объект в разных на большие углы к оптической оси, нагревать, охлаждать, деформировать его, осуществлять , исследования методами и пр. Ускоряющее электроны достигает 100-125 кв, регулируется ступенеобразно и отличается высокой стабильностью: за 1-3 мин оно изменяется не более чем на 1-2 миллионные доли от исходного . Изображение типичного ПЭМ описываемого типа приведено на рис. 1 . В его оптической системе (колонне) с помощью специальной вакуумной системы создаётся вакуум ( до 10 -6 мм рт. ст.). Схема оптической системы ПЭМ изображена на рис. 2 . Пучок , которых служит накалённый катод, (формируется в и затем дважды фокусируется первым и вторым конденсорами, создающими на объекте электронное «пятно» малых размеров (при регулировке пятна может меняться от 1 до 20 мкм). После сквозь объект часть рассеивается и задерживается диафрагмой. Нерассеянные электроны проходят через отверстие диафрагмы и фокусируются в предметной промежуточной линзы. Здесь формируется первое увеличенное изображение. Последующие линзы создают второе, третье и т. д. изображения. Последняя проекционная линза формирует изображение на флуоресцирующем экране, который светится под воздействием электронов. Увеличение Электронный микроскоп равно увеличений всех линз. Степень и характер рассеяния электронов неодинаковы в различных точках объекта, т. к. толщина, и химический состав объекта меняются от точки к точке. Соответственно изменяется число электронов, задержанных апертурной диафрагмой после прохождения различных точек объекта, а следовательно, и плотность тока на изображении, которая преобразуется в на экране. Под экраном располагается магазин с фотопластинками. При фотографировании экран убирается, и электроны воздействуют на фотоэмульсионный слой. Изображение фокусируется плавным изменением тока, возбуждающего объектива. Токи др. линз регулируют для изменения увеличения Электронный микроскоп

Рис. 3. Сверхвысоковольтный электронный микроскоп (СВЭМ): 1 - бак, в который накачивается электроизоляционный газ (элегаз) до давления 3-5 атм; 2 - электронная пушка; 3 - ускорительная трубка; 4 - конденсаторы высоковольтного источника; 5 - блок конденсорных линз; 6 - объектив; 7, 8, 9- проекционные линзы; 10 - световой микроскоп; 11 - пульт управления.

Растровые Электронный микроскоп (РЭМ) с накаливаемым катодом предназначены для исследования массивных объектов с разрешением от 70 до 200 Å . Ускоряющее в РЭМ можно регулировать в пределах от 1 до 30-50 кв.

Устройство растрового Электронный микроскоп показано на рис. 4 . При помощи 2 или 3 ЭЛ на образца фокусируется узкий электронный зонд. Магнитные отклоняющие развёртывают зонд по заданной площади на объекте. При взаимодействии зонда с объектом возникает несколько видов (рис. 5 ) - вторичные и отражённые электроны; электроны, прошедшие сквозь объект (если он тонкий); рентгеновское и характеристическое ; излучение и т. д.

Рис. 5. Схема регистрации информации об объекте, получаемой в РЭМ. 1 - первичный пучок электронов; 2 - детектор вторичных электронов; 3 - детектор рентгеновского излучения; 4 - детектор отражённых электронов; 5 - детектор светового излучения; 6 - детектор прошедших электронов; 7 - прибор для измерения наведённого на объекте электрического потенциала; 8 - прибор для измерения тока прошедших через объект электронов; 9 - прибор для измерения тока поглощенных в объекте электронов.

Любое из этих излучений может регистрироваться соответствующим коллектором, содержащим датчик, преобразующий в электрические , которые после усиления подаются на (ЭЛТ) и модулируют её пучок. Развёртка пучка ЭЛТ производится с развёрткой электронного зонда в РЭМ, и на экране ЭЛТ наблюдается увеличенное изображение объекта. Увеличение равно отношению высоты кадра на экране ЭЛТ к ширине сканируемой объекта. Фотографируют изображение непосредственно с экрана ЭЛТ. Основным достоинством РЭМ является высокая информативность прибора, обусловленная возможностью наблюдать изображение, используя различных датчиков. С помощью РЭМ можно исследовать , химического состава по объекту, р-n-переходы, производить и многое другое. Образец обычно исследуется без предварительной подготовки. РЭМ находит применение и в технологических процессах ( дефектов микросхем и пр.). Высокая для РЭМ PC реализуется при формировании изображения с использованием вторичных . Она определяется диаметром зоны, из которой эти электроны эмиттируются. Размер зоны в свою очередь зависит от диаметра зонда, свойств объекта, электронов первичного пучка и т. д. При большой глубине проникновения первичных электронов вторичные процессы, развивающиеся во всех направлениях, увеличивают диаметр зоны и PC падает. Детектор вторичных электронов состоит из (ФЭУ) и электронно-фотонного преобразователя, основным элементом которого является с двумя - вытягивающим в виде сетки, находящейся под положительным потенциалом (до нескольких сотен в), и ускоряющим; последний сообщает захваченным вторичным электронам энергию, необходимую для . К ускоряющему электроду приложено около 10 кв; обычно он представляет собой алюминиевое покрытие на сцинтиллятора. Число вспышек сцинтиллятора пропорционально числу вторичных , выбитых в данной точке объекта. После усиления в ФЭУ и в сигнал модулирует пучок ЭЛТ. Величина сигнала зависит от образца, наличия локальных электрических и магнитных микрополей, величины , который в свою очередь зависит от химического состава образца в данной точке. Отражённые электроны регистрируются полупроводниковым (кремниевым) . Контраст изображения обусловлен зависимостью от угла падения первичного пучка и атомного номера . Разрешение изображения, получаемого «в отражённых электронах», ниже, чем получаемого с помощью вторичных (иногда на порядок ). Из-за прямолинейности полёта электронов к коллектору информация об отдельных участках, от которых нет прямого пути к коллектору, теряется (возникают тени). Характеристическое выделяется или рентгеновским кристаллическим или энергодисперсным датчиком - полупроводниковым детектором (обычно из чистого кремния, легированного литием). В первом случае рентгеновские кванты после отражения кристаллом спектрометра регистрируются газовым , а во втором - сигнал, снимаемый с полупроводникового , усиливается малошумящим (который для снижения шума охлаждается жидким азотом) и последующей системой усиления. Сигнал от кристаллического модулирует пучок ЭЛТ, и на экране возникает картина того или иного химического элемента по объекта. На РЭМ производят также локальный рентгеновский . Энергодисперсный детектор регистрирует все элементы от Na до U при высокой чувствительности. Кристаллический спектрометр с помощью набора кристаллов с различными межплоскостными (см. ) перекрывает от Be до U. Существенный недостаток РЭМ - большая длительность процесса «снятия» информации при исследовании объектов. Сравнительно высокую PC можно получить, используя электронный зонд достаточно малого диаметра. Но при этом уменьшается зонда, вследствие чего резко возрастает влияние , снижающего отношение полезного сигнала к шуму. Чтобы отношение «сигнал/шум» не падало ниже заданного уровня, необходимо замедлить сканирования для накопления в каждой точке объекта достаточно большого числа первичных (и соответствующего вторичных). В результате PC реализуется лишь при малых скоростях развёртки. Иногда один кадр формируется в течение 10-15 мин.

Рис. 6. Принципиальная схема просвечивающего растрового электронного микроскопа (ПРЭМ): 1 - автоэмиссионный катод; 2 -промежуточный анод; 3 - анод; 4 - отклоняющая система для юстировки пучка; 5 - диафрагма «осветителя»; 6, 8 - отклоняющие системы для развертки электронного зонда; 7 - магнитная длиннофокусная линза; 9 - апертурная диафрагма; 10 - магнитный объектив; 11 - объект; 12, 14 - отклоняющие системы; 13 - кольцевой коллектор рассеянных электронов; 15 - коллектор нерассеянных электронов (убирается при работе со спектрометром); 16 - магнитный спектрометр, в котором электронные пучки поворачиваются магнитным полем на 90° ; 17 - отклоняющая система для отбора электронов с различными потерями энергии; 18 - щель спектрометра; 19 - коллектор; ВЭ - поток вторичных электронов hn - рентгеновское излучение.

РЭМ с автоэмиссионной пушкой обладают высокой для РЭМ PC (до 30 Å ). В автоэмиссионной пушке (как и в ) используется катод в форме острия, у вершины которого возникает сильное , вырывающее электроны из катода (см. ). Электронная яркость пушки с автоэмиссионным катодом в 10 3 -10 4 раз выше, чем пушки с накалённым катодом. Соответственно увеличивается ток электронного зонда. Поэтому в РЭМ с автоэмиссионной пушкой осуществляют быстрые развёртки, а зонда уменьшают для повышения PC. Однако автоэмиссионный катод работает устойчиво лишь при сверхвысоком вакууме (10 -9 -10 -11 мм рт. ст.), и это усложняет конструкцию таких РЭМ и работу на них.

Просвечивающие растровые Электронный микроскоп (ПРЭМ) обладают столь же высокой PC, как и ПЭМ. В этих приборах применяются автоэмиссионные пушки, обеспечивающие достаточно в зонде диаметром до 2-3 Å . На рис. 6 приведено схематическое изображение ПРЭМ. Две уменьшают диаметр зонда. Ниже объекта расположены - центральный и кольцевой. На первый попадают нерассеянные электроны, и после и усиления соответствующих сигналов на экране ЭЛТ появляется т. н. светлопольное изображение. На кольцевом детекторе собираются рассеянные электроны, создающие т. н. темнопольное изображение. В ПРЭМ можно исследовать более толстые объекты, чем в ПЭМ, т. к. возрастание числа неупруго рассеянных с толщиной не влияет на разрешение (после объекта оптика в ПРЭМ отсутствует). С помощью энергии электроны, прошедшие сквозь объект, разделяются на упруго и неупруго рассеянные пучки. Каждый пучок попадает на свой детектор, и на ЭЛТ наблюдается соответствующее изображение, содержащее дополнительную информацию о рассеивающих объекта. Высокое разрешение в ПРЭМ достигается при медленных развёртках, т. к. в зонде диаметром всего 2-3 Å ток получается слишком малым.

Электронный микроскоп смешанного типа. Сочетание в одном приборепринципов формирования изображения с неподвижным пучком (как в ПЭМ) и сканирования тонкого зонда по объекту позволило реализовать в таком Электронный микроскоп преимущества ПЭМ, РЭМ и ПРЭМ. В настоящее время во всех ПЭМ предусмотрена возможность наблюдения объектов в растровом режиме (с помощью конденсорных линз и , создающих уменьшенное изображение , которое сканируется по объекту отклоняющими системами). Кроме изображения, сформированного неподвижным пучком, получают растровые изображения на экранах ЭЛТ с использованием прошедших и вторичных электронов, характеристические и т. д. Оптическая система такого ПЭМ, расположенная после объекта, даёт возможность работать в режимах, неосуществимых в других приборах. Например, можно одновременно наблюдать на экране ЭЛТ и изображение того же объекта на экране прибора.

Эмиссионные Э. м. создают изображение объекта в электронах, которые эмиттирует сам объект при нагревании, первичным пучком , и при наложении сильного электрического поля, вырывающего электроны из объекта. Эти приборы обычно имеют узкое целевое назначение.

Зеркальные Электронный микроскоп служат главным образом для визуализации электростатического «потенциального рельефа» и магнитных микрополей на объекта. Основным оптическим элементом прибора является , причём одним из служит сам объект, который находится под небольшим отрицательным потенциалом относительно катода пушки. Электронный пучок направляется в зеркало и отражается полем в непосредственной близости от объекта. Зеркало формирует на экране изображение «в отражённых пучках». Микрополя возле поверхности объекта перераспределяют электроны отражённых пучков, создавая на изображении, визуализирующий эти микрополя.

Перспективы развития Электронный микроскоп Повышение PC в изображениях непериодических объектов до 1 Å и более позволит регистрировать не только тяжёлые, но и лёгкие атомы и визуализировать на атомарном уровне. Для создания Электронный микроскоп с подобным разрешением повышают ускоряющее . Сер. физическая», т. 34, 1970; Хокс П., и , пер. с англ., М., 1974; Деркач В. П., Кияшко Г. Ф., Кухарчук М. С., Электронозондовые устройства, К., 1974; Стоянова И. Г., Анаскин И. Ф., Физические основы методов просвечивающей электронной микроскопии, М., 1972; Oatley С. W., The scanning electron microscope, Camb., 1972; Grivet P., Electron optics, 2 ed., Oxf., 1972.