Монтаж неподвижных опор теплотрассы. Неподвижные опоры трубопроводов тепловых сетей

Здравствуйте, друзья! Магистральные распределительные тепловые сети служат для передачи потребителям тепловой энергии теплоносителя для нужд отопления, ГВС и вентиляции. Магистральные теплосети прокладываются от ЦТП (центральных тепловых пунктов), либо от теплоисточника (котельной, ТЭЦ).

Распределительные теплосети состоят из таких элементов, как:

1) Непроходные каналы

2) Подвижные и неподвижные опоры

3) Компенсаторы

4) Трубопроводы и запорная арматура (задвижки)

5) Тепловые камеры

Про тепловые камеры тепловых сетей я написал отдельную . Поэтому в данной статье рассматривать их я не буду.

Непроходные каналы.

Стенки непроходных каналов состоят из сборных блоков. Сверху на сборные блоки накладываются железобетонные плиты перекрытия. Основание дна непроходного канала делают обычно в сторону , либо в сторону подвалов жилых домов. Но бывает так, что при неблагоприятном рельефе местности какая то часть каналов монтируется с уклоном к тепловым камерам. Швы бетонных блоков и плит заделывают, изолируют для того, чтобы в канал не попадали грунтовые и верховые воды. Во время засыпки каналов грунт необходимо тщательно утрамбовывать. Замерзшей землей засыпать канал нельзя

Неподвижные и подвижные опоры.

Опоры трубопроводов тепловой сети подразделяются на неподвижные (или как еще говорят, мертвые) и подвижные. В непроходных каналах применяют скользящие опоры. Эти опоры необходимы для передачи веса трубопроводов и обеспечения перемещения трубопроводов при их удлинении под воздействием высокой температуры теплоносителя.

Для этого скользящие опоры, или как их еще называют, «скользячки» приваривают к трубопроводам. А скользят они по специальным пластинам, которые вделаны в ж/б плиты.

Неподвижные или мертвые опоры необходимы для того, чтобы разделить трубопровод большой протяженности на отдельные участки. Участки эти не зависят напрямую друг от друга, и соответственно, при высоких температурах теплоносителя компенсаторы могут нормально, без видимых проблем, воспринять температурные удлинения.

К неподвижным опорам предъявляются повышенные требования по надежности, ведь нагрузки на них большие. В то же время нарушение прочности и целостности мертвой (неподвижной) опоры может привести к аварийной ситуации.

Компенсаторы.

Компенсаторы в тепловых сетях служат для восприятия температурного удлинения трубопроводов при их нагреве (1,2 мм на каждый метр при повышении температуры на 100 °С). Основная и главная задача компенсатора в теплосети - защитить трубопроводы и арматуру от «убийственных» напряжений. Как правило, для труб диаметр которых не более 200 мм применяют П-образные компенсаторы. Мне в основном приходилось сталкиваться в работе именно с такими компенсаторами. Они наиболее распространенные. Приходилось работать также и с сальниковыми компенсаторами на трубопроводах больших диаметров. Но это уже диаметры труб dy 300, 400 мм.

Когда П-образные компенсаторы монтируют, их предварительно растягивают на половину температурного удлинения от той цифры, которая указана в проекте или расчете. Иначе компенсирующая способность компенсатора уменьшается в два раза. Растяжку следует производить одновременно с двух сторон в стыках, ближайших к мертвым (неподвижным) опорам.

Трубопроводы и задвижки.

Для распределительных тепловых сетей применяют стальные трубы. На стыках трубопроводы соединяют при помощи электросварки. Из задвижек на тепловых сетях применяют стальные и чугунные задвижки. Мне в работе на теплосетях попадаются больше чугунные задвижки, они более распространенны.

Изоляция труб.

Работать мне приходится в основном с магистральными распределительными тепловыми сетями, смонтированными еще в советское время. Конечно,кое-где трубопроводы теплосетей, а соответственно и изоляцию на них, меняют в ходе капитального ремонта. Когда я несколько лет назад работал в теплоснабжающей организации, помню, что каждый год, в межотопительный период заменяли «древние» участки трубопроводов теплосети. Но все же процентов 75-80 распределительных тепловых сетей еще советских времен. Трубопроводы таких сетей покрыты антикоррозионным составом, теплоизоляцией и защитным слоем (рис.4.).

Рулонный материал, как правило, изол. Реже - бризол. Этот материал приклеен мастикой к трубопроводу. Теплоизоляция сделана из матов минеральной ваты. Защитный слой - асбестоцементная штукатурка из смеси асбеста и цемента в пропорции 1:2, которая распределена по проволочной сетке.

Устройства на тепловой сети. Опоры.

Устройства на тепловой сети. При подземной прокладке для размещения и обслуживания теплопроводов, компенсаторов, задвижек, воздушников, выпускников, дренажей и приборов КИП устраивают подземные камеры. Они могут быть сборными железобетонными, монолитными и кирпичными. Высота камер должна быть не менее 2м. Число люков при площади камер до 6м 2 должно быть не менее 2, при лошади камер более 6м 2 не менее 4. В камере предусматривается водосборный приямок 400х400мм и глубиной 300мм.

Арматура. Различают следующие типы арматуры:

1. запорная;

2. регулирующая;

3. предохранительная;

4. дросселирующая;

5. конденсатоотводная;

6. контрольно-измерительная.

Запорная арматура (задвижки) устанавливается на всех трубопроводах, отходящих от источника тепла, в узлах ответвления, в штуцерах для спуска воздуха.

Задвижки устанавливаются в следующих случаях:

1. На всех трубопроводах выводов тепловых сетей от источника тепла.

2. Для проведения ремонтных работ на теплопроводах водяных систем устанавливаются секционирующие задвижки. Расстояния между задвижками принимаются в зависимости от диаметра труб и приведены в табл.1

Таблица 1

D у, мм 400-500
l, м до 1000 до 1500 до 3000

3. При надземной прокладке трубопроводов D у 900мм допускается установка секционирующих задвижек через 5000м. В местах установки задвижек размещаются перемычки между подающим и обратным трубопроводами диаметром равным 0.3 D у трубопровода, но не менее 50мм. На перемычке предусматривается установка двух задвижек и контрольного вентиля между ними D у =25мм.

4. На ответвлениях к отдельным зданиям длиной до 30м и D у 50мм допускается не устанавливать запорную арматуру, а предусматривать установку её для группы зданий.

Задвижки и затворы с D у 500мм принимаются только с электроприводами. Для облегчения открытия, закрытия задвижек на трубопроводах D у 350мм делают обводные линии - байпасы.

Опоры. Опоры применяются для восприятия усилий, возникающих в теплопроводах, и передачи их на несущие конструкции или грунт. Опоры подразделяются на подвижные и неподвижные.

Неподвижные опоры . Неподвижные опоры предусматриваются для закрепления трубопроводов в специальных конструкциях и служат для распределения удлинения трубопроводов между компенсаторами и обеспечения равномерной работы компенсаторов. Между каждыми двумя компенсаторами устанавливается неподвижная опора. Неподвижные опоры разделяются на:

· упорные (при всех видах прокладки);

· щитовые (при бесканальной прокладке и в непроходных каналах);

· хомутовые (при надземной прокладке и в тоннелях).

Выбор типа неподвижных опор и их конструктивное оформление зависят от усилий, оказывающих воздействие на опору.

Различают неподвижные опоры концевые и промежуточные.

В грунте или непроходных каналах неподвижные опоры выполняют в виде железобетонных щитов (рис.25), заделанных в грунт или стенки каналов. Трубы жестко связываются со щитом при помощи приваренных к ним опорных стальных листов.


Рис. 25. Щитовая неподвижная опора.

В камерах подземных каналов и при надземной прокладке неподвижные опоры выполняются в виде металлических конструкций, сваренных или соединенных на болтах с трубами (рис. 26).

Эти конструкции заделываются в фундаменты, стены колонн и перекрытия каналов, камер и помещений, где прокладываются трубы.

Подвижные опоры . Подвижные опоры служат для передачи веса теплопроводов на несущие конструкции и обеспечения перемещений труб, происходящих вследствие изменения их длины при изменениях температуры теплоносителя.

Существуют опоры скользящие, роликовые, катковые и подвесные. Наиболее распространены скользящие опоры. Они применяются независимо от направления горизонтальных перемещений трубопроводов при всех способах прокладки и для всех диаметров труб (рис.27).

Катковые опоры применяются для труб d >200мм при прокладке на этакадах, иногда в проходных каналах, когда нужно снизить продольные усилия на несущие конструкции (рис.28.).

Роликовые опоры применяются в тех же случаях, что и катковые, но при наличии горизонтальных перемещений под углом к оси трассы.

При прокладке труб в помещениях и на открытом воздухе применяют подвесные опоры простые (жесткие) и пружинные.

Пружинные опоры предусматриваются для труб d >150мм в местах вертикальных перемещений труб.

Жесткие подвески используются при надземной прокладке с гибкими компенсаторами. Длина жестких подвесок должна быть не менее 10-ти кратного теплового перемещения подвески, наиболее удаленной от неподвижной опоры.

Компенсаторы. Компенсаторы служат для восприятия температурных удлинений и разгрузки труб от температурных напряжений.

Температурное удлинение стальных труб в результате теплового расширения металла определяется по формуле:

,

где - коэффициент местного расширения (1/ о С); для стали =12 10 -6 (1/ о С); - длина трубы, м; - температура трубы при монтаже (равна расчетной температуре наружного воздуха для отопления), о С; - рабочая температура стенки (равна максимальной рабочей температуре), о С.

При отсутствии компенсаторов могут возникнуть большие сжимающие напряжения от разогрева труб. Напряжения эти вычисляются по формуле:

,

где Е- модуль упругости, равный 2 10 -6 кг/см 2 .

Компенсаторы подразделяются на осевые и радиальные. Осевые компенсаторы устраивают на прямолинейных участках теплопровода. Радиальные устанавливают на сети любой конфигурации, т.к. они компенсируют как осевые, так и радиальные удлинения.

Осевые компенсаторы бывают сальниковые и линзовые. Наибольшее распространение получили сальниковые компенсаторы (рис.29). Сальниковый компенсатор работает по принципу телескопической трубы. Уплотнение между трубами достигается набивкой, пропитанной маслом для уменьшения трения. Сальниковые компенсаторы имеют малые габариты и малое гидравлическое сопротивление.

Линзовые компенсаторы в тепловых сетях почти не применяются, т.к. они дороги, ненадежны и вызывают большие усилия на мертвые (неподвижные) опоры. Их применяют при давлении в трубопроводах меньше 0,5 МПа (рис.30). При больших давлениях возможно выпучивание волн.

Радиальные компенсаторы (гнутые) - это трубы различных прогибов, выполняемые специально для восприятия удлинений труб в виде буквы П, лиры, омеги, витка пружины и других очертаний (рис.31).


Рис. 31. Типы очертаний гнутых компенсаторов

К преимуществам гнутых компенсаторов относятся: надежность работы, отсутствие необходимости в камерах для размещения компенсаторов под землей, малая нагрузка на мертвые опоры, полная разгруженность от внутреннего давления.

Недостатками гнутых компенсаторов являются повышенное против сальниковых гидравлическое сопротивление и громоздкость по габаритам.

Выпуски воздуха устанавливаются в высших точках трубопроводов с помощью штуцеров, диаметры которых принимают в зависимости от условного прохода трубопровода.

Грязевики устанавливаются на теплопроводах перед насосами и регуляторами.

Специальные сооружения устраиваются при пересечении тепловых сетей с железнодорожными путями в виде дюкеров, тоннелей, матовых переходов, эстакад, подземных переходов сетей в футлярах и тоннелях

Потери в сетях

Назначение оценок теплопотерь

l для нормирования;

l для обоснования тарифов;

l для разработки энергосберегающих мероприятий

l При взаиморасчетах (при несовпадении точек установки узлов учета и границ ответственности)

l При разработке нормативов технологических потерь при передаче тепловой энергии используются технически обоснованные значения нормативных энергетических характеристик

l СО 153-34.20.523-2003 Часть 3 "Методические указания по составлению энергетических характеристик для систем транспорта тепловой энергии по показателю "тепловые потери" (взамен РД 153-34.0-20.523-98)".

l СО 153-34.20.523-2003 Часть 4 "Методические указания по составлению энергетических характеристик для систем транспорта тепловой энергии по показателю "потери сетевой воды" (взамен РД 153-34.0-20.523-98)".

l Основой для сопоставления фактических и нормативных характеристик и разработки мероприятий энергосбережению (по сокращению резерва тепловой экономичности) являются результаты обязательных энергетических обследований организаций, выполняемых в соответствии с Федеральным законом № 261-ФЗ "Об энергосбережении…. "

l Методические указания по составлению энергетических характеристик для систем транспорта тепловой энергии (в трех частях). РД 153-34.0-20.523-98. Часть II. Методические указания по составлению энергетической характеристики водяных тепловых сетей по показателю «тепловые потери».

l Методические указания по составлению энергетических характеристик для систем транспорта тепловой энергии (в трех частях). РД 153-34.0-20.523-98. Часть III. Методические указания по составлению энергетической характеристики по показателю «потери сетевой воды» для систем транспорта тепловой энергии.

l Потери и затраты теплоносителей (горячая вода, пар, конденсат);

l 2. Потери тепловой энергии через теплоизоляционные конструкции, а также с потерями и затратами теплоносителей;

l 3. Удельный среднечасовой расход сетевой воды на единицу расчетной присоединенной тепловой нагрузки потребителей и единицу отпущенной потребителям тепловой энергии.

Разность температур сетевой воды в подающих и обратных трубопроводах (или температура сетевой воды в обратных трубопроводах при заданных температурах сетевой воды в подающих трубопроводах);

5. Расход электроэнергии на передачу тепловой энергии.

l Правила технической эксплуатации электрических станций и сетей Российской Федерации (2003 г.) п.1.4.3.

срок действия не может превышать пять лет

потери сетевой воды

Потери сетевой воды -зависимость технически обоснованных потерь теплоносителя на транспорт и распределение тепловой энергии от источника до потребителей (в пределах балансовой принадлежности эксплуатирующей организации) от характеристик и режима работы системы теплоснабжения

Энергетическая характеристика: потери сетевой воды

Зависимость технологических затрат тепловой энергии на ее транспорт и распределение от источника тепловой энергии до границы балансовой принадлежности тепловых сетей от температурного режима работы тепловых сетей и внешних климатических факторов при заданной схеме и конструктивных характеристиках тепловых сетей

На отдельно стоящих мачтах и опорах (рис. 4.1);

Рис. 4.1. Прокладка трубопроводов на отдельно стоящих мачтах

Рис.4.2-на эстакадах со сплошным пролетным строением в виде ферм или балок (рис. 4.2);

Рис. 4.2. Эстакада с пролетным строением для прокладки трубопроводов

Рис.4.3-на тягах, прикрепленных к верхушкам мачт (вантовая конструкция, рис. 4.3);

Рис. 4.3. Прокладка труб с подвеской на тягах (вантовая конструкция)

На кронштейнах.

Прокладки первого типа наиболее ра­циональны для трубопроводов диаметром 500 мм и более. Трубопроводы большего диаметра при этом могут быть использо­ваны в качестве несущих конструкций для укладки или подвески к ним нескольких тру­бопроводов малого диаметра, требующих более частой установки опор.

Прокладки по эстакаде со сплошным на­стилом для прохода целесообразно приме­нять только при большом количестве труб (не менее 5 - 6 шт.), а также при необходи­мости регулярного надзора за ними. По стоимости конструкции проходная эстакада наиболее дорогая и требует наибольшего расхода металла, так как фермы или ба­лочный настил обычно изготовляются из прокатной стали.

Прокладка третьего типа с подвесной (вантовой) конструкцией пролетного строе­ния является более экономичной, так как позволяет значительно увеличить расстояния между мачтами и тем самым уменьшить расход строительных материалов. Наиболее простые конструктивные формы подвесная прокладка получает при трубопроводах равных или близких диаметров.

При совместной укладке трубопроводов большого и малого диаметра применяется несколько видоизмененная вантовая кон­струкция с прогонами из швеллеров, подве­шенных на тягах. Прогоны позволяют уста­навливать опоры трубопроводов между мач­тами. Однако возможность прокладки тру­бопроводов на эстакадах и с подвеской на тягах в городских условиях ограничена и применима только в промышленных зонах. Наибольшее применение получила проклад­ка водяных трубопроводов на отдельно стоящих мачтах и опорах или на кронштей­нах. Мачты и опоры, как правило, выпол­няются из железобетона. Металлические мачты применяются в исключительных слу­чаях при малом объеме работ и реконструк­ции существующих тепловых сетей.

Мачты по своему назначению делятся на следующие типы:

  • для подвижных опор трубопроводов (так называемые промежуточные);
  • для неподвижных опор трубопроводов (анкерные), а также устанавливаемые в на­чале и в конце участка трассы;
  • устанавливаемые на поворотах трассы;
  • служащие для опирания компенсаторов трубопроводов.

В зависимости от количества, диаметра и назначения прокладываемых трубопрово­дов мачты выполняются трех различных конструктивных форм: одностоечными, двухстоечными и четырехстоечными простран­ственной конструкции.

При проектировании воздушных про­кладок следует стремиться к возможно большему увеличению расстояний между мачтами.

Однако для беспрепятственного стока воды при выключениях трубопроводов мак­симальный прогиб не должен превышать

f = 0,25∙i l ,

где f - прогиб трубопровода в середине пролета, мм; i - уклон оси трубопровода; l - расстояние между опорами, мм.

Сборные железобетонные конструкции мачт обычно собираются из следующих эле­ментов: стоек (колонн), ригелей и фундамен­тов. Размеры сборных деталей определяются количеством и диаметром укладываемых трубопроводов.

При прокладке от одного до трех трубо­проводов в зависимости от диаметра при­меняются одностоечные отдельно стоящие мачты с консолями, они пригодны и при вантовой подвеске труб на тягах; тогда предусматривается устройство верхушки для крепления тяг.

Мачты сплошного прямоугольного се­чения допустимы, если максимальные раз­меры поперечного сечения не превосходят 600 х 400 мм. При больших размерах для облегчения конструкции рекомендуется пре­дусматривать вырезы по нейтральной оси или применять в качестве стоек центрифуги­рованные железобетонные трубы заводского изготовления.

Для многотрубных прокладок мачты промежуточных опор чаще всего проекти­руются двухстоечной конструкции, одно­ярусные или двухъярусные.

Сборные двухстоечные мачты состоят из следующих элементов: двух стоек с одной или двумя консолями, одного или двух риге­лей и двух фундаментов стаканного типа.

Мачты, на которых трубопроводы за­крепляются неподвижно, испытывают на­грузку от горизонтально направленных уси­лий, передаваемых трубопроводами, которые проложены на высоте 5 - 6 м от поверхности грунта. Такие мачты для увеличения устой­чивости проектируются в виде четырехстоечной пространственной конструкции, которая состоит из четырех стоек и четырех или восьми ригелей (при двухъярусном располо­жении трубопроводов). Мачты устанавли­ваются на четырех отдельных фундаментах стаканного типа.

При надземной прокладке трубопрово­дов больших диаметров используется не­сущая способность труб, и поэтому не тре­буется устройства какого-либо пролетного строения между мачтами. Не следует приме­нять и подвеску трубопроводов большого диаметра на тягах, так как такая конструк­ция практически работать не будет.

Рис.4.4В качестве примера приведена про­кладка трубопроводов на железобетонных мачтах (рис. 4.4).

Рис. 4.4. Прокладка трубопроводов на железобетонных мачтах:

1 - колонна; 2 - ригель; 3 - связь; 4 - фундамент; 5 - соединительный стык; 6 - бетонная подготовка.

Два трубопровода (прямой и обратный) диаметром 1200 мм уложены на катковых опорах по железобетонным мачтам, устано­вленным через каждые 20 м. Высота мачт от поверхности земли 5,5 - 6м. Сборные желе­зобетонные мачты состоят из двух фунда­ментов, связанных между собой монолит­ным стыком, двух колонн прямоугольного сечения 400 х 600 мм и ригеля. Колонны связаны между собой металлическими диаго­нальными связями из угловой стали. Соеди­нение связей с колоннами выполнено косын­ками, приваренными к закладным деталям, которые заделаны в колоннах. Ригель, слу­жащий опорой для трубопроводов, выполнен в виде прямоугольной балки сечением 600 х 370 мм и крепится к колоннам путем сварки закладных стальных листов.

Мачта рассчитана на вес пролета труб, горизонтальные осевые и боковые усилия, возникающие от трения трубопроводов на катковых опорах, а также на ветровую на­грузку.

Рис. 4.5. Неподвижная опора:

1 - колонна; 2 - ригель поперечный; 3 - ригель продольный; 4 - связь поперечная; 5 - связь про­дольная; 6 - фундамент

Рис.4.5Неподвижная опора (рис. 4.5), рассчи­танная на горизонтальное усилие от двух труб 300 кН, выполнена из сборных железо­бетонных деталей: четырех колонн, двух продольных ригелей, одного поперечного опорного ригеля и четырех фундаментов, со­единенных попарно.

В продольном и поперечном направле­ниях колонны связаны металлическими диа­гональными связями, выполненными из уголковой стали. На опорах трубопроводы закрепляются хомутами, охватывающими трубы, и косынками в нижней части труб, ко­торые упираются в металлическую раму из швеллеров. Эта рама прикрепляется к железобетонным ригелям приваркой к закладным деталям.

Прокладка трубопроводов на низких опорах нашла широкое применение при строительстве тепловых сетей на неспланированной территории районов новой за­стройки городов. Переход пересеченной или заболоченной местности, а также мелких рек целесообразнее осуществлять таким спосо­бом с использованием несущей способности труб.

Однако при проектировании тепловых сетей с прокладкой трубопроводов на низких опорах необходимо учитывать срок намечен­ного освоения территории, занятой трассой, под городскую застройку. Если через 10 - 15 лет потребуется заключение трубопрово­дов в подземные каналы или реконструкция тепловой сети, то применение воздушной прокладки является нецелесообразным. Для обоснования применения способа прокладки трубопроводов на низких опорах должны быть выполнены технико-экономические рас­четы.

При надземной прокладке трубопрово­дов больших диаметров (800-1400 мм) це­лесообразной является их прокладка на от­дельно стоящих мачтах и опорах с примене­нием специальных сборных железобетонных конструкций заводского изготовления, отве­чающих конкретным гидрогеологическим ус­ловиям трассы тепломагистрали.

Опыт проектирования показывает эко­номичность применения свайных оснований под фундаменты как анкерных, так и проме­жуточных мачт и низких опор.

Надземные тепломагистрали большого диаметра (1200-1400 мм) значительной про­тяженности (5 - 10 км) построены по индиви­дуальным проектам с применением высоких и низких опор на свайном основании.

Имеется опыт строительства тепломагистрали с диаметрами труб D у = 1000 мм от ТЭЦ с применением свай-стоек на заболоченных участках трассы, где на глубине 4-6 м залегают скальные грунты.

Расчет опор на свайном основании на совместное действие вертикальных и гори­зонтальных нагрузок выполняется в соответ­ствии со СНиП II-17-77 «Свайные фун­даменты».

При проектировании низких и высоких опор для прокладки трубопроводов могут быть использованы конструкции унифициро­ванных сборных железобетонных отдельно стоящих опор, разработанных под техноло­гические трубопроводы [ 3 ].

Проект низких опор по типу «качаю­щихся» фундаментов, состоящих из железо­бетонного вертикального щита, устанавли­ваемого на плоскую фундаментную плиту, разработан АтомТЭП. Эти опоры могут применяться в различных грунтовых усло­виях (за исключением сильно обводненных и просадочных грунтов).

Одним из наиболее распространенных видов воздушной прокладки трубопроводов является прокладка последних на кронштей­нах, укрепляемых в стенах зданий. Примене­ние этого способа может быть рекомендова­но при прокладке тепловых сетей на терри­тории промышленных предприятий.

При проектировании трубопроводов, располагаемых по наружной или внутренней поверхности стен, следует выбирать такое размещение труб, чтобы они не закрывали оконных проемов, не мешали размещению других трубопроводов, оборудования и пр. Наиболее важным является обеспечение на­дежного закрепления кронштейнов в стенах существующих зданий. Проектирование про­кладки трубопроводов по стенам существую­щих зданий должно включать обследование стен в натуре и изучение проектов, по ко­торым они построены. При значительных нагрузках, передаваемых трубопроводами на кронштейны, необходимо производить рас­чет общей устойчивости конструкций здания.

Трубопроводы укладываются на крон­штейны с приваренными корпусами скользя­щих опор. Применение катковых подвижных опор при наружной прокладке трубопрово­дов не рекомендуется из-за трудности их пе­риодической смазки и очистки в период эксплуатации (без чего они будут работать как скользящие).

В случае недостаточной надежности стен здания должны быть осуществлены кон­структивные мероприятия по рассредоточе­нию усилий, передаваемых кронштейнами, путем уменьшения пролетов, устройства подкосов, вертикальных стоек и др. Крон­штейны, устанавливаемые в местах устройства неподвижных опор трубопроводов, дол­жны выполняться по расчету на действую­щие на них усилия. Обычно они требуют дополнительного крепления путем устрой­ства подкосов в горизонтальной и верти­кальной плоскостях. На рис. 4.6 приведена типовая конструкция кронштейнов для про­кладки одного или двух трубопроводов диаметром от 50 до 300 мм.

Рис.4.6

Рис. 4.6. Прокладка трубопроводов на кронштейнах:

а - для одной трубы; б - для двух труб

Фридман Я.Х. - старший научный сотрудник,

издательство «Новости теплоснабжения».

Одними из важнейших конструкционных элементов тепловых сетей, которые обеспечивают эксплуатационную надежность, являются неподвижные опоры. Они служат для разделения теплопроводов на участки, независимые друг от друга в восприятии различного вида усилий. Обычно неподвижные опоры размещаются между компенсаторами или участками трубопроводов с естественной компенсацией температурных удлинений. Они фиксируют положение теплопровода в определенных точках и воспринимают усилия, возникающие в местах фиксации под действием силовых факторов от температурных деформаций и внутреннего давления. Благодаря этой своей функции они еще называются «мертвыми».

В данной работе высказывается ряд соображений касательно усилий и вызванных ими напряжений, возникающих в неподвижных опорах.

Усилия, воспринимаемые неподвижными опорами, складываются из:

1) неуравновешенных сил внутреннего давления;

2) реакции подвижных (свободных) опор;

3) реакции компенсаторов от силовых факторов, вызванных температурными деформациями;

4) гравитационных нагрузок.

Неподвижные опоры бывают следующих конструкционных исполнений: лобовые, щитовые и хомутовые.

Согласно статистике отказов в камерах на дефекты от наружной коррозии труб приходится 80-85%. Это количество дефектов примерно распределено согласно прилагаемой таблице из . Это согласуется и с нашими наблюдениями, где на повреждения, относящиеся к неподвижным опорам, приходится около 50% от числа повреждений в камерах, имеющих неподвижные опоры.

Причины коррозии неподвижных опор.

Неподвижные опоры подвергаются различным видам коррозии, которые вызваны следующими причинами:

1) влияние блуждающих токов в щитовых опорах из-за отсутствия надежных электроизоляционных вставок

2) возникновение капели с перекрытий из-за конденсации влаги приводит к усиленной коррозии наружной поверхности труб

3) приварка косынок создает предпосылки для интенсификации процессов внутренней коррозии в местах расположения сварных швов и околошовной зоны.

4) одновременное воздействие переменных циклических напряжений и коррозионной среды вызывают понижение коррозионной стойкости и предела выносливости металла.

Методика прочностного расчета неподвижных опор.

Согласно СНиП 2.04.07-86 «Тепловые сети» c.39 п.7: «Неподвижные опоры труб должны рассчитываться на наибольшую горизонтальную нагрузку при различных режимах работы трубопроводов, в том числе при открытых и закрытых задвижках».

В настоящее время неподвижные опоры подбираются по альбомам «Нормали тепловых сетей. НТС-62-91-35. НТС-62-91-36. НТС-62-91-37», выпущенным институтом «Мосинжпроект». По этим нормалям для каждой величины Ду приводится максимальная осевая сила, величину которой не должна превосходить результирующая сила от действующих осевых сил как слева так и справа. На самом деле на опору кроме осевой действуют еще две перерезывающие силы, а также крутящий и два изгибающих момента. В наиболее общем случае на опору действуют все виды нормальных и касательных напряжений т.е. имеет место сложнонапряженное состояние.

При прочностном расчете оказывается, что запасы прочности в сечениях теплопровода, проходящих через неподвижные и подвижные опоры, принимают наименьшие значения по длине теплопровода, т.е. это наиболее нагруженные сечения. В нормативной документации не существует никаких рекомендаций по запасам прочности расчетных точек сечений теплопроводов относительно допускаемого временного сопротивления и допускаемого напряжения текучести.

Предлагается следующий порядок прочностного расчета неподвижных опор:

1) Прочностной расчет участков теплопровода, находящихся от рассматриваемой опоры как с левой таки с правой стороны. В результате определяются 3 силовые и 3 моментные нагрузки, действующие на неподвижную опору со стороны правого теплопровода (P1x, P1y, P1z, M1x,M1y, M1z.) и левого теплопровода(P2x, P2y, P2z, M2x, M2y, M2z.) (рис. 2 и 3).

2) Решение системы уравнений относительно 6 результирующих неизвестных: Px, Py, Pz, Mx, My, Mz,где:

Px, Py - поперечные силы, паралельные
соответственно осям OX и OY

Pz - продольная сила, направленная сила вдоль оси OZ

Мх и My - изгибающие моменты, вектора моментов которых направлены соответственно по осям OX и OY

Mz - крутящий момент, вектор момента которого направлен вдоль оси OZ.

3) В каждой расчетной точке вычисляются 6 напряжений (по 6-тисиловым факторам из п.3), характеризующих напряженное состояние:

3 нормальных напряжения: ах, ау, az и 3 касательных напряжения: тху, xxz, xyz.

4) Выбор коэффициента прочности сварного шва.

Наиболее слабым местом стальных трубопроводов, по которому следует вести проверку напряжений, являются сварные швы. ф - коэффициент прочности сварного шва (ф = 0,7 ... 0,9)

4.1 По маркам сталей из которых изготовлены неподвижная опора и теплопровод выбирается та сталь напряжения текучести (at) и временного сопротивления (ав), которой являются меньшими. Расчетные at и ав берутся при t = 150 ОC.

4.2 Определение допустимых расчетных напряжений относительно напряжений текучести и временного сопротивления: = ф xat; [ав] = ф х ав

5) По 6 напряжениям (ax, ay, az,тху, xxz, xyz) особым образом выбираются новые оси координат OX 1 ,OY1 и OZ1 так, чтобы 3 касательныхнапряжения приняли нулевые значения (существует только один возможный вариант направления осей).

В итоге получаем только 3 нормальных напряжения: al, a2 и a3, причем al > а2 > аЗ.

На основании 3-ей и 4-ой теорий прочности (в машиностроении и статической прочности металлоизделий применяют 3-ью и 4-ую теории прочности) получаем коэффициенты запаса относительно допускаемых напряжений текучести и коэффициентов запаса по допускаемому временному сопротивлению сварных швов.

по текучести [m]= 2 ... 2.2; по временному сопротивлению [n] = 4... 4.5.

Такой высокий запас по текучести обеспечит уменьшение вероятности появления отказов, связанных с усталостью металла, из-за термических напряжений возникающих при регулировании температуры воды в отопительный период.

Разработана компьютерная программа TENZOR 11.ЕКА, опирающаяся на ряд положений из и позволяющая выполнить п.п. 1...6.

В подавляющем большинстве случаев неподвижные опоры являются узлами, на которые приходятся самые большие нагрузки. Это происходит из-за плохой работы подвижных опор, вызванной увеличенным коэффициентом трения скольжения (до 0,4) и их увеличенной просадочности. При наружной и внутренней
коррозии в неподвижных опорах происходит перераспределение напряжений, что приводит к их повышенной повреждаемости.

При ремонтах лучше не разрушать всю неподвижную опору и не вырезать старую трубу, а использовать своеобразную вставку. На рис. 1 показан один из применяемых вариантов подхода при производстве ремонта щитовой неподвижной опоры. После выполнения обрезки трубопровода, внутрь тела трубы опоры 1 вставляется и приваривается предварительно разрезанная вдоль образующей труба усиления 2. Для этой вставки берется заготовка из той же самой трубы. Это позволит, как довести запасы прочности соответственно рекомендациям п. 6, так и уменьшить объемы ремонтных работ.

При наличии неподвижной опоры промышленного изготовления, для повышения ее долговечности и надежности во время эксплуатации возможно проведение усиления такой опоры, которое проводится точно таким же образом.

Для защиты трубы и неподвижной опоры от коррозии и как один из наиболее простых методов по обеспечению надежности работы опор можно предложить увеличение толщины стенки трубы в опоре. При этом, толщина стенки трубы s подбирается так, чтобы ее величина при прочностном расчете соответствовала рекомендуемым величинам запаса прочности п.6.

В хомутовых неподвижных опорах кроме расчета теплопровода рассчитывается также и толщина стержня хомута на напряжения растяжения, с учетом рекомендаций п.6.

Практический пример.

Рассмотрим практический пример расчета неподвижной опоры.

Данные для расчета:

Ду = 200 (0 219X6), длина участка 209 м.

1 = 8 м - расстояние между подвижными опорами

р = 10 ати = 10,2 МПа - давление воды (избыточное)

t1 = 10 ОC - монтажная температура

t 2 = 130 ОC - максимальная температура воды

а = 12x10 6 град " - коэффициент линейного расширения стали.

По марке стали (сталь 20 при t=150ОC)

at = 165 МПа - напряжение текучести ав = 340 МПа - временное сопротивление

Е = 2.1ХЮ 6 кг/см 2 = 2.14ХЮ 5 мПа - модуль упругости 2-го рода

ц = 0,3 - коэффициент Пуассона

ф = 0,8 - коэффициент ослабления металла сварного шва.

Определение расчетных напряжений относительно допускаемых напряжений текучести и временного сопротивления

Q>xat = 132 МПа = 1346 кг/см 2 - допускаемое напряжение текучести

[ав] = фХав = 272 МПа =2775 кг/см 2 - допускаемое напряжение для временного сопротивления.

Выполняя п. 1...3 для схемы (рис. 2) и рассмотрев систему уравнений равновесия п.2 получаем на рис. 3 следующие результирующие усилия действующие на опору A:

Рх = 4.5 кН; Py = 11.2 кН; Pz = 9.5 кН;

Мх = 5.2 кНХм; My = 4.1 кНХм; Mz = 0. кНХм.

Выполняя п.п. 4... 6 получаем следующие запасы прочности относительно допускаемых напряжений текучести и временного сопротивления соответственно по 3-ей и 4-ой теориям прочности:

пЗ = 4.3; n4 = 3.1

тЗ = 2.43; m4 = 1.67.

Данные системы не удовлетворяют п.6, поэтому требуется взять из сортимента трубопроводов трубу с тем же внутренним диаметром, но большей толщиной стенки (s = 7).

В случае невозможности реализации такого варианта, можно изменить конструкции щитовых и лобовых опор, введя трубу усиления поз.2 так, как это показано на рис.1.

Выводы. В заключении отметим, что прочностной расчет неподвижных опор и анализ статистических данных повреждений позволяет сделать следующие выводы:

1. При проектировании Тепловых сетей для повышения надежности неподвижной опоры необходимо выполнять прочностные расчеты участков теплотрассы, располагающихся с обеих сторон от этой опоры, что позволит определить результирующие усилия, действующие на опору.

2. Прочностные расчеты участков теплопровода требуется проводить как для режима эксплуатации, так и для режима опрессовки. Необходимо проводить прочностной расчет по допускаемым напряжениям для всех участков теплопровода с учетом ослабления металла сварного шва.

3. Для малых диаметров для упрощения процедуры проектирования необходимо применять трубу как минимум в 2 раза большей толщины стенки, чем на основном трубопроводе.

4. В связи с высокой частой отказов неподвижных опор требуется усилить конструкции узлов этих опор так, чтобы величина запаса прочности относительно допускаемого напряжения текучести была не менее [m]= 2 ... 2.2 , а значения запасов прочности по допускаемому временному сопротивлению должны быть не меньше [n] = 4... 4.5.

5. Все металлические конструкции должны быть надежно защищены.

6. При проектировании следует обязательно предусматривать двусторонний доступ к неподвижной опоре для возможности ее осмотра, полного восстановления антикоррозионного покрытия и герметизации кольцевого зазора.

Литература

1. Л.В.Родичев. Статистический анализ процесса коррозионного старения те-

плопроводов.

СТРОИТЕЛЬСТВО ТРУБОПРОВОДОВ. № 9, 1994 г.

2. А.П.Сафонов. Сборник задач по теплофикации и тепловым сетям. М.: Энерго-издат, 1980.

В данном разделе нашего сайта вы найдете информацию о классификации опор тепловых сетей , а так же об основных параметрах (размере и весе), предъявляемых требованиях, комплектности, сроках изготовления продукции.

Виды опор для тепловых сетей ТС.

В двух выпусках 7-95 и 8-95 данной серии представлены как скользящие, так и неподвижные опоры для труб тепловых сетей. Все опоры тепловых сетей имеют конструкционные отличия в зависимости от толщины изоляции трубопровода. На участках бесканальной прокладки трубопроводов подвижные опоры не устанавливают, кроме тех которые применяются для труб менее D y = 175 включительно. Скользящие опоры применяют при прокладке труб в непроходных или полупроходных каналах и для нижнего ряда труб в тоннелях. Расстояние между опорами рассчитывается проектировщиком, согласно действующим нормативным документам.

При строительстве теплосети возводят следующие сооружения: колодцы, камеры и павильоны над камерами для установки запорно - измерительной арматуры, компенсирующих устройств и прочего линейного оборудования. Осуществляют постройку фильтрующих дренажных сооружений, насосных станций, устанавливают ограждающие теплопровод конструкции, неподвижные и подвижные опоры (иногда еще и направляющие), опорные камни.

Применение с строительстве.

Основание каналов для прокладки трубопроводов и размещения в них опор делают двух видов - бетонное или железобетонное, которые в свою очередь могут быть либо сборными либо монолитными. Бетонные и железобетонные каналы создают очень надежные основания для размещения строительных конструкций и предохраняют канал от проникновения в него грунтовых вод. Бетонное или железобетонное основание выполняют важнейшую роль - воспринимают вес строительных конструкций и грунта над каналом, нагрузки от транспорта, вес трубопровода с изоляцией и теплоносителем, рассредоточивает давление и тем самым снижается возможность осадки строительных конструкций в местах сосредоточенных нагрузок: под опорными камнями и под стенами канала.

Паровые системы теплоснабжения бывают однотрубными и двухтрубными, а образующийся при работе конденсат возвращается по специальной трубе - конденсатопроводу. При начальном давлении, которое составляет от 0,6 до 0,7 МПа, а иногда и от 1,3 до 1,6 МПа, скорость распространения пара - 30…40 м/с. При выборе способа прокладки теплопроводов главной задачей является обеспечение долговечности, надежности и экономичности решения.

Сами тепловые сети монтируют из стальных электросварных труб, расположенных на специальных опорах. На трубах устраивают запорную и регулирующую арматуры (задвижки, вентили). Опоры трубопроводов создают горизонтальное незыблемое основание. Интервал между опорами определяют при проектировании.

Опоры тепловых сетей подразделяют на неподвижные и подвижные. Неподвижные опоры фиксируют расположение конкретных мест сетей в определенной позиции, не допускают никаких смещений. Подвижные опоры допускают перемещение трубопровода по горизонтали вследствие температурных деформаций.

Опоры поставляются комплектно согласно рабочим чертежам, разработанным в установленном порядке. Мы гарантируем соответствие опор и подвесок требованию соответствующего стандарта при соблюдении потребителем правил монтажа и хранения (в соответствии с настоящим стандартом). Гарантийный срок эксплуатации - 12 месяцев со дня поставки изделия заказчику. На все опоры предоставляется паспорт качества и сертификаты на используемые для изготовления материалы (по запросу).