Использование композитных материалов в оборонной промышленности и аэрокосмической индустрии. Композитные материалы: что это такое, свойства, производство и применение

Композитные материалы

Композицио́нный материа́л (компози́т, КМ ) - неоднородный сплошной материал, состоящий из двух или более компонентов , среди которых можно выделить армирующие элементы, обеспечивающие необходимые механические характеристики материала, и матрицу (или связующее), обеспечивающую совместную работу армирующих элементов.

Механическое поведение композита определяется соотношением свойств армирующих элементов и матрицы, а также прочностью связи между ними. Эффективность и работоспособность материала зависят от правильного выбора исходных ком­понентов и технологии их совмещения, призванной обеспечить прочную связь между компонентами при сохранении их первоначальных характеристик.

В результате совмещения армирующих элементов и матрицы образуется комплекс свойств композита, не только отражающий исходные характеристики его компонентов, но и включающий свойства, которыми изолированные компоненты не обладают. В частности, наличие границ раздела между армирующими элементами и матрицей существенно повышает трещиностойкость материала, и в композитах, в отличие от металлов , повышение статической прочности приводит не к снижению, а, как правило, к повышению характеристик вязкости разрушения.

Преимущества композиционных материалов

Стоит сразу оговорить, что КМ создаются под выполнение данных задач, соответственно не могут вмещать в себя все возможные преимущества, но,проектируя новый композит, инженер волен задать ему характеристики значительно превосходящие характеристики традиционных материалов при выполнении данной цели в данном механизме, но уступающие им в каких-либо других аспектах. Это значит, что КМ не может быть лучше традиционного материала во всём, то есть для каждого изделия инженер проводит все необходимые расчёты и только потом выбирает оптимум между материалами для производства.

  • высокая удельная прочность
  • высокая жёсткость (модуль упругости 130…140 ГПа)
  • высокая износостойкость
  • высокая усталостная прочность
  • из КМ возможно изготовить размеростабильные конструкции

Причём, разные классы композитов могут обладать одним или несколькими преимуществами. Некоторых преимуществ невозможно добиться одновременно.

Недостатки композиционных материалов

Большинство классов композитов (но не все) обладают недостатками:

  • высокая стоимость
  • анизотропия свойств
  • повышенная наукоёмкость производства, необходимость специального дорогостоящего оборудования и сырья, а следовательно развитого промышленного производства и научной базы страны

Области применения

Товары широкого потребления

Машиностроение

Характеристика

Технология применяется для формирования на поверхностях в парах трения сталь -резина дополнительных защитных покрытий . Применение технологии позволяет увеличить рабочий цикл уплотнений и валов промышленного оборудования, работающих в водной среде .

Композиционные материалы состоят из нескольких функционально отличных материалов. Основу неорганических материалов составляют модифицированные различными добавками силикаты магния , железа , алюминия . Фазовые переходы в этих материалах происходят при достаточно высоких локальных нагрузках, близких к пределу прочности металла . При этом на поверхности формируется высокопрочный металлокерамический слой в зоне высоких локальных нагрузок, благодаря чему удается изменить структуру поверхности металла.

Технические характеристики

Защитное покрытие в зависимости от состава композиционного материала может характеризоваться следующими свойствами:

  • толщина до 100 мкм;
  • класс чистоты поверхности вала (до 9);
  • иметь поры с размерами 1 - 3 мкм;
  • коэффициент трения до 0,01;
  • высокая адгезия к поверхности металла и резины.

Технико-экономические преимущества

  • На поверхности формируется высокопрочный металлокерамический слой в зоне высоких локальных нагрузок
  • Формируемый на поверхности политетрафторэтиленов слой имеет низкий коэффициент трения и невысокую стойкость к абразивному износу ;
  • Металлоорганические покрытия являются мягкими, имеют малый коэффициент трения, пористую поверхность, толщина дополнительного слоя составляет единицы микрон.

Области применения технологии

  • нанесение на рабочую поверхность уплотнений с целью уменьшения трения и создания разделительного слоя, исключающего налипание резины на вал в период покоя.
  • высокооборотные двигатели внутреннего сгорания для авто и авиастроения.

Авиация и космонавтика

Вооружение и военная техника

Благодаря своим характеристикам (прочности и лёгкости) композиционные материалы применяются в военном деле для производства различных видов брони :

  • брони для военной техники

См. также

  • IBFM_(Инновационные_строительные_и_отделочные_материалы)

Ссылки

Wikimedia Foundation . 2010 .

  • Композит
  • Морской энциклопедический справочник
  • Композитные гибкие связи - Рисунок 1. Схема трехслойной стены: 1. Внутренняя часть стены; 2. Гибкая связь; 3. Утеплитель; 4. воздушный зазор; 5. Облицовочная часть стены Композитные гибкие связи используются … Википедия

    IBFM (Инновационные строительные и отделочные материалы) - IBFM (сокращение от англ. Innovation Buildind and Facing Materials, Инновационные Строительные и Отделочные Материалы) это новая категория товаров для строительства, в которую объединяются строительные и отделочные материалы по принципу… … Википедия

    углепластики - Термин углепластики Термин на английском carbon fibre reinforced plastics Синонимы Аббревиатуры CFRP Связанные термины композиционные материалы, полимерные, углеродные наноматериалы Определение композитные материалы, состоящие из углеволокон и… … Энциклопедический словарь нанотехнологий

    ПЛАСТМАССЫ - (пластические массы, пластики). Большой класс полимерных органических легко формуемых материалов, из которых можно изготавливать легкие, жесткие, прочные, коррозионностойкие изделия. Эти вещества состоят в основном из углерода (C), водорода (H),… … Энциклопедия Кольера

    Нож - У этого термина существуют и другие значения, см. Нож (значения). Нож (праслав. *nožь от *noziti протыкать) режущий инструмент, рабочим органом которого является клинок полоса твёрдого материала (обычно металла) с лезвием на … Википедия

    Летно-технические характеристики вертолета Colibri EC120 B - Colibri EC120 B - многоцелевой легкий вертолет, способный перевозить до четырех пассажиров. Просторный грузовой отсек позволяет вместить пять больших чемоданов. Авария вертолета под Мурманском Разработчик: франко германо испанская Группа… … Энциклопедия ньюсмейкеров

    Углеродные нанотрубки - У этого термина существуют и другие значения, см. Нанотрубки. Схематическое изображение нанотрубки … Википедия

Особенности проектирования и внедрения изделий из КМ

При проектировании, изготовлении и внедрении изделий из компо­зиционных материалов на основе волокнистых наполнителей (ВКМ) не­ обходимо учитывать ряд особенностей, присущих этому классу мате­риалов:

а) Анизотропия физико-механических характеристик ВКМ.

Если традиционные материалы (сталь, чугун), а также дисперсно-упрочненные КМ обладают изотропностью свойств, то ВКМ имеют ярко выраженную анизотропию характеристик. При значительном различии характеристик волокнистой арматуры и матрицы соотношение между характеристиками ВКМ в различных направлениях может варьировать­ся в широких пределах: от 3-5 раз до 100 раз и более.

б) При проектировании конструкций, сооружений из традиционных материалов конструктор имеет дело с полуфабрикатами в виде листо­вого, профильного проката, литья и т.д. с гарантированными поставщи­ ком свойствами. Его задача состоит в выборе подходящих полуфабри­катов, определении геометрии, исходя из функционального назначения, и способов соединения отдельных деталей. Задача технолога - обес­печить заданную форму, размеры и качество соединения конструктив­ных элементов. Анализ процессов, протекающих на всех этапах созда­ния полуфабриката, получение материала с требуемым уровнем харак­ теристик относится к компетенции материаловедов. Сложилось вре­менное и организационное разделение процесса получения изделий из традиционных материалов на три этапа:

- материаловедческий - получение материала с требуемыми ха рактеристиками;

- конструкторский - проектирование изделий конструкций;

- технологический - изготовление изделий и машин.

Эти этапы разнесены по времени и могут считаться не связанными между собой, если конструктор руководствуется характеристиками ма­териала, достигнутыми материаловедами, и имеет общие представле­ния об уровне современных технологий.

Изготовление конструкций из КМ происходит, как правило, за одну технологическую операцию с созданием материала. При этом синхрон­но с изготовлением конструкции протекают сложные физико-химические и теплофизические процессы, связанные с образованием структуры и агрегатными превращениями матрицы, взаимодействием ее с арми­рующим материалом. Им сопутствуют механические явления, прямо влияющие на свойства материала и несущую способность композитных деталей, на образование в ней дефектов в ненагруженном состоянии. Поэтому конструктор, проектирующий изделия из КМ , должен знать и учитывать при разработке материаловедческие принципы создания КМ и технологические приемы получения изделий из КМ. Технолог без кон­структорских знаний по условиям нагружения и эксплуатации создавае­ мого изделия из ВКМ не может изготовить изделия, эффективно ис­пользуя отличия КМ от традиционных материалов, т.к. свойства КМ за­висят от структурно-геометрических факторов (объемного содержания армирующих волокон и матрицы, количества и расположения слоев и др.), которые заранее не известны. Поэтому подход должен быть кон структорско-технологическим, а это определяет организационные осо­ бенности производства изделий из КМ .

в) В связи с тесной взаимосвязью этапов изготовления конструк ций из КМ - создание материала, конструкций и технологии получения - более эффективно становится использовать специализированные КБ, имеющие конструкторский и технологический потенциал, оснащенные вычислительной техникой и мощным, но гибким опытным производ­ ством, потому как все конструктивные решения необходимо отрабаты вать на опытных образцах изделий. Такой поход в организации производства должен быть в каждой отрасли, где КМ находят широкое при­ менение: в строительстве, на транспорте, в авиации, химическом ма шиностроении, электротехнической промышленности и др., т.к. предъ являемые к ним требования сильно различаются.

г) При конструировании деталей из полимерных КМ необходимо учитывать их недостатки:

Малую сдвиговую прочность;

Невысокие характеристики при сжатии;

Повышенную ползучесть;

Сравнительно низкую теплостойкость ПКМ.

Особое внимание следует уделить соединениям изделий из ПКМ в связи с малой сдвиговой и контактной прочностью.

д) Несмотря на большой интерес к вопросам предельного состояния, надежных методик, позволяющих определить запасы прочности конструкционных элементов из КМ , нет. В связи со сложностью про блем, связанных с прочностью изделий из КМ , возрастает значение выбора методов при обработке результатов экспериментальных испыта ний.

В настоящее время оценка прочности конструкций из КМ состоит из комплекса испытаний, включающих:

100% испытания эксплуатационными нагрузками;

Выборочные испытания с доведением конструкции до разруше ния.

Гарантию качества и успешное прохождение этих двух видов испы­таний обеспечивает стабильность технологических процессов.

В последние годы на первый план выходит индивидуальная оценка прочности каждой детали с помощью неразрушающих методов испыта­ ния - ультразвук, акустическая эмиссия и др.

е) Определение допусков и посадок на детали из КМ .

Т.к. формирование поверхностей в изделиях из КМ происходит различными способами (намотка, прессование, выкладка и т.д.) и они чаще всего не подвергаются механической обработке, то система до пусков и требования к чистоте поверхности должны строится весьма гибко. Аналогичный подход должен быть и к регламентации разброса массы, связанной с разбросом параметров исходных материалов и их соотношением в КМ , появлением в ходе технологического процесса объемов, различающихся по ориентации наполнителя, и т.д.

ж) Переход на КМ при изготовлении машиностроительной продук­ции затрагивает вопросы детализации узлов машин. Т.к. материал конструируется под конкретные детали, которые в дальнейшем нежелательно подвергать механической обработке, то, естественно, встает вопрос стыковки отдельных деталей. Методы, принятые при изготовле­нии аналогичных узлов машин из металлов, в данном случае либо ма лоэффективны, либо вообще неприемлемы. В связи с этим целесооб­ разно изготавливать из КМ целиком узел, ранее расчленяемый на ряд деталей, которые затем собирались в изделие с помощью разъемных или неразъемных соединений. Это направление весьма эффективно, т.к. сокращаются трудозатраты и энергозатраты , хотя сокращение опе­ раций требует перестройки технологического оборудования и процесса производства.

Например, в США в 1970 г. в массовое производство легковых ав­томобилей была внедрена передняя панель с проемом под облицовку радиатора, впервые изготовлявшаяся из листового КМ . Помимо сниже­ ния массы на 50%, было достигнуто значительное сокращение расхо­ дов за счет объединения нескольких деталей в одну. Эта цельная па­нель исключила множество операций листовой штамповки, механиче­ской обработки на станках и сборки, устранила связанные с ними штам­ пы, формы и станочные зажимные приспособления. Она объединила 16 листовых штамповок и отлитых под давлением деталей в одну деталь из КМ . В 1979 г. на более чем 35 моделях легковых автомобилей стали применять передние панели из КМ , включающие корпуса и гнезда фар, стояночных фонарей, стоп-сигналов, сигналов поворота и габаритных огней.

з) Необходимо изменение подходов к определению экономической эффективности применения КМ . Как правило, экономический эффект от применения КМ образуется у «Потребителя» в виде повышения такти­ ко-технических, эксплуатационных характеристик изделия, его долго­вечности, ремонтопригодности и т.п. Поэтому экономический эффект можно определить только при использовании системного подхода, учи­тывающего все составляющие общего эффекта от замены традицион­ ного материала на КМ , и перехода на новую технологию при изготовле­нии деталей или конструкций в целом.

Только индивидуальный подход с учетом указанных особенностей делает переход к использованию КМ взамен металлов эффективным и перспективным, раскрывающим новые горизонты для развития и со­вершенствования техники.

Классификация композиционных материалов

По типу армирующих наполнителей современные КМ могут быть разделены на две группы:

Дисперсно-упрочненные;

Волокнистые.

Дисперсно-упрочненные композитные материалы (ДУКМ) представляют собой материа­лы, в матрице которых равномерно распределены мелкодисперсные частицы, которые призваны исполнять роль упрочняющей фазы. Дисперсные частицы наполнителя вводят в матрицу специальными технологическими приемами. Частицы не должны активно взаимодействовать с матрицей и не должны растворяться в ней вплоть дотемпературы плавления. В этих материалах основную нагрузку воспринимает матрица, в которой за счет армирующей фазы создается структура, затрудняю­щая движение дислокаций. Дисперсно-упрочненные КМ - изотропны. Их применяют в авиации, ракетостроении и др. Содержание дисперсной фазы составляет ~5-7% (трубки, проволоки, фольга, прутки и т.п.).

Механизм упрочняющего действия от включения дисперсных частиц в матрице, отличается для разных типов ДУКМ.

1) Дисперсно-упрочненные композиционные материалы «пластичная матрица – хрупкий наполнитель»

Для этого типа материалов матрица может быть представлена, например, следующими металлами: Al , Ag , Cu , Ni , Fe , Co , Ti . В качестве наполнителя чаще всего выбираются соединения из оксидов (Al 2 O 3 ; SiO 2 ; Cr 2 O 3 ; ThO 2 ; TiO 2), карбидов (SiC ; TiC ), нитридов (Si 3 N 4 ; AlN ), боридов (TiB 2 ; CrB 2 ; ZrB 2).

На основании опытных данных могут быть сформулированы следующие требования к материалу наполнителя, обеспечивающие наиболее эффективное его использование в качестве упрочняющей фазы. Он должен обладать:

Высокой тугоплавкостью (t пл . > 1000 ° С);

Высокой твердостью и высоким модулем упругости;

Высокой дисперсностью (удельная поверхность – S уд 10 м 2 /г);

Должна отсутствовать коалесценция (слияние) дисперсных частиц в процессе получения и эксплуатации;

Должно иметь место низкое значение скорости диффузиидисперсных частиц в металлическую матрицу.

Механизм упрочнения композиционные материалы «пластичная матрица – хрупкий наполнитель» .

Упрочнение идет по дислокационному механизму: если расстояние между частицами достаточно, то дислокация под действием касательного напряжения выгибается между ними, ее участки смыкаются за каждой частицей, образуя вокруг частиц петли. В областях между дислокационными петлями возникает поле упругих напряжений, затрудняющее проталкивание новых дислокаций между частицами (рис. 1). Этим достигается повышение сопротивления зарождению (инициированию) трещины.

Рис. 1. Схематическое изображение процесса формирования дислокационных петель в пластичной матрице:

1 – дисперсные частицы; 2 – линии дислокаций; 3 – дислокационные петли; 4 – поле упругих напряжений;

d – размер частицы наполнителя; L – расстояние между соседними частицами наполнителя;

τ – направление действия касательных напряжений.

Получение композиционных материалов «пластичная матрица – хрупкий наполнитель» .

В общем случае последовательность технологических операций для получения ДУКМ типа «пластичная матрица – хрупкий наполнитель» является следующей:

а) Получение композитного порошка;

б) Прессование;

в) Спекание;

г) Деформация полуфабриката;

д) Отжиг.

2) Дисперсно-упрочненные композиционные материалы «хрупкая матрица – пластичный наполнитель»

Структура таких ДУКМ представлена керамической матрицей с равномерно распределенными в ней дисперсными металлическими частицами наполнителя. Эти композиты относятся к классу керметов . Расстояние между соседними частицами задается путем варьирования их объемной доли, а эффект от армирования может проявляться при содержании частиц 15-20% объема.

В качестве керамической фазы могут использоваться тугоплавкие оксиды и некоторые тугоплавкие неоксидные соединения: Al 2 O 3 , 3Al 2 O 3 2SiO 2 , Cr 2 O 3 , ZrO 2 , ThO 2 , Y 2 O 3 , Si 3 N 4 , TiN , ZrN , BN, ZrB 2 , TiB 2 , NbB 2 , HfB 2 . В качестве металлической фазы – Fe , Co , Ni , Si , Cu , W, Mo , Cr , Nb , Ta , V, Zr , Hf , Ti . Выбор каждой конкретной керметной пары для получения композита обусловлен возможностью создания стабильной границы раздела в результате твердофазного взаимодействия при температуре, не превышающей температуру плавления наиболее легкоплавкой составляющей пары, либо температуру образования эвтектического расплава.

Механизм торможения разрушения композиционных материалов «хрупкая матрица – пластичный наполнитель» .

Процесс разрушения таких композитов условно можно разделить на две стадии. На первой стадии в ходе нагружения сначала инициируется хрупкое разрушение в матрицевследствие повышенной концентрации напряженийна микронеоднородностях ее структуры: микропорах, границах зерен, крупных неравноосных зернах. При достижении некоторого критического уровня напряжений происходит старт трещины.

На второй стадии распространяющаяся трещина взаимодействует с пластичными металлическими частицами (рис. 2): у ее вершины действуют максимальные напряжения, которые приводят к деформации, удлинению и разрыву металлических частиц. При этом работа разрушения данного композита существенно возрастает по сравнению с таковой характеристикой для неармированного материала. Это происходит за счет затрат энергии трещины на работу пластической деформации всех частиц, попадающих во фронт трещины. В результате сопротивление развитию трещины повышается, поскольку ее берега перекрываются «мостиками связи» из пластичного металла.

Рис. 2. Иллюстрация процесса торможения разрушения в хрупкой матрице:

1 – металлические частицы перед фронтом трещины; 2 – «мостики связи» образованные деформированными

металлическими частицами; 3 – разрушенные металлические частицы; 4 – берега трещины; σ р – растягивающие напряжения

Получение композиционных материалов «хрупкая матрица – пластичный наполнитель» .

Последовательность технологических операций, используемых для получения:

а) Получение композиционной порошковой смеси;

б) Введение в смесь органической связки;

в) Прессование;

г) Удаление органической связки;

д) Спекание;

е) Механическая обработка.

Для обеспечения прессуемости (придания пластичности) смеси порошков компонентов вводят органическую связку путем смешивания с раствором какого-либо органического вещества (поливиниловый спирт, поливинилбутираль , этиленгликоль, каучук и др.) с последующей сушкой для удаления растворителя. В результате выполнения этой операции каждая частица порошковой смеси покрыта тонким слоем пластификатора. Тогда при приложении давления прессования к порошковой смеси, засыпанной в пресс-форму, происходит связывание ее частиц по прослойкам пластификатора. После, путем термообработки изделий в вакууме или в порошковой засыпке из глинозема или сажи, происходит удаление связующего вещества при температуре термодеструкции или сгорания (300 – 400 ° С). После удаления органической связки частицы в объеме изделия удерживаются преимущественно за счет сил трения. Температура спекания композита лимитируется температурой спекания керамической матрицы. Оно проводится в нейтральных газовых средах (аргон, гелий) или в вакууме. В случае необходимости спеченный материал подвергают механической обработке с помощью алмазного инструмента.

Волокнистые КМ можно классифицировать по типу армирующего наполнителя. При их изготовлении в качестве арматуры применяются высокопрочные стеклянные, углеродные, борные, органические волок­на, металлические проволоки, нитевидные кристаллы ряда карбидов, оксидов, нитридов и др.

Армирующие материалы используются в виде моноволокон , нитей, жгутов, сеток, тканей, лент, холстов. Волокнистые КМ можно различать также по способу армирования: ориентированное и стохастическое (случайное). В первом случае композиты обладают четко выраженной анизотропией свойств; во втором - квизиизотропны . Объемная доля наполнителя в волокнистых КМ составляет 60-70%.

По типу матрицы композиты различают:

Полимерные (ПКМ);

Металлические (МКМ );

Керамические (ККМ);

- углерод-углеродные (УУКМ).

Полимерные композитные материалы – это гетерофазные композиционныематериалы с непрерывной полимерной фазой (матрицей), в которой хаотически или в определенном порядке распределены твердые, жидкие или газообразные наполнители. Эти вещества заполняют часть объема матрицы, сокращая тем самым расход дефицитного или дорогостоящего сырья, и (или) модифицируют композицию, придавая ей нужные качества, обусловленные назначением, особенностями технологических процессов производства и переработки, а также условиями эксплуатации изделий. К ним относятся подавляющее большинство пластмасс , резин, лакокрасочных материалов, полимерных компаундов, клеев и др.

В зависимости от типа полимерной матрицы различают наполненные реактопласты, термопласты (по­лиэтилен, поливинилхлорид, капрон и др.), синтетические смолы (полиэфирные, эпоксифенольные и др.) и каучуки. В зависимости от типа наполнителя ПКМ делят на дисперсно-наполненные пластики (наполнитель - дисперсные частицы разнообразной формы, в т. ч. измельченное волокно), армированные пластики (содержат упрочняющий наполнитель непрерывной волокнистой структуры), газонаполненные пластмассы, масло-наполненные каучуки; по природе наполнителя наполненные полимеры подразделяют на асбопластики (наполнитель-асбест), графито-пласты (графит), древесные слоистые пластики (древесный шпон), стеклопластики (стекловолокно), углепластики (углеродное волокно), органопластики (химические волокна), боропластики (борное волокно) и др., а также на гибридные, или поливолокнистые пластики (наполнитель-комбинация различных волокон).

По способу изготовления ПКМ можно разделить на полученные: выкладкой, намоткой, пултрузией , прессованием и др.

Чернышов Е.А., Романов А.Д. // Журнал Современные наукоемкие технологии. – 2014. – № 2. – С. 46-51;

В статье представлено современное состояние технологий производства изделий из композиционных материалов, включая сведения о применяемых технологиях, программном обеспечении, оборудовании для создания матриц, оборудовании для создания композиционных изделий, оборудование контроля геометрии изделия и неразрушающего контроля.

Композиционный материал представляет собой материал, структура которого состоит из нескольких компонентов различных по своим физико-механическим свойствам: металлические или неметаллические матрицы с заданным распределением в них упрочнителей, их сочетание придает композиционному материалу новые свойства. По характеру структуры композиционные материалы подразделяются на волокнистые, упрочненные непрерывными волокнами и нитевидными кристаллами, дисперстноупрочненнные материалы, полученные путем введения в матрицу дисперсных частиц упрочнителей, слоистые материалы, созданные путем прессования или прокатки разнородных материалов .

Сегодня композиционные материалы особенно востребованы в различных отраслях промышленности. Первые суда из стеклопластика были изготовлены во второй половине 30-х годов двадцатого века. С 50-х годов стеклопластиковое судостроение получило широкое распространение в мире, было построено значительное число яхт, рабочих и спасательных катеров и рыболовецких судов, десантно-высадочных судов и др. . Одним из первых применений в авиации композиционных материалов явилось изготовление из углепластика в 1967 г. панелей задней кромки крыла самолета F-111A. В последние годы в изделиях аэрокосмического назначения все чаще можно встретить конструкции из трехслойного «сэндвича» сотовым алюминиевым заполнителем и обшивками из углепластика. В настоящее время порядка 50 % от общей массы самолета Boeing 787 или Airbus A350 составляют композиционные материалы. В автомобилестроении композиционные материалы применяются достаточно давно, в основном получили развитие технологии изготовления аэродинамического обвеса. Ограниченно композиционные материалы применяются для изготовления деталей подвески и двигателя.

Однако до последнего времени на предприятиях использовалась в основном ручная выкладка деталей из композитов, а серийность выпускаемой продукции не требовала глубокой автоматизации процессов. Сегодня с развитием конкуренции на рынке не обойтись без современных средств проектирования и подготовки производства, а также без эффективного оборудования для работы с композитами.

Технологии создания изделий из композиционных материалов

В большинстве случаев в качестве связующего наполнителя используется химически отверждаемая термореактивная смола, процесс отверждения характеризуется экзотермической химической реакцией. В основном используются полиэфирные, эпоксидные, фенольные и высокотемпературные смолы. Чаще всего в изготовлении деталей сложной конфигурации применяют технологии суть которых заключается в выкладке «сухой» основы с последующей пропиткой связующим составом («влажная» формовка, намотка, инжекция, Resin Transfer Molding / RTM) или с поочередной выкладкой «сухой» основы с пленочным клеем (вакуумная пропитка, Resin Film Infusion / RFI). Существует несколько основных технологий изготовления деталей из композиционных материалов, включая ручные и автоматизированные методы:

  • пропитка армирующих волокон матричным материалом;
  • формирование в пресс-форме лент упрочнителя и матрицы, получаемых намоткой;
  • холодное прессование компонентов с последующим спеканием;
  • электрохимическое нанесение покрытий на волокна с последующим прессованием;
  • осаждение матрицы плазменным напылением на упрочнитель с последующим обжатием;
  • пакетная диффузионная сварка монослойных лент компонентов;
  • совместная прокатка армирующих элементов с матрицей и др.

Кроме того широкое распространение получила технология изготовления деталей с использованием препрегов (полуфабрикатов, представляющих собой материал основы, пропитанный связующим составом).

Программное обеспечение

Задачей конструирования изделия из композиционных материалов является правильный подбор композиции, обеспечивающий сочетание свойств, необходимых в конкретном эксплуатационном случае. При конструировании армированных полимерных композиционных материалов широко используется компьютерная обработка данных, для чего разработано большое количество разнообразных программных продуктов. Их использование позволяет повышать качество продукции, сокращать длительность разработки и организации производства конструкций, комплексно, качественно и быстро решать задачи их рационального проектирования. Учет неравномерности нагрузок позволяет проектировать корпусную конструкцию из армированного композита с дифференцированной толщиной, которая может изменяться в десятки раз.

Современные программные продукты можно условно разделить на две группы: выполняющие пакетный анализ ламинатов в «двухмерной» или «балочной/пластинной» постановке и в трехмерной. Первая группа – это программы типа Laminator, VerctorLam Cirrus и др. «Трехмерное» решение – метод конечных элементов, и тут большой выбор среди имеющихся программных продуктов. На рынке «технология моделирования композитов» существуют различные программные продукты: FiberSim (Vistagy / Siemens PLM Software), Digimat (e-Xstream / MSC Software Corp.), Helius (Firehole Composites / Autodesk), ANSYS Composite PrepPost, ESAComp (Altair Engineering) и др. .

Практически все специализированное программное обеспечение различных компаний, имеет возможность интеграции с системами СAD высокого уровня – Creo Elements/Pro, Siemens NX, CATIA. В целом, работа выглядит следующим образом: выбирается материал слоев, определяются общие параметры пакета слоев, определяется метод формирования слоев, послойный метод применяется для производства несложных деталей, для сложных изделий применяются методы зонного или структурного проектирования. В процессе выкладки слоев задается их последовательность. В зависимости от метода производства изделия (ручная выкладка, формование, выкладка ленты, выкладка волокна) осуществляется послойный анализ материала на возможные деформации. Состав слоев приводится в соответствие с шириной используемого материала.

После завершения формирования слоев пользователь получает данные об изделии, позволяющие использовать их для различных целей, например:

  • вывести в виде конструкторской документации;
  • использовать в виде исходных данных для раскроя материала;
  • исходные данные для лазерного проектора для обозначения контуров мест укладки выкроек.

Переход на современные технологии проектирования и подготовки производства изделий позволяет:

  • сократить расход композитных материалов за счет использования точных разверток и раскройных станков;
  • увеличить скорость и повысить качество ручной выкладки материала за счет использования точных заготовок и лазерных проекций мест их выкладки;
  • добиться высокого уровня повторяемости изделий;
  • сокращение влияния человеческого фактора на качество производимых изделий;
  • снижение требований к квалификации персонала, занятого укладкой.

Оборудование для создания матриц

Изготовление мастер-модели из дерева процесс трудоемкий и длительный, для уменьшения времени изготовления матрицы и повышения точности используются: трех/пятиосевые фрезерные станки с ЧПУ, контрольно-измерительные машины или 3Д сканеры.

Портальный пятиосевой фрезерный станок, (рис 1), доступен лишь крупным производителям. Небольшие компании используют фрезерные роботоризированные комплексы на линейных блоках (linear robot unit) (рис. 2), либо изготавливают мастер-модели из склеенной заготовки. В этом случае за основу заготовки берется жесткий пустотелый каркас, который обклеивается снаружи и затем целиком обрабатывается. Компании, не имеющие возможность обработать изделие целиком, идут по другому пути: Сначала в CAD-системе при помощи плоскостей строится упрощенная 3D-модель изделия, на основе упрощенной модели проектируется жесткий силовой каркас из фанеры. Затем вся внешняя поверхность представляется в CAD-системе как облицовка внутреннего каркаса. Размеры облицовки подбираются таким образом, чтобы ее можно было отфрезеровать на имеющемся фрезерном станке с ЧПУ (рис 3). Затем точно собранный каркас обклеивается модельной облицовкой. При таком методе точность мастер-модели ниже и требуется ручная доводка стыков облицовки, но это позволяет создавать изделия, размеры которых значительно превышают возможности имеющихся станков с ЧПУ.

Рис. 1. Пятикоординатный фрезерный станок MR 125, способен обрабатывать детали размером 15×5 м и высотой до 2,5 м

Рис. 2. Фрезерный роботоризированный комплекс Kuka

Рис. 3. «Небольшой» пятикоординатный фрезерный станок

Оборудование для создания композитов

Первым шагом механизации процесса формования явилось использование пропиточных машин, которые помимо пропитки собирают стеклоткани или стеклохолсты в многослойные пакеты общей толщиной 4 – 5 мм. Для механизации процессов, снижения вероятности ошибки персонала, увеличения производительности применяется, например, метод напыления, с помощью которого можно получать наружную обшивку, полотнища переборок и другие конструкции из стеклопластика. Метод напыления позволяет получить приформовочные угольники механизированным путем и обеспечить более высокую производительность труда по сравнению с приформовочными угольниками, формованными вручную из полосок стеклоткани или стеклохолста. Следующий этап развития производства изделий из композитов это внедрение установки для автоматизированной намотки выкладки углестеклонаполнителей. Первый «робот» предназначенный для укладки сухой ткани рулонного типа был продемонстрирован американской компанией Magnum Venus Plastech. Впервые в России подобное оборудование внедрено на ОАО «ВАСО». Данное оборудование позволяет изготавливать композитные детали длиной до 8 м и диаметром до 3 м (рис 4) .

Для облегчения ручной выкладки ткани и сокращения отходов применяются раскройные машины для автоматической резки ткани/препрега, лазерные проекторы LAP и LPT для контурной проекции при выкладке препрега на технологическую оснастку. Используя модуль лазерного проецирования (рис 5) имеется возможность автоматически генерировать данные для проецирования непосредственно из 3D-модели композитного изделия. Такая схема работы значительно сокращает временные издержки, увеличивает эффективность процесса, снижает вероятность дефектов и ошибок, и делает управление данными проще. Комплекс «ПО – раскройный станок – проекционный лазер» по сравнению с традиционной выкладкой снижает трудоемкость раскроя примерно на 50 %, трудоемкость выкладки – примерно на 30 %, повышает коэффициент использования материалов, то есть можно сэкономить от 15 до 30 % материала .

Формование углепластиков методом намотки позволяет получать изделия с наиболее высокими деформационно-прочностными характеристиками. Методы намотки делятся на «сухие» и «мокрые». В первом случае для намотки используются препреги в виде нитей, жгутов или лент. Во втором – пропитка армирующих материалов связующим ведется непосредственно в процессе намотки. В последнее время разрабатывается оборудование, в котором для управления схемой ориентации волокон используются компьютерные системы. Это позволяет получать трубчатые изделия, имеющие изгибы и неправильную форму, а также изделия со сложной геометрией. Разрабатывается оборудование для намотки с применением гибкой технологии, когда армирующие волокнистые материалы можно укладывать на оправке в любом направлении.

Рис. 4 Станок для автоматизированной намотки-выкладки углестеклонаполнителей Viper 1200 FPS фирмы MAG Cincinnati

Рис. 5. Система лазерного позиционирования (зеленый контур)

Оборудование для контроля геометрии и внутренней структуры изделия

Обводы изделий часто имеют криволинейные образующие, проверить которые традиционными «плазовыми» методами не представляется возможным. При помощи 3D-сканирования можно определить насколько точно физический образец соответствует компьютерной 3D-модели. Для 3D-сканирования также можно воспользоваться координатно-измерительной машиной (КИМ) типа «рука» или бесконтактной оптической/лазерной системой сканирования. Однако при использовании бесконтактные системы сканирования, как правило, не могут корректно работать с зеркальными и высокоглянцевыми поверхностями. При использовании «измерительных рук» потребуется несколько последовательных переустановов, поскольку рабочее пространство в силу конструкции измерительных рук обычно ограничено сферой радиусом 1,2-3,6 м.

Также у стеклопластиковых материалов есть ряд проблемных направления. Один из основных – это контроль качества готового изделия (отсутствие воздушных полостей) и коррозия в процессе эксплуатации. Для неразрушающего контроля судовых корпусов из композитов достаточно широко применяют рентген, но стремятся к его сокращению по ряду соображений. В последнее время стали появляться публикации описывающие выявление расслоений инфракрасной термографией (тепловизорами). При этом, что тепловизионный, что рентгеновский методы НК обнаруживая расслоения, не позволяют измерять их размеры и определять глубину залегания дефектов, для того чтобы оценивать их влияние на изменение характеристик прочности.

Заключение

В настоящее время в России практически только начинается интенсивное развитие автоматизации сборки композиционных изделий, в том числе оборудование для создания матриц. Чаще всего выполняют только отдельные элементы аэродинамического обвеса для «тюнинга» автомобилей. Успехом является внедрение на средненевском судостроительном заводе системы FiberSIM при проектировании и строительстве базового тральщика проекта 12700 , а также на ВАСО станка автоматической укладки ткани. Но это отдельные примеры, для повышения конкурентоспособности необходимо комплексное внедрение новых технологий.

Введение. 2

1. Общие сведения о композиционных материалах.. 3

2. Состав и строение композита.. 5

3. Оценка матрицы и упрочнителя в формировании свойств композита.. 10

3.1. Композиционные материалы с металлической матрицей 10

3.2. Композиционные материалы с неметаллической матрицей 10

4. Строительные материалы – композиты.. 12

4.1. Полимеры в строительстве. 12

4.2. Композиты и бетон.. 16

4.3. Алюминиевые композитные панели.. 19

Заключение. 23

Список использованной литературы.. 24

Введение

В начале XXI века задаются вопросом о будущих строительных материалах. Бурное развитие науки и техники затрудняет прогнозирование: еще четыре десятилетия назад не было широкого применения полимерных строительных материалов, а о современных «истинных» композитах было известно только узкому кругу специалистов. Тем не менее, можно предположить, что основными строительными материалами также будут металл, бетон и железобетон, керамика, стекло, древесина, полимеры. Строительные материалы будут создаваться на той же сырьевой основе, но с применением новых рецептур компонентов и технологических приемов, что даст более высокое эксплуатационное качество и соответственно долговечность и надежность. Будет максимальное использование отходов различных производств, отработавших изделий, местного и домашнего мусора. Строительные материалы будут выбираться по экологическим критериям, а их производство будет основываться на безотходных технологиях.

Уже сейчас имеется обилие фирменных названий отделочных, изоляционных и других материалов, которые в принципе отличаются только составом и технологией. Этот поток новых материалов будет увеличиваться, а их эксплуатационные свойства совершенствоваться с учетом суровых климатических условий и экономии энергетических ресурсов России.

1. Общие сведения о композиционных материалах

Композицио́нный материа́л - неоднородный сплошной материал, состоящий из двух или более компонентов, среди которых можно выделить армирующие элементы, обеспечивающие необходимые механические характеристики материала, и матрицу (или связующее), обеспечивающую совместную работу армирующих элементов.

Механическое поведение композита определяется соотношением свойств армирующих элементов и матрицы, а также прочностью связи между ними. Эффективность и работоспособность материала зависят от правильного выбора исходных компонентов и технологии их совмещения, призванной обеспечить прочную связь между компонентами при сохранении их первоначальных характеристик.

В результате совмещения армирующих элементов и матрицы образуется комплекс свойств композита, не только отражающий исходные характеристики его компонентов, но и включающий свойства, которыми изолированные компоненты не обладают. В частности, наличие границ раздела между армирующими элементами и матрицей существенно повышает трещиностойкость материала, и в композитах, в отличие от металлов, повышение статической прочности приводит не к снижению, а, как правило, к повышению характеристик вязкости разрушения.

высокая удельная прочность

высокая жёсткость (модуль упругости 130…140 ГПа)

высокая износостойкость

высокая усталостная прочность

из КМ возможно изготовить размеростабильные конструкции

Причём, разные классы композитов могут обладать одним или несколькими преимуществами. Некоторых преимуществ невозможно добиться одновременно.

Недостатки композиционных материалов

Большинство классов композитов (но не все) обладают недостатками:

высокая стоимость

анизотропия свойств

повышенная наукоёмкость производства, необходимость специального дорогостоящего оборудования и сырья, а следовательно развитого промышленного производства и научной базы страны

2. Состав и строение композита

Композиты - многокомпонентные материалы, состоящие из полимерной, металлической., углеродной, керамической или др. основы (матрицы), армированной наполнителями из волокон, нитевидных кристаллов, тонкодиспeрсных частиц и др. Путем подбора состава и свойств наполнителя и матрицы (связующего), их соотношения, ориентации наполнителя можно получить материалы с требуемым сочетанием эксплуатационных и технологических свойств. Использование в одном материале нескольких матриц (полиматричные композиционные материалы) или наполнителей различной природы (гибридные композиционные материалы) значительно расширяет возможности регулирования свойств композиционных материалов. Армирующие наполнители воспринимают основную долю нагрузки композиционных материалов.

По структуре наполнителя композиционные материалы подразделяют на волокнистые (армированы волокнами и нитевидными кристаллами), слоистые (армированы пленками, пластинками, слоистыми наполнителями), дисперсноармированные, или дисперсно-упрочненные (с наполнителем в виде тонкодисперсных частиц). Матрица в композиционных материалах обеспечивает монолитность материала, передачу и распределение напряжения в наполнителе, определяет тепло-, влаго-, огне - и хим. стойкость.

По природе матричного материала различают полимерные, металлические, углеродные, керамические и др. композиты.

Наибольшее применение в строительстве и технике получили композиционные материалы, армированные высокопрочными и высокомодульными непрерывными волокнами. К ним относят: полимерные композиционные материалы на основе термореактивных (эпоксидных, полиэфирных, феноло-формальд., полиамидных и др.) и термопластичных связующих, армированных стеклянными (стеклопластики), углеродными (углепластики), орг. (органопластики), борными (боропластики) и др. волокнами; металлич. композиционные материалы на основе сплавов Al, Mg, Cu, Ti, Ni, Сг, армированных борными, углеродными или карбидкремниевыми волокнами, а также стальной, молибденовой или вольфрамовой проволокой;

Композиционные материалы на основе углерода, армированного углеродными волокнами (углерод-углеродные материалы); композиционные материалы на основе керамики, армированной углеродными, карбидокремниевыми и др. жаростойкими волокнами и SiC. При использовании углеродных, стеклянных, арамидных и борных волокон, содержащихся в материале в кол-ве 50-70%, созданы композиции (см. табл) с уд. прочностью и модулем упругости в 2-5 раз большими, чем у обычных конструкционных материалов и сплавов. Кроме того, волокнистые композиционные материалы превосходят металлы и сплавы по усталостной прочности, термостойкости, виброустойчивости, шумопоглощению, ударной вязкости и др. свойствам. Так, армирование сплавов Аl волокнами бора значительно улучшает их механические характеристики и позволяет повысить т-ру эксплуатации сплава с 250-300 до 450-500 °С. Армирование проволокой (из W и Мо) и волокнами тугоплавких соединений используют при создании жаропрочных композиционных материалов на основе Ni, Cr, Co, Ti и их сплавов. Так, жаропрочные сплавы Ni, армированные волокнами, могут работать при 1300-1350 °С. При изготовлении металлических волокнистых композиционных материалов нанесение металлической матрицы на наполнитель осуществляют в основном из расплава материала матрицы, электрохимическим осаждением или напылением. Формование изделий проводят гл. обр. методом пропитки каркаса из армирующих волокон расплавом металла под давлением до 10 МПа или соединением фольги (матричного материала) с армирующими волокнами с применением прокатки, прессования, экструзии при нагр. до т-ры плавления материала матрицы.

Один из общих технологических методов изготовления полимерных и металлич. волокнистых и слоистых композиционные материалы - выращивание кристаллов наполнителя в матрице непосредственно в процессе изготовления деталей. Такой метод применяют, напр., при создании эвтектич. жаропрочных сплавов на основе Ni и Со. Легирование расплавов карбидными и интерметаллич. соед., образующими при охлаждении в контролируемых условиях волокнистые или пластинчатые кристаллы, приводит к упрочнению сплавов и позволяет повысить т-ру их эксплуатации на 60-80 oС. композиционные материалы на основе углерода сочетают низкую плотность с высокой теплопроводностью, хим. стойкостью, постоянством размеров при резких перепадах т-р, а также с возрастанием прочности и модуля упругости при нагреве до 2000 °С в инертной среде. О методах получения углерод-углеродных композиционные материалы см. Углепластики. Высокопрочные композиционные материалы на основе керамики получают при армировании волокнистыми наполнителями, а также металлич. и керамич. дисперсными частицами. Армирование непрерывными волокнами SiC позволяет получать композиционные материалы, характеризующиеся повыш. вязкостью, прочностью на изгиб и высокой стойкостью к окислению при высоких т-рах. Однако армирование керамики волокнами не всегда приводит к значит. повышению ее прочностных св-в из-за отсутствия эластичного состояния материала при высоком значении его модуля упругости. Армирование дисперсными металлич. частицами позволяет создать керамико-металлич. материалы (керметы), обладающие повыш. прочностью, теплопроводностью, стойкостью к тепловым ударам. При изготовлении керамич. композиционные материалы обычно применяют горячее прессование, прессование с послед. спеканием, шликерное литье (см. также Керамика). Армирование материалов дисперсными металлич. частицами приводит к резкому повышению прочности вследствие создания барьеров на пути движения дислокаций. Такое армирование гл. обр. применяют при создании жаропрочных хромоникелевых сплавов. Материалы получают введением тонкодисперсных частиц в расплавленный металл с послед. обычной переработкой слитков в изделия. Введение, напр., ТhO2 или ZrO2 в сплав позволяет получать дисперсноупрочненные жаропрочные сплавы, длительно работающие под нагрузкой при 1100-1200 °С (предел работоспособности обычных жаропрочных сплавов в тех же условиях - 1000-1050 °С). Перспективное направление создания высокопрочных композиционные материалы-армирование материалов нитевидными кристаллами ("усами"), к-рые вследствие малого диаметра практически лишены дефектов, имеющихся в более крупных кристаллах, и обладают высокой прочностью. наиб. практич. интерес представляют кристаллы Аl2О3, BeO, SiC, B4C, Si3N4, AlN и графита диаметром 1-30 мкм и длиной 0,3-15 мм. Используют такие наполнители в виде ориентированной пряжи или изотропных слоистых материалов наподобие бумаги, картона, войлока. композиционные материалы на основе эпоксидной матрицы и нитевидных кристаллов ThO2 (30% по массе) имеют раст 0,6 ГПа, модуль упругости 70 ГПа. Введение в композицию нитевидных кристаллов может придавать ей необычные сочетания электрич. и магн. св-в. Выбор и назначение композиционные материалы во многом определяются условиями нагружения и т-рой эксплуатации детали или конструкции, технол. возможностями. наиб. доступны и освоены полимерные композиционные материалы Большая номенклатура матриц в виде термореактивных и термопластич. полимеров обеспечивает широкий выбор композиционные материалы для работы в диапазоне от отрицат. т-р до 100-200°С - для органопластиков, до 300-400 °С - для стекло-, угле - и боропластиков. Полимерные композиционные материалы с полиэфирной и эпоксидной матрицей работают до 120-200°, с феноло-формальдегидной - до 200-300 °С, полиимидной и кремнийорг. - до 250-400°С. Металлич. композиционные материалы на основе Аl, Mg и их сплавов, армированные волокнами из В, С, SiC, применяют до 400-500°С; композиционные материалы на основе сплавов Ni и Со работают при т-ре до 1100-1200 °С, на основе тугоплавких металлов и соед. - до 1500-1700°С, на оснбве углерода и керамики - до 1700-2000 °С. Использование композитов в качестве конструкц., теплозащитных, антифрикц., радио - и электротехн. и др. материалов позволяет снизить массу конструкции, повысить ресурсы и мощности машин и агрегатов, создать принципиально новые узлы, детали и конструкции. Все виды композиционные материалы применяют в хим., текстильной, горнорудной, металлургич. пром-сти, машиностроении, на транспорте, для изготовления спортивного снаряжения и др.

Путем различных комбинаций связующих и наполнителей получают полимерные композиционные материалы (ПКМ) с необходимыми физико-механическими и физическими характеристиками для эксплуатации в различных условиях. Зачастую получение полимерных композиционных материалов и формование изделий из них совмещены в один процесс, что позволяет существенно снизить себестоимость изделий из композитов.

Оптимальный метод формования для каждого конкретного изделия из ПКМ определяется большим числом факторов, таких как:

  • конструктивные особенности изделия;
  • предназначение получаемого изделия (и соответствующие требования –чистота поверхности, точность размеров и т.д.);
  • свойства и технологические возможности связующего компонента;
  • структура наполнителя;
  • экономические факторы (стоимость, производительность и сроки эксплуатации оборудования, трудоемкость и т.д.)

Особенности формования полимерных композитов на основе термопластов

Производительность методов получения и переработки полимерных композитов на основе в основном определяется скоростью происходящих в связующем полимере физических и физико-химических процессов при переработке:

  • плавления;
  • кристаллизации;
  • нагрева;
  • охлаждения;
  • релаксации и т.д.

Полнота и характер протекания этих процессов являются во многом определяющими факторами для качества готового изделия. Кроме того на качество готовых изделий влияют и деструктивные процессы в полимере, протекающие с повышенной скоростью в результате термических и механических воздействий на материал со стороны рабочих органов машин в процессе переработки.

Необходимую форму изделию из можно придать путем развития высокоэластической или пластической деформации. Из-за высокой вязкости материала, скорость протекания процессов деформации низкая. В зависимости от физического состояния полимера в момент формования, в готовом изделии достигается различная степень неравновесности из-за неполной релаксации внутренних напряжений. Это накладывает определенные ограничения на температурный интервал эксплуатации изделий, полученных различными методами. Увеличение доли высокоэластической составляющей деформации ведет к снижению верхнего температурного предела вплоть до температуры стеклования полимера.

Особенности формования полимерных композиционных материалов на основе реактопластов

Особенность методов получения полимерных состоит в сочетании физических процессов собственно формования с химическими реакциями образования трехмерных полимеров (отверждением), причем свойства изделий определяются скоростью и полнотой отверждения. Неполное отверждение обусловливает нестабильность свойств изделий из во времени, а также протекание деструктивных процессов в готовых изделиях.

В зависимости от метода переработки, отверждение совмещается с формованием изделия (в случае прессования реактопластов, происходит после оформления изделия в полости формы (литьевое прессование , литье под давлением реактопластов ) или при термической обработке сформованной заготовки (при формовании крупногабаритных изделий). Достижение необходимой полноты отверждения некоторых типов олигомеров даже в присутствии катализаторов и при повышенных температурах требует значительного времени (до нескольких часов). При этом окончательное отверждение может проводиться уже вне формующей оснастки, так как устойчивость формы приобретается задолго до полного окончания процесса отверждения.

Некоторые проблемы производства полимерных композиционных материалов

Наличие при переработке температурных перепадов по сечению изделия ведет к возрастанию структурной неоднородности и появлению дополнительных напряжений, связанных с различием в скоростях охлаждения, кристаллизации, релаксации в различных частях, а также с различной степенью отверждения (в случае реактопластов). Это обусловливает неоднородность свойств материала в изделии, что не всегда допустимо, и является причиной многих видов брака (коробления, растрескивания и др.). Существование внутренних напряжений, в первую очередь ориентационных, ограничивает также температурный интервал эксплуатации. Некоторого повышения неоднородности надмолекулярной структуры и снижения внутренних напряжений удается достигнуть благодаря термической обработке готового изделия, однако более эффективно использование методов направленного регулирования структур в процессе переработки.

При формовании изделий из полимерных композитов возможно значительное изменение структуры , а следовательно, и свойств полимера. Поэтому полученные на основе одного и того же полимера материалы и изделия могут значительно отличаться по характеристикам , если технологии у них разные. Важнейшими факторами, влияющими на структуру и свойства ПКМ, являются параметры процесса переработки:

  • температура,
  • давление,
  • режимы нагрева и охлаждения и т.д.

Правильный учет и подбор всех технологических параметров позволяет достигнуть в готовом изделии:

  • однородной структуры,
  • минимального уровня остаточных напряжений (структурных, усадочных, термических),
  • высокой степени завершенности процессов отверждения, кристаллизации,

чтобы получить высококачественные изделия.