Определение расчетных минимальных расходов при отсутствии или недостаточности гидрометрических наблюдений. Системы внутреннего холодного и горячего водоснабжения Расчетный минимальный часовой расход воды определение

Процесс формирования минимального стока на больших, средних и малых реках имеет ряд особенностей, поэтому и способы определения расчетных минимальных расходов для малых рек отличаются от расчета больших и средних.

К большим, средним и малым относят реки с площадью водосбора соответственно более 75000 км 2 , от 75000 до 10000 и менее 10000 км 2 .

Расчетные минимальные расходы воды (м 3 /с):

Q p =Q 80% ʎ p , (123)

где Q 80% - минимальный 30-суточный (среднемесячный) расход (м 3 /с) ежегодной вероятностью превышения р=80%; ʎ р - переходный коэффициент от минимального расхода обеспеченностью 80% к расходу другой обеспеченности; определяют по таблице, приведенной в СП 33-101-2003.

Для больших и средних рек минимальный 30- суточный расход (м 3 /с):

Q 80% = 10 -3 q 80% F,(124)

где q 80% - минимальный 30- суточный модуль стока ежегодной вероятностью превышения 80%, л/(с км 2);F- площадь водосбора, км 2 .

Минимальный 30-суточный модуль стока воды обеспеченности 80% за летне-осенний и зимний периоды находят по рекам – аналогам или по картам СП 33-101-2003 для центра тяжести расчетного бассейна путем интерполяции между изолиниями стока.

Для малых рек с площадью водосбора меньшей, чем указано в таблице 17. 4. 1, но не менее 20 км 2 для увлажненных районов и 50 км 2 для районов недостаточного увлажнения минимальный 30- суточный расход 80% обеспеченности определяют по эмпирической формуле (м 3 /с):

Q 80%= 10 -3 a (F + f 0) n (125)

где а, f 0 , n - параметры, определяемые в зависимости от географических районов по таблице СП 33-101-2003; F - площадь водосбора реки, км 2 .

Таблица 7. Наибольшие площади (км 2) водосбора малых рек

Районы по картам СП 33-101-2003 Летне- осенний период Зимний период Районы по картам СП 33-101-2003 Летне- осенний период Зимний период
А Г
Б Д
В Е

Вопросы для самоконтроля

1. Определение расчетных минимальных расходов воды при наличии гидрометрических данных.

2. Определение расчетных минимальных расходов воды при отсутствии гидрометрических данных.

Список литературы

Основная

1. Михайлов, В. Н.

2. Бондаренко, Ю. В.

Дополнительная

1. СП 11-103-97.

2. СП 33-101-2003.

3. ГОСТ 19179-73

4. Бондаренко, Ю. В.

5. Базы данных, информационно-справочные и поисковые системы:

http://еlibrary.sgau.ru/ ;

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Кожемяченко, И. В. Гидрометрия. [Текст]: учеб. пособие / И. В. Кожемяченко, Ю. В. Бондаренко, О. В. Гуцол, О. Н. Жихарева. - ФГОУ ВПО «Саратовский ГАУ»; Саратов, 2010. – 160 с. - ISBN978-5-7011-0603-9.

2. Кожемяченко, И. В. Гидрометрия. [Текст]: метод. пособие по проведению лабораторных работ/ И. В. Кожемяченко, С. В. Желудкова. - ФГОУ ВПО «Саратовский ГАУ»; Саратов, 2009. – 61 с.

3. Захаровская, Н. Н. Метеорология и климатология [Текст] / Н. Н. Захаровская, В. В. Ильинич. – М.: Колос, 2005. - 127 с. - ISBN5-9532-0136-2.

4. Бондаренко, Ю. В. Климатология, метеорология и гидрология. [Текст]: учеб. пособие / Бондаренко Ю. В., Афонин В. В., Желудкова С. В. - ФГОУ ВПО «Саратовский ГАУ»; Саратов, 2010 – 183 с.

5. Михайлов, В. Н. Гидрология. [Текст]: учеб. для вузов / В. Н. Михайлов, А. Д. Добровольский, С. А. Добролюбов. – 3-е изд., стер. – М.: Высш. шк., 2008. – 463 с. - ISBN978-5-06-005815-4.

6. Желудкова, С. В. Метеорология и климатология. [Текст]: метод. указания к расчетно-графическим работам./ С. В. Желудкова, Д. С. Майорова. - ФГОУ ВПО «Саратовский ГАУ»; Саратов, 2010. – 68 с.

7. Бондаренко, Ю. В. Метеорологические наблюдения (Организация, производство, анализ). [Текст]: учеб. пособие / Бондаренко Ю. В., Желудкова С. В., Левицкая Н. Г., Киселева Ю. Ю. – Саратов.: Издательский центр «Наука», 2012. – 61 с.

8. Бондаренко, Ю. В. Методы полевых гидрологических и метеорологических исследований. [Текст]: учеб. пособие / Ю. В. Бондаренко. – 2-е изд. доп. и исп. – Саратов.: Издательский центр «Наука», 2011. – 202 с. - ISBN 978-5-9999-0885-8.

9. Левицкая Н. Г. Основы агрометеорологии. [Текст]: учеб. пособие. / Н. Г. Левицкая, Ю. В. Бондаренко. – Саратов.: Саратовский источник, 2012. – 150 с.- ISBN978-5-91879-163-9.

10. СНиП 23-01-99. Строительная климатология [Текст]. – М.: Госстрой РФ, 1999.

11. СП 11-103-97. Инженерно-гидрометеорологические изыскания для строительства [Текст]. – М.: Госстрой РФ, 1997 г.

12. СП 33-101-2003. Определение основных гидрологических характеристик [Текст]. – М.: Госстрой РФ, 2004 г.

13. ГОСТ 19179-73 . Гидрология суши. Термины и определения [Текст]. – М.: Госстандарт СССР, 1988 г.

14. Хромов, С. П. Метеорология и климатология [Текст] / Хромов С. П., Петросянц М. А. – 6-е изд., перераб. и доп. - М.: МГУ, 2004. - 582 с. - ISBN 5-211-04847-4. - ISBN 5-9532-0267-9.

15. Базы данных, информационно-справочные и поисковые системы:

Электронная библиотека СГАУ - http://library.sgau.ru;

Научная электронная библиотека - http://еlibrary.sgau.ru/ ;

Электронные данные Росгидромета: http://meteorf.ru;

Электронные данные Государственного гидрологического института - http://www.hydrology.ru.

Введение …………………………………………………………………………………….
Лекция 1. Предмет, цели и задачи курса «Климатология и метеорология» …...…………..
1. 1. Предмет и задачи курса «Климатология и метеорология» ……………………..…..
1. 2. Состав и строение атмосферы ………………………………………………………..
Лекция 2. Радиационный режим атмосферы ….………………………………………
2. 1. Солнечная радиация и радиационный баланс земной поверхности ……………….
2. 2. Тепловой режим атмосферы ………………………………………………………….
2. 3. Характеристики влажности воздуха. Осадки и снежный покров ………………….
Лекция 3. Общая циркуляция атмосферы. Прогноз погоды ………………………..
3. 1. Атмосферное давление. Циклоны и антициклоны ………………………………….
3. 2. Ветер и воздушные течения в атмосфере ……………………………………………
3. 3. Воздушные массы атмосферные фронты ……………………………………………
3. 4. Прогноз погоды ………………………………………………………………………..
3. 5. Опасные явления погоды ……………………………………………………………..
Лекция 4. Климат и факторы его формирования …………………………………….
4. 1. Основные факторы климатообразования ……………………………………………
4. 2. Понятие макро-, мезо- и микрорельефа ……………………………...………………
4. 3. Классификация климатов ……………………………………………………………..
4. 4. Климатические пояса Земного шара и России ………………………………………
4. 5. Антропогенное влияние на климат …………………………………………………..
Лекция 5. Предмет и задачи курса «Гидрология» …………………………………….
5. 1. Предмет гидрологии. Значение гидрологии для экономики страны. Связь с другими науками ……………………………………………………………………………
5. 1. 1. Предмет гидрологии …………………………………………………......................
5. 1. 2. Значение гидрологии для экономики страны …………………………………….
5. 1. 3. Связь гидрологии с другими науками …...………………………………………..
5. 2. Краткие исторические сведения о развитии гидрологии …………………………..
5. 3. Тепловой и водный балансы ………………………………………………………….
5. 3. 1. Водные ресурсы Земли ……………………………………………………………..
5. 3. 2. Круговорот воды в природе ………………………………………………………..
5. 3. 3. Тепловой и водный балансы ……………………………………………………….
5. 4. Гидрологический режим и его характеристики ……………………………………..
Лекция 6. Речная система ……………...………………………………………………...
6. 1. Речная система и ее гидрографические характеристики ….………………………..
6. 2. Водосбор и бассейн реки …………………………….……………………………….
6. 3. Долина и русло реки …………………………………………………………………..
6. 4. Продольный профиль реки ……………………………………………….....………..
6. 5. Поперечный профиль реки. Поперечная циркуляция ……………………………....
Лекция 7. Организация и методы гидрометрических изысканий …..……………...
7. 1. Предмет и задачи гидрометрии ………………….…………………………………...
7. 2 Организация и методы гидрологических исследований …..………………………...
7. 3. Наблюдения за уровнями воды ………………………………...…………………….
7. 4. Измерение глубин ……………………………………………………………………..
Лекция 8. Скорость течения воды...…………………………………………………….
8. 1. Измерение скоростей течения воды …..……………………………………………...
8. 2. Измерение расходов воды ……………………………………...……………………..
8. 3. Определение зависимости между расходами и уровнями воды …………………...
8. 4. Измерение расходов воды на гидромелиоративных системах ……………………..
Лекция 9. Водная эрозия, речные наносы, русловые процессы ………...…………..
9. 1. Водная эрозия ……………………………………………………………………….....
9. 2. Речные наносы: виды, порядок расчета …………………...…………………………
9. 3. Русловые процессы ……………………………………………………………………
Лекция 10. Генетические и стохастические методы. Их применение в гидрологических расчетах ……………………………………………………………….
10. 1 Общие сведения о гидрологических расчетах ……………………………………...
10. 2. Норма годового стока ………………………………………………………………..
10. 3. Вычисление нормы годового стока при наличии гидрометрических данных.......
10. 4. Вычисление нормы годового стока при недостаточности гидрометрических данных.....................................................................................................................................
10. 5. Вычисление нормы годового стока при отсутствии гидрометрических данных...................................................................................................................................................
Лекция 11. Эмпирические и аналитические кривые обеспеченности ……………..
11. 1. Использование методов теории вероятности и математической статистики ……
11. 2. Изменчивость годового стока ……………………………………………………….
11. 3. Обеспеченность гидрологической характеристики ………………………………..
11. 4. Кривые распределения. Кривые обеспеченности ………………………………….
Лекция 12. Параметры аналитических кривых распределения (обеспеченности) ………………………………………………………………………………………………...
12. 1. Аналитические кривые обеспеченности ……………………………………………
12. 2. Определение параметров аналитических кривых обеспеченности стока ………..
Лекция 13. Внутригодовое распределение стока ……………………………………...
13. 1. Общие сведения ……………………………………………………………………...
13. 2. Расчет внутригодового распределения стока при наличии данных гидрометрических наблюдений …………………………………………………………....
Лекция 14. Методы расчета внутригодового распределения стока ………………..
14. 1. Метод реального года ………………………………………………………………..
14. 2. Построение кривой обеспеченности суточных расходов воды …………………...
14. 3. Расчет внутригодового распределения стока при отсутствии или недостаточности данных гидрометрических наблюдений ………………………………
Лекция 15. Максимальный сток рек …………………………………………………...
15. 1. Общие сведения ……………………………………………………………………...
15. 2. Особенности формирования максимального стока ………………………………..
Лекция 16. Расчетные максимальные расходы воды...……………………………...
16. 1. Расчет максимального расхода воды при наличии данных гидрометрических наблюдений …………………………………………………………………………………
Лекция 17. Определение максимальных расходов талых вод при недостаточности или отсутствии данных наблюдений ………………………………
17. 1. Расчет максимальных расходов талых вод при отсутствии данных гидрометрических наблюдений ……………………………………………………………
17. 2. Расчет максимальных расходов дождевых паводков при отсутствии данных гидрометрических наблюдений ……………………………………………………………
17. 3. Расчетные гидрографы половодья и дождевых паводков ………………………...
Лекция 18. Условия формирования и особенности расчета минимального стока рек …………………………………………………………………………………………...
18. 1. Общие сведения ……………………………………………………………………...
18. 2. Особенности и условия формирования минимального стока …………………….
Лекция 19. Определение расчетных минимальных расходов воды при наличии гидрометрических данных ……………………………………………………………….
19. 1. Определение расчетных минимальных расходов воды при наличии гидрометрических данных …………………………………………………………………
19. 2. Определение расчетных минимальных расходов воды при отсутствии гидрометрических данных …………………………………………………………………
Библиографический список………………………………………………………………
Содержание………………………………………………………………………………….

Здание оборудовано централизованной системой горячего водоснабжения с приготовлением горячей воды в водонагревателе, расположенном в подвале.

Исходные данные:

Количество этажей n эт =8;

Средняя заселенность квартир U=2,5чел./кв.;

Нормы потребления воды:

общая (холодная и горячая), в сутки наибольшего водопотребления
q u tot =300 л/сут;

общая, в час наибольшего водопотребления л/ч;

Холодная
л/ч;

Расход воды прибором:

общий
;

холодной
;

Высота этажа (от пола до пола) 2,9м;

Длины участков :

В - 1 = 2,1 м;

1 – 2 = 0,8 м;

2 – 3 = 1,4 м;

3 – 4 = 0,5 м;

4 – 5 = 2,9 м;

5 – 6 = 2,9 м;

6 – 7 = 2,9 м;

7 – 8 = 2,9 м;

8 – 9 = 2,9 м;

10 – 11 = 2,9 м

11 – 12 = 4,3 м;

12 – 13 = 6,7 м;

13 – 14 = 7,0 м;

14 – 15 = 6,7 м;

15 – 16 = 7,0 м;

16 – 17 = 9,0 м;

Ввод = 17 м;

Разность отметок пола первого этажа и уровня земли в месте присоединения ввода к уличной водопроводной сети () =1,2 м;

Гарантийный напор в городском водопроводе Н=38 м в. ст.

Рис. 1

Решение:

Для определения расходов на каждом расчетном участке рассчитаем вероятность действия приборов. Для участков холодного водопровода вероятность действия приборов:

где
норма расхода холодной воды потребителями в час наибольшего водопотребления;

U – число водопотребителей:

U = un кв n эт ,

здесь u - средняя заселенность квартир, чел./кв;

n кв – число квартир на этаже, равное числу стояков;

q 0 с – нормативный расход холодной воды диктующим водоразборным устройством;

Из выражения получим:

U=2,5∙8∙8=160 чел;

N – число водоразборных приборов в здании:

N = n кв n пр n эт ,

здесь n пр – количество водоразборных приборов в одной квартире.

N=4∙8∙8=256.

Тогда из выражения получим:

Для общих участков величина р tot определяют по формуле

где общая норма расхода воды, л/ч;

общий нормативный расход воды одним прибором, л/с.

Определяем расход воды на каждом участке по формуле:

где q 0 – нормативный расход воды прибором;

α – безразмерный коэффициент, зависящий от количества водоразбор-
ных приборов на данном участке и вероятности их действия.

Пользуясь приложением 1. определяем величину α для каждого расчетного участка по произведению NP и соответствующий ей максимальный расход воды q c или q tot .

Участок 17-18:

N = 256; N Р = 256 ∙ 0,009 = 2.30 => α = 1,563;

q 17-18 = 5 q 0 tot ∙ α = 5 ∙ 0,3 ∙ 1,563 = 2.341 л/с;

Участок 16 – 17:

N = 256; N Р = 256 ∙ 0,009 = 2,3 => α = 1,563;

Q 15-16 = 5 q 0 c ∙ α = 5 ∙ 0,3 ∙ 1.563 = 2,341 л/с;

Участок 15 – 16:

N = 4 ∙ 8 ∙ 8 = 256; N Р = 256 ∙ 0,00486 = 1,244 => α = 1,093;

Q 14-15 = 5 q 0 с ∙α = 5 ∙ 0,2 ∙ 1,093 = 1,093 л/с;

Участок 14 – 15:

N = 4 ∙ 6 ∙ 8 = 192; N Р = 192 ∙ 0,00486 = 0,933 => α = 0,933;

q 13-14 = 5 q 0 с ∙α = 5 ∙ 0,2 ∙ 0,933 = 0,933 л/с;

Участок 13 – 14:

N = 4 ∙ 4 ∙ 8 = 128; N Р = 128 ∙ 0,00486 = 0,622 => α = 0,756;

Q 12-13 = 5 q 0 с ∙α = 5 ∙ 0,2 ∙ 0,756 = 0,756 л/с;

Участок 12 – 13:

N = 4 ∙ 2 ∙ 8 = 64; N Р = 64 ∙ 0,00486 = 0,311 => α = 0,543;

Q 11-12 = 5 q 0 с ∙α = 5 ∙ 0,2 ∙ 0,543 = 0,543 л/с;

Участок 11 – 12:

N = 4 ∙ 1 ∙ 8 = 32; N Р = 32 ∙ 0,00486 = 0,156 => α = 0,406;

Q 10-11 = 5 q 0 с ∙α = 5 ∙ 0,2 ∙ 0,406 = 0,406 л/с;

Участок 10 – 11:

N = 4 ∙ 1 ∙ 7 = 28; N Р = 28 ∙ 0,00486 = 0,136 => α = 0,383;

q 9-10 = 5 q 0 с ∙α = 5 ∙ 0,2 ∙ 0,383 = 0,383 л/с;

Участок 9 – 10:

N = 4 ∙ 1∙ 6 = 24; N Р = 24 ∙ 0,00486 = 0,117 => α = 0,363;

q 8-9 = 5 q 0 с ∙α = 5 ∙ 0,2 ∙ 0,363 = 0,363 л/с;

Участок 8 – 9:

N = 4 ∙ 1 ∙ 5 = 20; N Р = 20 ∙ 0,00486 = 0,097 => α = 0,340;

q 7-8 = 5 q 0 с ∙α = 5 ∙ 0,2 ∙ 0,340 = 0,340 л/с;

Участок 7 – 8:

N = 4 ∙ 1 ∙ 4 = 16; N Р = 16 ∙ 0,00486 = 0,078 => α = 0,315;

q 6-7 = 5 q 0 с ∙α = 5 ∙ 0,2 ∙ 0,315 = 0,315 л/с;

Участок 6 – 7:

N = 4 ∙ 1 ∙ 3 = 12; N Р = 12 ∙ 0,00486 = 0,058 => α = 0,286;

q 5-6 = 5 q 0 с ∙α = 5 ∙ 0,2 ∙ 0,286 = 0,286 л/с;

Участок 5 – 6:

N = 4 ∙ 1 ∙ 2 = 8; N Р = 8 ∙ 0,00486 = 0,039 => α = 0,254;

q 4-5 = 5 q 0 с ∙α = 5 ∙ 0,2 ∙ 0,254 = 0,254 л/с;

Участок 4 – 5, 3 – 4:

N = 4 ∙ 1 ∙ 1 = 4; N Р = 4 ∙ 0,00486 = 0,019 => α = 0,213;

q 4-5 = q 3-4 = 5 q 0 с ∙α = 5 ∙ 0,2 ∙ 0,213 = 0,213 л/с;

Участок 2 – 3:

N = 3; N Р = 3∙0,00486 = 0,015 => α = 0,202;

q 2-3 = 5 q 0 с ∙α = 5 ∙ 0,2 ∙ 0,202 = 0,202 л/с;

Участок 1 – 2:

N = 2; N Р = 2 ∙ 0,00486 = 0,01 => α = 0,200;

q 1-2 = 5 q 0 с ∙α = 5 ∙ 0,2 ∙ 0,2 = 0,2 л/с;

Участок В-1:

N = 1; N Р = 1 ∙ 0,00486 = 0,00486 => α = 0,200;

q В-1 = 5 q 0 с ∙α = 5 ∙ 0,2 ∙ 0,2 = 0,2 л/с.

Определим потери напора по длине каждого расчетного участка по формуле

где l – длина расчетного участка.

h B -1 =360,5∙2,1/1000=0,757м;

h 1-2 =360,5∙0,8/1000=0,288м;

h 2-3 =368,5∙1,4 /1000=0,516м;

h 3-4 =412,5∙0,5/1000=0,206м;

h 4-5 =412,5∙2,9/1000=1,196м;

h 5-6 =114,1∙2,9/1000=0,331м;

h 6-7 =142∙2,9/1000=0,412м

h 7-8 =170,4∙2,9/1000=0,494м;

h 8-9 =196,1∙2,9/1000=0,569м;

h 9-10 =221,8∙2,9/1000=0,643м;

h 10-11 =245,5∙2,9/1000=0,712м;

h 11-12 =274,1∙4,3/1000=1,179;

h 12-13 =129,5∙6,7/1000=0,868;

h 13-14 =55,7∙7/1000=0,390м;

h 14-15 =82,3∙6,7/1000=0,551м;

h 15-16 =110,6∙7/1000=0,774м;

h 16-17 =61,6∙9/1000=0,554м;

h вв =61,6∙17/1000=1,047м.

Весь расчет внутреннего водопровода сводят в расчетную таблицу

Гидравлический расчет внутреннего водопровода

Номер расчетного
участка

Количество водоразборных приборов на данном участке, N , шт.

NP

α

Расчетный расход на участке q , л/с

Диаметр трубопровода d , мм

Длина расчетного участка l , м

Скорость движения воды V , м/с

Гидравлический уклон i

Потеря напора по длине участка h l , м

Сумма потерь напора по длине

7,024 м

h вв =0,306 м

После определения расчетных расходов следует выбрать водомер. Для этого необходимо посчитать расчетные расходы воды: максимальный суточный, средний часовой и максимальный часовой.

Максимальный суточный расход воды (м 3 /сут) на нужды холодного и горячего водоснабжения определяют по формуле

где q u t о t - общая норма расхода воды потребителем в сутки наибольшего водопотребления, л;

U – число водопотребителей.

Средний часовой расход воды
, м
3 /ч, за сутки максимального водопотребления

Максимальный часовой расход воды , м 3 /ч, на нужды холодного и горячего водоснабжения:

где
- общий расход воды, л/ч, санитарно-техническим прибором;

- коэффициент, определяемый по прил. 1 в зависимости от значения произведения NP hr (N – общее число санитарно – технических приборов, обслуживаемых проектируемой системой, P hr – вероятность их использования).

Вероятность использования санитарно – технических приборов для системы в целом определяют по формуле

NP hr =256∙0,032=8,192;

По приложению 1 α hr =3,582;

По приложению 4 выбираем скоростной водомер с диаметром условного прохода 40мм (гидравлическое сопротивление счетчика s=0,51).

После выбора водомера следует определить потерю напора в нем. Потерю напора в водомере h вод , м, определяют по формуле

h вод = sq 2 =0,51∙1,49 2 =1,13 м,

где q – расход воды протекающей через водомер, л/с.

Определяем величину напора, требуемого для подачи нормативного расхода воды к диктующему водоразборному устройству при наибольшем хозяйственно-питьевом водопотреблении с учетом потерь напора на преодоление сопротивлений по пути движения воды.

где Н г – геометрическая высота подачи воды от точки присоединения ввода к наружной сети до диктующего водоразборного устройства:

где Н эт – высота этажа;

n эт – количество этажей;

l в-1 – длина первого расчетного участка (высота расположения диктующей расчетной точки над уровнем пола);

h вв – потеря напора во вводе;

h вод - потеря напора в водомере;

Сумма потерь напора по длине расчетных участков;

1,3 – коэффициент, учитывающий потери напора в местных сопротивлениях, которые для сетей хозяйственно-питьевого водопровода жилых и общественных зданий берутся в размере 30% от потерь напора по длине;

Н р – рабочий нормативный напор у диктующего водоразборного устройства (для ванны со смесителем Н р =3 м).

Н г =2,9(8-1)+1,2+2,1=23,6 м;

Н тр =23,6+0,306+1,13+1,3∙7,024+3=3,167 м.

Н тр =37,167 м < Н г =38 м, следовательно, повысительная насосная установка не требуется.

Задача № 2

Определить максимальный расчетный расход холодной воды q c , л/с, в системе хозяйственно-питьевого водопровода промышленного предприятия, в едином блоке, которого имеются:

а) цех с тепловыделениями менее 84 кДж на 1 м 3 /ч;

б) бытовые помещения с групповыми душевыми;

в) столовая с полным циклом приготовления блюд.

В здании имеется централизованная система горячего водоснабжения.

Нормы расхода холодной воды различными потребителями приведены в табл.2.

Исходные данные:

Решение:

Определим вероятности действия приборов в каждой группе водопотребителей: Р с I , P c II , P c III . Для II группы потребителей (сетки душевые) примем P c II =1 , т. к. все душевые установки могут быть включены одновременно после окончания смены в цехе. Величины Р с I и P c III определяем по формуле

где
- норма расхода воды в час наибольшего водопотребления потребителем группы i (принять по табл. 2);

U i - количество потребителей в группе i (исходные данные);

- секундный расход холодной воды, л/с, водоразборной арматурой для каждой группы водопотребителей (принять по табл. 2);

N i – количество водоразборных приборов, обслуживающих группу водопотребителей.

;

Определим средневзвешенное значение секундного расхода холодной воды водоразборной арматурой, отнесенного к одному прибору, определяемое по формуле

Определим коэффициент α по прил. 1, с зависимости от общего числа приборов N и вероятности их действия
(
определяемой по формуле)

N =53+40+14=107;

NP =107∙0,4=42,8 => α=12,6.

Определим максимальный расчетный расход холодной воды по формуле

q c = 5 q c o α = 5 ∙ 0,1385 ∙ 12,6 = 8,73 л/с.

Ответ: q c = 8,73 л/с.

Задача №3

Группа однотипных n-этажных жилых зданий снабжается водой из центрального теплового пункта, присоединенного трубопроводом ввода к уличной водопроводной сети. Холодная вода из уличной сети по вводу поступает в центральный тепловой узел, в котором установлен скоростной водонагреватель. Часть холодной воды проходит через водонагреватель и поступает в горячую систему водоснабжения зданий, другая часть поступает в систему холодного водоснабжения.

В каждой квартире установлено четыре водоразборных прибора (умывальник, мойка, ванна с душевой сеткой и унитаз со смывным бочком).

Определить расчетные расходы воды для теплового пункта (на нужды холодного и горячего водоснабжения), подобрать водомер, устанавливаемый на вводе в тепловой пункт, вычислить средний и максимальный часовые расходы горячей воды группой зданий; произвести необходимые расчеты и выбрать марку водонагревателя.

Нормативные секундный и часовой расходы воды водоразборным устройством принять:

q = 0.3 л/с q =300 л/ч

q= 0,2 л/с q= 200 л/ч

Исходные данные:

Число однотипных зданий n зд

Число этажей n эт

Число квартир на этаже n кв

Средняя заселенность квартир U чел/кв

Норма расхода воды в сутки наибольшего водопотребления:

Общая q , л

Горячая q , л

Норма расхода воды в час наибольшего водопотребления:

Общая q , л

Горячая q , л

Начальные температуры теплоносителя, С

конечные температуры теплоносителя С

Решение задачи.

Максимальное суточное потребление воды теплоузлом на нужды холодного и горячего водоснабжения зданий определяется по формуле:

Q =0,001 q U где,

Число водопотребителей U= u n кв n эт n зд

u - средняя заселенность квартир

n кв - число квартир

n эт - число этажей

n зд - число зданий

U = 3,0 ∙ 4 ∙ 6 ∙ 6 = 432

Q = 0,001 ∙300 ∙ 432 = 129,6 м 3 / сут

Средний часовой расход воды за сутки максимального водопотребления определяется по формуле:

q = Q /24

q = 129,6/24 =5,4 м 3 / ч

Максимальный часовой расход воды на нужды холодного и горячего водоснабжения:

q = 0,005 q
где

q- общий расход воды л/ч, санитарно-техничиским прибором;

Коэффициент определяемый из приложения 1 (рабочий программы и задания на контрольную работу 23/10/2) в зависимости от значения произведения N P (N - общее число санитарно-технических приборов, обслуживаемых проектируемой системой, P -вероятность их использования).

P hr =
для общих участков величину P определяют по формуле

P =
,

Где q-общая норма расхода воды (холодной и горячей), л, потребителем в час наибольшего водопотребления.

q- общий нормативный расход воды одним потребителем, л/с.

N = n пр n эт n зд n кв

Здесь n пр - число водоразборных приборов в одной квартире

N= 4 ∙ 6 ∙ 6 ∙ 4= 576

P = =0,0108

P hr =
=0,0389

N P = 576 ∙ 0,0389 = 22,4

7,5 из приложения 1

q = 0,005 ∙ 300 ∙ 7,5 = 11,25 м 3 /ч

По вычисленным значениям расчетных расходов воды, руководствуясь приложением 4 (23/10/2),

следует подобрать марку водомера

условного

счетчика,

параметры

Расход воды, м 3 /ч

Порог чувст-

вительности

Максимальный

объем воды

Гидравлическое

сопротивление

счетчика

Минималь-

Общий максимальный секундный расход воды группой зданий q

=5∙ ,

где,
- коэффициент, определяемый по приложению 1 в зависимости от значения произведения N P

N P = 576∙0,0108 = 6,22

= 2,962

5∙0,3∙2,962= 4,44 л/с

вычисляем потери напора в водомере

где s- гидравлическое сопротивление счетчика, принимаемое по приложению 4 (23/10/2)

q- расход воды, протекающий через водомер л/с

h = 0,142 ∙ 4,44 2 = 2,8 м,

Среднечасовой расход горячей воды

q

где - норма расхода горячей воды, л, потребителем в сутки наибольшего водопотребления

U – количество потребителей горячей воды

T – количество часов в сутках (Т = 24ч).

q
= 2,16м 3 /ч

Максимальный часовой расход горячей воды

q = 0,005 q

где q - нормативный расход горячей воды водоразборным устройством

Коэффициент, определяемый по прил.1 в зависимости от значения произведения N P (N - общее число санитарно-технических приборов, обслуживаемых системой горячего водоснабжения, P - вероятность их использования).

P hr =

где - вероятность действия санитарно-технических приборов в системе горячего водоснабжения

- нормативный расход горячей воды, л/с, санитарно-техническим прибором.

,

где - нормативный расход горячей воды, л, потребителем в час наибольшего водопотребления

N – количество водоразборных приборов, обслуживающих систему горячего водоснабжения

N = n пр n эт n зд n кв

= 0,0104

P hr =
= 0,0374

N P = 576 ∙ 0,0374 = 21,54

q = 0,005 ∙ 200 ∙ 7,282 = 7,282 м 3 /ч

Расчетный расход тепла для приготовления горячей воды в течении часа максимального водопотребления

Q = 1,16 q (55- t )+ Q

где t - температура холодной воды, о С, в сети водопровода (принимаем равной 5 о С)

Q - потери тепла падающими и циркуляционными трубопроводами системы горячего водоснабжения

Потери тепла можно учесть приближенно по формуле

Q = Qk ,

где Q - среднечасовой расходтепла, на нужды горячего водоснабжения

k – коэффициент, учитывающий потери тепла трубопроводами (принимаем k= 0,35)

125,28 кВт,

Q= 125,28 ∙ 0,35 = 43,85 кВт

Q= 1,16 ∙ 7,282 (55-5)+43,85 = 466,206 кВт

Согласно условию задачи приготовление горячей воды производится в скоростном водонагревателе, установленном в центральном тепловом пункте.

В скоростных водонагревателях расходуемая вода протекает с большой скоростью 0,5-2,5 м/с. Благодаря этому они имеют высокие коэффициенты теплопередачи, а следовательно, очень компактны и занимают небольшую площадь.

Расчет целесообразно вести в следующем порядке.

Задавшись скоростью движения нагреваемой воды v н.в. в приделах 0,5-2 м/с, определяем требуемую площадь сечения трубок водонагревателя f mp , исходя из максимального часового расхода горячей воды q

f mp =

Принимаю v н.в. = 1,5 м/с

f mp =
= 0,00135 м 2

пользуясь прил.6, подбираем водонагреватель, по ближайшему к вычисленному значению площади сечения трубок.

f mp =0,00185 м 2

после чего для выбранной марки водонагревателя вычислим скорости движения нагреваемой v н.в. и греющей v гв воды.

где
- площадь сечения межтрубного пространства, по которому течет греющая вода

t н, t к – начальная и конечная температуры теплоносителя

- плотность воды (= 1000кг/м 3)

С – теплоемкость воды (С=4,19 кДж/кг град)

0,00287 м 2 - исходя из прил. 6

Вычисляем скорость движения нагреваемой воды

=1,093 м/с

Скорость движения греющей воды

=1,292 м/с

По вычисленным значениям v н.в и v гв, пользуясь приложением 7 находим величину коэффициента теплопередачи нагревательной поверхности (К) При достаточном напоре в наружной сети скоростной нагреватель считается плохо подобран, если К 1700 Вт/м 2 град В этом случае следует взять более мелкий нагреватель, у которого будет большие скорости протекания нагреваемой и греющей воды, а следовательно, и большее значение К.

К= 1943,2

Необходимую поверхность нагрева водонагревателей определяют по вычисленному часовому расходу тепла и коэффициента теплопередачи.

где - поправочный коэффициент, учитывающий наличие накипи на трубах подогревателя (=0,6 – для стальных трубок, =0,75 – для латунных трубок)

- расчетная разность температур теплоносителя и нагреваемой воды

Для скоростных водонагревателей определяется по формуле

=

где б, м – большая и меньшая разность температур между теплоносителями и нагреваемой водой на концах водонагревателя.

Чаще всего скоростной водонагреватель работает по противоточной схеме (холодная вода встречает остывший теплоноситель, а нагретая – горячий).

Б = t н – t г (или t к –t х)

М = t к – t х (или t н – t г)

где t н и t к - начальная и конечная температура теплоносителя

t г и t х начальная и конечная температура нагреваемой воды (t х = 5, t г = 75
)

М = 90-75=15

Определим необходимую поверхность нагрева водонагревателей

= 666,4 м 2

Вычисляем величину требуемой поверхности нагрева водонагревателя, определяют требуемое число секций нагревателя

где - требуемое число секций принятого водонагревателя (округляется до целого числа секций в большую сторону)

- площадь поверхности нагрева одной секции (берем из прил. 6)

=298 секц.

Задача №4

Произвести гидравлический расчет дворовой канализационной сети, отводящей сточные воды от жилого здания в городскую сеть, согласно заданному варианту генплана.

Поверхность участка земли – горизонтальная.

Исходные данные

Номер варианта

Вариант генплана дворовой канализации

*Число водоразборных приборов в здании N

*Число жителей U

*норма расхода холодной и горячей воды в час наибольшего водопотребления q л

Отметка поверхности земли

Отметка лотка трубы дворовой канализационной сети в первом колодце

Отметка лотка трубы городской канализации

Длинны участков:

l 3

На генплане предоставлена дворовая канализационная сеть жилого здания. Сточная жидкость через выпуски из здания самотеком поступает в дворовую сеть. Число выпусков – один. Каждый выпуск заканчивается смотровым канализационным колодцем. Кроме того, на красной линии устанавливается контрольный канализационный колодец (КК), в котором при необходимости устраивается перепад. Для внутри квартальной канализационной сети применяют трубы диаметром не менее 150 мм.

К1 – дворовый канализа-

цонный колодец

КК – контрольный кана- лиционный колодец.

ГКК – городской канали-

зационный колодец

Основным назначением гидравлического расчета сети дворовой канализации является выбор наименьшего уклона трубы, при котором обеспечивается прохождение расчетного расхода сточной жидкости со скоростью не менее 0,7 (скорость самоочищения). При скорости меньшей 0,7 возможно отложение твердой взвести и засорение канализационной линии.

Желательно, чтобы дворовая сеть имела один и тот же уклон на всем протяжении. Наименьший уклон труб диаметром 150 мм составляет 0,008. Наибольший уклон труб канализационной сети не должен превышать 0,15. при этом наполнение труб должно быть не менее 0,3 диаметра. Допустимое максимальное наполнение труб диаметром 150 – 300 мм не более 0,6.

Гидравлический расчет следует производить по таблицам, назначая скорость движения жидкости v, м / с и наполнение h / d таким образом, чтобы на всех участках было выполнено условие:

v
0,6

Номер расчетного участка

Длина участка, м

Количество санитарных приборов на данном участке N, шт.

Общий расход холодной и горячей воды на расчетном участке q tot л/с

Расход сточной жидкости на расчетном участке q s л/с

Диаметр труб d, мм

Уклон труб, i

Скорость течения сточной жидкости, v, м/с

Наполнение трубы, h/d

Отметка лотков трубы на участках, м.

Разность отметок лотков на участке, м

q Расчёт населения города 2. Расчет... показателем правильности выбора их диаметров. Сеть...
  • Расчёт затрат и тарифов на услуги

    Курсовая работа >> Экономика

    ... (тарифов) на услуги водоснабжения и водоотведения Тарифы (цены) на услуги водоснабжения и водоотведения разрабатываются на предприятиях... общей схеме водоснабжения . Последовательность расположения отдельных сооружений системы водоснабжения и их состав могут...

  • Водоснабжение и водоотведение (3)

    Реферат >> Геология

    Санитарно-защитной полосы (СЗП), соответственно их назначению, устанавливается специальный режим и определяется... качества воды. Расчёт ЗСО Расчёт поясов зависит от конкретного источника водоснабжения , гидрогеологических условий...

  • Водоснабжение и водоотведение жилого дома (3)

    Реферат >> Строительство

    ... водоснабжения здания 5 Ввод водопровода 5 Водомерный узел 5 Особенности устройства внутренних водопроводных сетей 5 2 Расчёт ... при условии возможности их совместного транспорти­рования и... в местах, удобных для их обслуживания. На подземных трубопроводах...

  • Сети водоотведения города с населением 63010 жителей

    Курсовая работа >> Строительство

    Энергетического строительства Кафедра «Водоснабжение и водоотведение» Пояснительная записка к курсовому... от величин расходов, их значения определяются для... расчёту хозяйственно-бытовой: ; С этого пункта расчёт ведем в табличной форме таблица 4. Расчёт ...


  • стр. 1



    стр. 2



    стр. 3



    стр. 4



    стр. 5



    стр. 6



    стр. 7



    стр. 8



    стр. 9



    стр. 10



    стр. 11



    стр. 12



    стр. 13



    стр. 14



    стр. 15



    стр. 16



    стр. 17



    стр. 18



    стр. 19



    стр. 20



    стр. 21



    стр. 22



    стр. 23



    стр. 24



    стр. 25



    стр. 26



    стр. 27



    стр. 28



    стр. 29



    стр. 30

    ОАО САНТЕХНИИПРОЕКТ

    ПОСОБИЕ ПО ОПРЕДЕЛЕНИЮ РАСЧЕТНЫХ РАСХОДОВ ВОДЫ В СИСТЕМАХ ВОДОСНАБЖЕНИЯ И КАНАЛИЗАЦИИ ЗДАНИЙ И МИКРОРАЙОНОВ

    Материал разработан творческим коллективом ОАО «СантехНИИ-проект» в качестве пособия при использовании стандарта организации СТО 02494733 5.2-01-2006 «Внутренний водопровод и канализация зданий".

    В Пособии рассмотрены основные вопросы определения расчетных расходов воды и стоков, приведены методические основы математических моделей водопотребления, а также конкретные примеры расчетов величин расходов воды и стоков, даны таблицы необходимых исходных данных систем водоснабжения и канализации зданий различного назначения.

    Разработчики

    КЯ. Добромыслов! канд. техн. наук (ОАО "СантехНИИпроект")

    А.С. Вербицкий, канд. техн. наук, А.Л.Лякмунд (МосводоканалНИИпроект)

    1 Введение 3

    2 Принципы определения расчетных расходов 4

    3 Статистическая методика определения расчетных расхо- 7

    4 Определение расчетных расходов воды и стоков 11

    Исходные данные и порядок определения расчетных рас- ^

    ходов воды и стоков 6 Примеры определения расчетных расходов воды и стоков 20

    © Открытое акционерное общество "Проектный, конструкторский и научно-исследовательский институт "СантехНИИпроект" (ОАО "СантехНИИпроект")

    4 ОПРЕДЕЛЕНИЕ РАСЧЕТНЫХ РАСХОДОВ ВОДЫ И СТОКОВ

    4.1 Для гидравлического расчета систем водопровода и подбора оборудования используются следующие расходы воды:

    Расчетные средние суточные расходы (общий, горячей, холодной) за расчетное время потребления воды (Т), м 3 /сут, (см. 4.2);

    Расчетные максимальные суточные расходы (общий, горячей, холодной), м 3 /сут, (см. 4.6);

    Расчетные максимальные часовые расходы (общий, горячей, холодной), м 3 /ч, (см. 4.4);

    Расчетные средние часовые расходы (общий, горячей, холодной), м 3 /ч, (см. 4.3);

    Расчетные минимальные часовые расходы (общий, горячей, холодной), м 3 /ч, (см. 4.5);

    Расчетные максимальные секундные расходы (общий, горячей, холодной), л/с, (см. 4.4);

    Расчетные максимальные секундные расходы для обеспечения циркуляции в системах горячего водопровода, л/с, (см. 4.6).

    4.2 Расчетные средние суточные расходы воды, м 3 /сут, для j -го расчетного участка системы водопровода определяются по формулам:

    холодной

    ЧтгЪО.т, И

    общий (суммарно - холодной и горячей воды)

    (3)

    где i - потребители, к которым вода поступает по j -му расчетному участку сети водопровода;

    Qji . Q"ti - Q"r"i ‘ расчетные средние суточные расходы воды (холодной, горячей, общий) для различных видов потребителей, определяются по таблицам А2 и АЗ (приложение А).

    Примечание - Для каждой группы однородных (одинаковых) потребителей в формулах (1-3) суммирование следует заменить умножением величин расчетных средних суточных расходов для одного потребителя на число потребителей.

    4.3 Расчетные средние часовые расходы воды, м 3 /ч, для j -го расчетного участка системы водопровода определяются по формулам:

    холодной

    горячей 4=14- (5)

    где I - потребители (в том числе - санитарно-технические приборы), к которым вода поступает по j -му расчетному участку сети водопровода;

    q Tj - расчетный средний часовой расход воды / -го потребителя или

    санитарно-технического прибора, л/ч, принимается по данным таблицы А.1 для различных приборов или равным (Qn/Ti) для различных потребителей, величины Q T принимаются по данным таблиц А.2 или А.З;

    Ti - продолжительность периода, для которого установлены значения Qji в таблице А.З.

    Примечание - Для каждой группы однородных (одинаковых) потребителей в формулах (4) - (6) суммирование заменяется умножением величин расчетных средних часовых расходов для одного потребителя на число потребителей.

    4.4 Расчетные максимальные часовые {q™, q ^), м 3 /ч, и

    расчетные максимальные секундные (q tot , q h , q c), л/с, расходы воды

    для расчетных участков сетей водопровода холодной и горячей воды принимаются по таблицам А.4 (приложение А).

    Указанные максимальные расчетные расходы в сетях водопроводов определяются в зависимости от:

    а) среднего удельного расчетного часового расхода воды

    (^hr nd ’ q hr ud" q hr iid"*" л ^ 4, 0П Р е Д еляется как частное от деления рас-

    четного среднего часового расхода (найденного по 4.3) на расчетном участке сети на общее число санитарно-технических приборов (N) или потребителей (U) к которым подается вода;

    б) числа санитарно-технических приборов или числа потребителей воды (N - для водопровода в целом и для отдельных участков расчетной схемы сети водопровода).

    При неизвестном числе санитарно-технических приборов/точек во-доразбора допускается принимать число приборов равным числу потребителей - N=U.

    Для жилых многоквартирных зданий максимальный часовой и секундный расходы воды для расчетных участков сетей водопроводов холодной и горячей воды допускается определять по таблицам А.б - А.9 (приложение А) в зависимости только от числа квартир (п), к которым вода подается по расчетному участку сети. При использовании таблиц А.б -А.9 расчетные средние суточные расходы воды (л/сут чел) следует принимать по таблице А.2 для жилых зданий с различными системами инженерного обеспечения с учетом климатической зоны строительства здания.

    Расчетные расходы воды в сетях водопроводов горячей воды определяются:

    Для режима максимального водоразбора аналогично расходам холодной воды с добавлением остаточного циркуляционного расхода на участках сети от точки нагрева до первой точки водоразбора;

    Для режима циркуляции с учетом раздела 11, СТО 5.2-01.

    4.5 Расчетные минимальные часовые расходы холодной и горячей воды, м 3 /ч, определяются по формуле

    q u =q>K . , (7)

    где K min ~ принимается no таблице 1 в зависимости от

    величины К =- ж -.

    Примечание-В формуле (7) величина q T принимается равной

    q T , или q T , или q T , а значения q hr соответствуют либо q hr , либо q c hr , либо Qhr . соответственно.

    Таблица 1

    4.6 Расчетные максимальные суточные расходы воды (м 3 /сут) в сетях водопроводов холодной и горячей воды принимаются равными произведению расчетных средних суточных расходов воды (определенных в соответствии с 4.2) и коэффициентов максимальной суточной неравномерности, которые следует принимать по таблице А.5 (приложение А) в зависимости от значений расчетных средних часовых расходов воды для участков сетей водопроводов (определенных в соответствии с 4.3) и числа санитарно-технических приборов/точек водоразбора или числа потребителей.

    4.7 Для стояков систем канализации расчетным расходом является максимальный секундный расход стоков (q s , л/с), от присоединенных к

    стояку санитарно-технических приборов, не вызывающий срыва гидравлических затворов любых видов санитарно-технических приборов (приемников сточных вод). Этот расход определяется как сумма расчетного максимального секундного расхода воды общей (суммарно холодной и горячей) для всех санитарно-технических приборов ^(определяемого в соответствии с требованиями 4.3) и расчетного максимального секундного расхода стока qft 1 от прибора с максимальным водоотведением (как

    правило, принимается равным 1,6 л/с - сток от смывного бачка унитаза) по формуле

    (8)

    4.8 Для горизонтальных отводных трубопроводов систем канализации расчетным расходом считается расход q sL , л/с, значение которого

    вычисляется в зависимости от числа санитарно-технических приборов N, присоединенных к проектируемому расчетному участку трубопровода, и длины этого участка трубопровода L, м, по формуле




    где К - коэффициент, принимаемый по таблице 2;

    qo s 2 - расход стоков от прибора с максимальной емкостью, л/с.

    Для жилого здания (жилой квартиры) q 0 s2 принимается равным 1,1 л/с - расход от полностью заполненной ванны емкостью 150 - 180 л с выпуском 0 40-50 мм.

    Таблица 2

    Значения k s при L, м

    Примечание -За длину L принимается расстояние от последнего на расчетном участке стояка до ближайшего присоединения следующего стояка или, при отсутствии таких присоединений, до ближайшего канализационного колодца

    5 ИСХОДНЫЕ ДАННЫЕ И ПОРЯДОК ОПРЕДЕЛЕНИЯ РАСЧЕТНЫХ РАСХОДОВ ВОДЫ И СТОКОВ

    5.1 Определение расчетных расходов воды и стоков следует производить на основании исходных данных заказчика, в составе которых должны быть указаны:

    Средние удельные расходы воды (за год, сутки, смену и т.д.) для всех водопотребителей (единиц продукции) и/или санитарных приборов;

    Число и тип санитарных приборов или потребителей воды (единиц продукции).

    5.2 Расчетные средние удельные (за год, сутки, смену) расходы воды следует принимать с учетом представленных заказчиком данных о фактическом водопотреблении на объектах-аналогах с учетом предусматриваемых проектом мероприятий и технических решений по предотвращению нерационального использования и потерь воды.

    5.3 При отсутствии данных, предусмотренных 5.1 и 5.2, ориентировочные значения удельных средних за год суточных расходов воды следует определять в соответствии с данными приложения А - для жилых зданий по таблице А.2, для других видов объектов по таблице А.З, для различных видов санитарно-технического оборудования - по таблице А.1.

    5.4 Для участков сети водопровода холодной воды, по которым подается вода к смывным кранам, расчетный максимальный секундный расход определяется как сумма расхода, определенного согласно 4.4, и секундного расхода смывного крана (таблица А.1, графа 9).

    5.5 Расчетные расходы воды для участков сетей водопровода в помещениях групповых душевых установок (только для участков сети, по которым вода поступает к душевым сеткам, без учета других санитарнотехнических приборов) вычисляются по формулам:

    Расчетные максимальные часовые расходы общей, холодной и горячей воды:

    qZ = Q,5N e , м 3 /ч (10)

    q hr = 0,23W, м 3 /ч (11)

    q" hr = 0,27A r g, м 3 /ч (12)

    Расчетные максимальные секундные расходы общей, холодной и горячей воды:

    q°" = 0,2N e , л/с (13)

    q c = 0,\2N e , л/с (14)

    q = 0,12N g , л/с (15)

    где Л/ в - число душевых сеток.

    5.6 Расчетные максимальные часовые и секундные расходы холодной и горячей воды для участков водопроводных сетей, по которым

    вода подается к групповым душевым установкам, а также для объекта в целом определяются как сумма душевых расходов, определенных по формулам 10-15, и расчетных расходов воды, вычисленных согласно 4.4, при этом, последние должны быть определены без учета расходов воды в душевых установках.

    5.7 Число блюд и время работы на предприятиях общественного

    питания следует принимать по технологическим данным (по заданию на проектирование). При неизвестной производительности предприятий общественного питания среднее число блюд - , изготавливаемых за 1 ч

    работы предприятия, допускается определять по формуле

    U hr = 2,2»п»т, (16)

    где п - число посадочных мест;

    т - число посадок в час, принимаемое для столовых открытого типа и кафе равным 2; для предприятий общественного питания при промышленных предприятиях и студенческих столовых равным 3; для ресторанов -1,5.

    Расчетную производительность предприятия общественного питания (U hr - максимальное часовое число приготовляемых блюд) следует определять по формуле

    Uhr = 1,5С7 Лг (17)

    5.8 Для отдельных помещений больниц и санаториев (при отсутствии других данных) допускается принимать:

    а) продолжительности работы подразделений и пользования водой:

    Пищеблок -9 ч;

    Буфет обслуживающего персонал - 2 ч;

    Буфет в отделениях больницы - 1ч после приема пищи.

    б) суточное количество потребляемых одним человеком блюд:

    1 больной - 5 блюд;

    1 работающий в отделении - 2,2 блюда.

    5.9 При отсутствии других данных в задании на проектирование для общеобразовательных школ, профессионально-технических училищ

    и пионерских лагерей суточное количество потребляемых блюд допускается принимать по таблице.

    5.10 При определении расчетных расходов воды и стоков для зданий цехов и административно-бытовых корпусов (АБК) в случае отсутствия других данных допускается принимать, что общее количество воды (исключая потребление воды в душевых) на хозяйственно-питьевые нужды работников используется в цехах и АБК поровну.

    5.11 При проектировании жилых зданий с набором санитарнотехнических приборов, существенно отличающимся от принятого в таблице А.2 для типовых проектов домов с различной степенью благоустройства, допускается определять расчетный удельный средний за год суточный расход воды путем суммирования расходов для отдельных приборов (таблица А.1 приложение А) с учетом их числа и конкретных типов, предусматриваемых в проекте.

    5.12 При проектировании водопроводов промышленных или иных предприятий, подающих воду одновременно на хозяйственно-питьевые нужды и на технологические цели, в тех случаях, когда известно, что технологические расходы не являются случайными величинами, допускается простое суммирование расчетных максимальных часовых и секундных расходов холодной и горячей воды, определенных в соответствии с разделом 4, и соответствующих расходов на технологические цели, определенных заданием на проектирование.

    Если заданием на проектирование установлено (допускается), что расходы холодной и горячей воды на технологические цели являются случайными величинами, но не заданы все параметры функций распределения этих случайных величин, то допускается в расчетах заменять расходы воды технологическим оборудованием условным числом дополнительных санитарно-технических приборов.

    При этом дополнительное число санитарно-технических приборов определяется как частное от деления заданного заданием на проектирование среднего часового расхода воды (холодной, горячей, общей) на технологические цели (всеми видами оборудования) на средний часовой расход одного из известных типов приборов (принятого по таблице А.1, СТО 5.2-01, например - для мойки со смесителем в жилом здании). Дальнейшие расчеты по определению расчетных расходов воды рекомендуется вести без разделения расходов на хозяйственно-питьевые нужды и технологические цели.

    5.13 В тех случаях, когда в задании на проектирование того или иного объекта не установлено число потребителей и, соответственно, не могут быть использованы для определения расчетных расходов воды и стоков данные таблицы А.З, указанные расчетные расходы определяются на основании данных о потреблении воды (общей, горячей, холодной) различными видами санитарно-технических приборов (см. таблицу А.1, СТО 5.2-01) с учетом назначения (типа) объекта, где устанавливаются эти приборы.

    В этом случае средний расчетный удельный часовой расход воды

    ^hr ud" q hr d ’ q hr d^" 0П Р е Д еляется как частное от деления

    расчетного среднего часового расхода суммарно всеми видами санитарно-технических приборов на расчетном участке сети водопровода на общее число приборов.

    5.14 Для зданий, в которых предусматривается объединенная система хозяйственно-питьевого и противопожарного водопровода, расчетные максимальные секундные расходы воды (общей и холодной), определенные в соответствии с 4.4, должны быть увеличены на величину расчетного максимального секундного расхода воды на нужды пожаротушения, определенного в соответствии с данными таблиц 3, 4, 5 раздела 7 СТО 5.2-01.

    6 ПРИМЕРЫ ОПРЕДЕЛЕНИЯ РАСЧЕТНЫХ РАСХОДОВ ВОДЫ И

    СТОКОВ

    6.1 Пример 1. Определение расчетных расходов воды и сто

    ков для жилого дома

    6.1.1 Исходные данные.

    Для расчета принят 16 этажный многоквартирный дом, расположенный в 1 строительно-климатическом районе; (4 секции; N =256 квартир; 3 чел в квартире; U = 768 чел (256*3); 16 канализационных стояков. Дом благоустроен системами холодного и горячего водопровода и системой противопожарного водопровода.

    Дом оборудован санитарно-техническими приборами:

    Кухонная мойка;

    Ванна длиной 1500 мм;

    Умывальник;

    Унитаз со смывным бачком вместимостью 6,5 л.

    В каждой квартире четыре точки водоразбора в системе холодного водопровода (256*4=1024) и три точки в системе горячего водопровода (256*3=768).

    6.1.2 Требуется определить:

    Все виды расчетных расходов воды для дома в целом;

    Расчетные расходы стоков для одного канализационного стояка;

    Расчетные расходы стоков для дома в целом (длина выпуска 1_= 100 м);

    Расчетные расходы стоков для секционного выпуска (L=15 м), объединяющего 4 стояка в одной секции дома.

    1 ВВЕДЕНИЕ

    «Пособие по определению расчетных расходов воды и стоков в системах водоснабжения и канализации зданий и микрорайонов» (далее - Пособие) разработано в помощь специалистам организаций, проектирующих системы водоснабжения и канализации зданий и микрорайонов городской и сельской застройки, в том числе начальные участки канализационной сети из пластмассовых труб диаметром до 200 мм. Расчетные расходы воды в системах водостоков зданий и сооружений в данном Пособии не рассматриваются.

    В настоящем Пособии приведено краткое описание различных математических моделей водопотребления - функций распределения вероятности появления расходов различной величины и продолжительности (часовых, кратковременных). Эти модели могут и должны использоваться для прогнозирования ожидаемых расходов воды и стоков, которые требуются для использования в практике проектирования при определении (при расчете) тех или иных параметров элементов систем водоснабжения и канализации зданий и микрорайонов - такие расходы принято называть «расчетными расходами».

    Порядок определения расчетных расходов воды (раздел 4 Пособия), принят по СТО 02494733 5.2-01-2006 «Внутренний водопровод и канализация зданий» (ОАО «СантехНИИпроект»), а также приведены ссылки на таблицы приложения А указанного стандарта.

    Величины расчетных расходов в системах холодного и горячего водоснабжения, определенные в соответствии с настоящим Пособием незначительно отличаются от величин расходов воды, определяемых в соответствии со СНиП 2.04.01-85 «Внутренний водопровод и канализация зданий».

    При этом, использование СТО 5.2-01 и настоящего Пособия позволяет специалистам проектных организаций определять и те величины расходов воды и стоков, определение которых ранее не регламентирова- 1

    6.1.4 Определяем расчетные средние суточные расходы воды (м 1 /сут) в целом для многоквартирного дома в соответствии с 4.2 и сводим в таблицу 6.1.2.

    Таблица 6.1.2

    Показатели

    Формула для расчета

    Расчетный средний суточный расход воды (общий), Qtf?

    192 м/сут

    Расчетный средний суточный расход горячей воды, Q^

    115-768 00 „ 3 .

    88,3 м/сут

    Расчетный средний суточный расход холодной воды, Qj.

    135 - 768 =103.7 3 /сут 1000

    Примечание-В соответствии с примечанием к п.4.2 при однородных (одинаковых) потребителях в формулах (1-3, п.4.2) суммирование суточных расходов воды потребителей заменено умножением средних суточных расходов воды (л/сут) на число потребителей.

    6.1.5 Определяем расчетные средние часовые расходы воды

    лось - минимальные часовые расходы воды (должны использоваться при подборе диаметров счетчиков воды), кратковременные расходы стоков в системах канализации (расходы воды различной продолжительности должны использоваться при определении диаметров стояков и горизонтальных участков сетей канализации).

    2 ПРИНЦИПЫ ОПРЕДЕЛЕНИЯ РАСЧЕТНЫХ РАСХОДОВ

    В настоящее время, после многолетних исследований, общепризнано, что процессы водопотребления, как и производные от них процессы - процессы водоотведения, являются случайными и для их описания (для построения математических моделей таких процессов) должны использоваться методы теории вероятности, математической статистики и теории случайных процессов.

    Очевидно, что в любой момент времени общий расход воды и стоков на объекте (жилое здание, коммунально-бытовое или промышленное предприятие, любая группа различных объектов) является суммой случайных расходов через различные санитарно-технические приборы. При создании методов математического моделирования процессов водопотребления (водоотведения) всегда выбирают в качестве влияющих на расходы воды (стоков) только те факторы, значения которых наиболее существенны и известны при проектировании.

    Для практического применения различных методик расчетные расходы воды представляются в виде таблиц расходов или таблиц некоторых вспомогательных величин, которые позволяют достаточно просто определять расходы при различных сочетаниях исходных данных. Расходы стоков определяются в зависимости от величины расчетного расхода воды для того или иного участка сети (соответственно, от числа присоединенных к участку санитарно-технических приборов) или проектируемого объекта в целом.

    Еще в 30-е годы XX века С.А. Курсин предложил заменить все многообразие водоразборных приборов на объекте одним эквивалентным прибором. Число таких эквивалентных приборов принимается равным общему числу реальных приборов, а режим работы принимается достаточно простым - прибор либо включен с постоянным расходом, либо вы- 2

    ключей (такой режим, конечно, достаточно сильно отличается от реального). Общее время включения эквивалентного прибора (t B) в течение периода (Т), определяет вероятность действия этого прибора в течение заданного периода времени (Р). Р = t B / Т.

    Расходы воды, которые определяют при проектировании, являются лишь прогнозом отдельных величин (из общего ряда прогнозируемых расходов, описываемых той или иной функцией распределения вероятностей), необходимых для определения (расчета) тех или иных параметров элементов систем водопровода и канализации: диаметров трубопроводов, объемов емкостей, типов и марок насосных агрегатов, диаметров счетчиков воды и пр. Именно поэтому в практике проектирования принят термин "расчетные расходы". При сопоставлении различных методов определения расчетных расходов воды недостаточно сравнивать только отдельные значения расчетных расходов (они могут различаться, иногда - значительно), но следует сравнивать обоснованность и результаты расчета параметров элементов систем водопровода и канализации.

    Исходя из гипотезы С.А. Курсина об эквивалентном приборе (аналогичная гипотеза была предложена в 1940 г. и Хантером в США) расчетный расход воды для совокупности одинаковых эквивалентных приборов можно определить по весьма простой формуле q-q 0 »m,

    где m - число одновременно включенных эквивалентных приборов из общего их числа в системе водоснабжения; q 0 - принятый для данной системы расход эквивалентного прибора.

    В работах С.А. Курсина и Хантера эти величины определялись на основе логических рассуждений о режимах работы систем внутреннего водоснабжения зданий (в основном, жилых домов), что, конечно, не могло обеспечить высокой достоверности расчетов при появлении в 50-х годах крупных жилых массивов, где системы водопровода обслуживали уже большое число разнородных потребителей и разнообразных санитарнотехнических приборов.

    Для повышения достоверности расчетов по указанной формуле в 60-х годах XX века Л.А. Шопенским был проведен комплекс исследований, основная цель которых состояла в разработке новых подходов к оп-

    ределению величин q 0 и Р для различных сочетаний исходных данных -

    числа и назначения санитарно-технических приборов, различного назначения объектов водоснабжения, различных давлений воды в трубопроводах систем водопровода и пр. При этом основная гипотеза С.А. Курсина и Хантера о существовании эквивалентного прибора Л.А. Шопенским не подвергалась сомнению, и вычисление расчетного расхода производилось также. Именно поэтому методика определения расчетных расходов на базе этой формулы в дальнейшем называется методикой Курсина-Хантера-Шопенского (методика КХШ).

    Методика КХШ с 1976 г. была включена в СНиП 11-30-76 "Внутренний водопровод и канализация зданий", при этом общие идеи о возможности расчетов на базе параметров эквивалентного прибора были распространены и на случай определения расчетных (максимальных) часовых расходов воды.

    В строительные нормы и правила, утвержденные в 1985 г., также вошла методика КХШ с некоторыми упрощениями, введенными для облегчения ее использования в практике проектных организаций.

    Данные таблиц приложения 2 и 3 СНиП 2.04.01-85 следует рассматривать как весьма приближенные условные значения необходимых исходных данных. Данные экспериментального определения этих величин отсутствуют, нет и приемлемой методики их получения на базе измеряемого водопотребления на различных объектах.

    В работах А.Я. Добромыслова было показано, что идея эквивалентного прибора, как и идея определения числа, одновременно действующих приборов, не может быть использована в качестве базы для вычисления расчетных расходов в системах канализации зданий. Здесь, кроме одновременности включения водоразборных приборов, следует учитывать и то, что работающие приборы подключены в различных местах системы канализации, и в том сечении, для которого ведется определение диаметра трубопровода, необходимо учитывать различия во времени движения (добегания) воды от отдельных приборов до данного сечения системы.

    3 СТАТИСТИЧЕСКАЯ МЕТОДИКА ОПРЕДЕЛЕНИЯ РАСЧЕТНЫХ РАСХОДОВ ВОДЫ

    Отмеченные недостатки методики КХШ явились предпосылкой для проведения теоретических работ по созданию другого метода определения расчетных расходов воды в институте МосводоканалНИИпроект (А.С. Вербицкий, А.Л. Лякмунд). Идея методики института МосводоканалНИИпроект (в дальнейшем - методика МВКНИИП) состоит в том, что изменение во времени измеренных на любом объекте расходов воды следует рассматривать как реализацию случайного процесса разбора воды потребителями, сформированного из множества включений различных приборов со случайными значениями расходов воды через каждый из них. При этом не делается никаких предположений о вероятностях включения тех или иных санитарно-технических приборов, о продолжительности включений, о функциях распределения расходов воды для кахщого из приборов. Наблюдаемые (измеренные) расходы воды подвергаются обработке стандартными методами математической статистики и теории случайных процессов.

    Суммарный случайный процесс водоразбора для одних суток (с потреблением воды, равным среднему суточному за год) в соответствии с теорией случайных процессов может быть представлен как простая сумма двух процессов - регулярного и случайного. Для первого из них (регулярного) основными характеристиками являются математическое ожидание и дисперсия часовых расходов воды. Оценкой этого, отличного от нуля, математического ожидания является средний за год часовой расход воды на объекте. Очевидно, что он легко определяется из данных экспериментальных измерений или вычисляется как произведение числа приборов или потребителей на нормативный средний за год удельный часовой расход для любого состава прибора или потребителей. Регулярная составляющая суммарного случайного процесса водоразбора является простым графиком средних расходов воды для каждого часа суток, для которого легко вычисляется и дисперсия величин средних часовых расходов воды для каждого часа суток.

    Значения случайной составляющей суммарного процесса легко находятся, если из каждого значения часового расхода воды в любой час

    суток вычесть значение среднего для данного часа суток расхода воды. Математическое ожидание случайной составляющей суммарного процесса водоразбора получается равным нулю, а дисперсия этого процесса легко определяется по экспериментальным данным и обозначается D r hr (г - от слова random - случайный).

    Если по данным о дисперсиях и математических ожиданиях указанных составляющих (регулярной и случайной) суммарного случайного процесса водоразбора найти функцию распределения случайных величин часовых расходов воды, то из этого распределения несложно будет найти те значения часовых расходов, которые будут соответствовать требованиям того или иного расчета параметров системы водоснабжения или канализации. Для этого необходимо дополнительно задать лишь значение обеспеченности искомого расхода воды - G (величина t при этом равна 1 ч, а Т=8760 ч, т е. 1 году). В методике МВКНИИП значение G принято равным 0,9997, т.е. расчетный максимальный часовой расход воды может быть превышен лишь в течение приблизительно 3 ч в году (0,0003 8760).

    Для расчетов систем водопровода и канализации, кроме максимальных часовых расходов, могут потребоваться и расходы с другой продолжительностью t. При этом обработка данных экспериментов и теоретический анализ процесса водоразбора

    показывают, что функция распределения может быть построена для расходов любой продолжительности, а параметром такой функции является дисперсия D r ,. которую можно определить в зависимости от значений t и Dl, Если дисперсия ту найдена, то может быть определен и расчетный расход воды из ряда случайных расходов с продолжительностью t (для этого, как и ранее, требуется задать значения Т и Gj.B методике МВКНИИП (в таблицах расчетных расходов) принято, что G = 0,9997 для кратковременных расходов с t = 2 мин в течение часа максимального водоразбора. Это значит, что превышение расчетных расходов возможно в течение 6 -7 мин в течение часа максимального водоразбора (это час, для которого в регулярной составляющей процесса определена наибольшая средняя величина расхода воды). При этом

    размерность кратковременных расходов определена как л/с, хотя на самом деле рассматриваются расходы с продолжительностью t=2 мин. Следует отметить, что еще С.А. Курсин отмечал различие между размерностью расходов и их продолжительностью. Такие различия неизбежны, в частности, потому, что регистрация расходов воды с продолжительностью 1с практически невозможна при существующих измерительных приборах (из-за их инерционности). В методике КХШ такие различия также присутствуют, но в скрытом виде.

    Путь получения необходимых зависимостей изменения параметров функций распределения расходов воды различной продолжительности (математических ожиданий дисперсий составляющих случайного процесса водоразбора) методически прост и понятен - это стандартный статистический анализ данных измерений с регистрацией значений влияющих факторов, с выявлением, при необходимости, зависимостей параметров функций распределения от каждого из факторов. При этом следует иметь в виду, что общее влияние всех факторов, ранее не учтенных в методике МВКНИИП, составляет не более 10-15%, то есть не более 10-15% общей дисперсии случайных величин измеренных расходов воды оставалось вне зависимости от величин учтенных в модели факторов (N, Q срч) Этот путь реально осуществим, что и отличает, в основном, методику МВКНИИП от методики КХШ.

    В настоящее время в зданиях различного назначения, в квартирах жилых зданий установлено большое число счетчиков холодной и горячей воды. Эти счетчики зачастую имеют датчики электрических импульсов, частота которых пропорциональна расходам воды, имеется и большое число специальных регистраторов данных, которые позволяют весьма просто собирать и обрабатывать на ЭВМ фактические данные о водопо-треблении на различных объектах по методике МВКНИИП.

    Новая методика определения расчетных расходов стоков базируется на результатах исследований закономерностей формирования кратковременных расходов стоков в трубопроводах систем канализации зданий, проведенных А.Я. Добромысловым в 60 - 80-х годах XX века. В результате этих работ было установлено, что кратковременные расходы стоков являются функцией не только расходов воды через санитарно-

    технические приборы, которые подключены к соответствующему участку канализационной сети, но и компоновки этой сети, ее емкости. Главное отличие условий формирования расходов стоков состоит в том, что в этом случае не соблюдается условие неразрывности потока, которое действует в сетях водопровода. Например, при одновременном сбросе в один отводной трубопровод стоков от нескольких приборов, расположенных в разных секциях одного здания, в расчетном сечении сети эти расходы могут никогда не встретиться. При этом, чем длиннее отводной трубопровод (т.е. чем дальше один от другого расположены приборы), тем меньше вероятность наложения этих расходов.

    Работы А.Я. Добромыслова показали, что подходы к определению расчетных расходов стоков для стояков и для отводных (горизонтальных) участков сети должны быть различны. При гидравлическом расчете стояков критерием расчета является недопущение срыва гидравлического затвора у любого из приборов, присоединенных к стояку. Поэтому для такого случая следует суммировать расчетный секундный расход воды и секундный расход стоков прибора с максимальным водоотведением, как правило - смывного бачка унитаза.

    При расчете горизонтальных трубопроводов, обычно не работающих полным сечением (в этом случае не возникает опасности срыва гидравлических затворов), в качестве расчетных следует принимать сбросы воды с наибольшей продолжительностью - это, очевидно, расходы от приборов с наибольшей вместимостью (ванна объемом 140-180 л, время опорожнения 160-180 с).

    Приведенное выше описание основных принципиальных положений двух различных методов определения расчетных расходов воды и стоков является кратким и упрощенным. Для глубокого понимания специфики, достоинств и неизбежных недостатков каждого из них, для разработки новых методик или совершенствования существующих требуется глубокое изучение теоретических основ этих методов.

    Потребление воды в водотоке – объем жидкости, проходящей через поперечное сечение. Расходная единица - м3/с.

    Вычисление потребляемой воды должно осуществляться еще на этапе планирования водопровода, поскольку от этого зависят главные параметры водоводов.

    Расход воды в трубопроводе: факторы

    Для того, чтобы самостоятельно выполнить вычисление расхода воды в трубопроводе, необходимо знать те факторы, которые обеспечивают проходимость воды в трубопроводе.

    Главные из них - это степень давления в водоводе и диаметр сечения трубы. Но, зная лишь эти величины, не получится с точностью вычислить расход воды, поскольку он зависит также от таких показателей, как:

    1. Длина трубы. С этим все понятно: чем больше ее длина, тем выше степень трения воды о ее стенки, поэтому поток жидкости замедляется.
    2. Материал стенок труб также немаловажный фактор, от которого зависит скорость потока. Так, гладкие стенки трубы из полипропилена дают наименьшее сопротивление, нежели сталь.
    3. Диаметр трубопровода – чем он меньше, тем выше будет сопротивление стенок движению жидкости. Чем уже диаметр, тем более невыгодным является соответствие площади наружной поверхности внутреннему объему.
    4. Срок эксплуатации водопровода. Мы знаем, что с годами подвергаются воздействию коррозии, а на чугунных образуются известковые отложения. Сила трения о стенки такой трубы будет существенно выше. К примеру, сопротивление поверхности ржавой трубы выше новой из стали в 200 раз./li>
    5. Изменение диаметра на разных участках водовода, повороты, запорные фитинги или арматура значительно снижают скорость водного потока.

    Какие величины используются для расчета расхода воды?

    В формулах используются следующие величины:

    • Q – суммарное (годовое) потребление воды на одного человека.
    • N – число жильцов дома.
    • Q – суточная величина расхода.
    • K - коэффициент неравномерности потребления, равный 1,1-1,3 (СНиП 2.04.02-84).
    • D – диаметр трубы.
    • V – скорость течения воды.

    Формула расчета потребления воды

    Итак, зная величины, мы получаем следующую формулу потребления воды:

    1. Для суточного расчета – Q=Q×N/100
    2. Для часового расчета – q=Q×K/24.
    3. Расчет по диаметру - q= ×d2/4 ×V.

    Пример расчета расхода воды для бытового потребителя

    В доме установлены: унитаз, умывальник, ванна, кухонная мойка.

    1. По приложению А принимаем расход за секунду:
      • Унитаз - 0,1 л/сек.
      • Умывальник со смесителем - 0,12 л/сек.
      • Ванна - 0,25 л/сек.
      • Кухонная мойка - 0,12 л/сек.
    2. Сумма потребляемой от всех точек подачи воды составит:
      • 0,1+0,12+0,25+0,12 = 0,59 л/сек
    3. По суммарному расходу (приложение Б) 0,59 л/сек соответствует расчетный расход 0,4 л/сек.

    Можно перевести в м.куб/час, умножив его на 3,6. Таким образом получается: 0,4 х 3,6 = 1,44 м.куб/час

    Порядок расчета расхода воды

    Весь порядок расчета указан в своде правил 30. 13330. 2012 СНиП 2.04.01-85* «Внутренний водопровод и канализация» актуализированной редакции.

    Если вы планируете начать строительство дома, перепланировку квартиры или установку водопроводных конструкций, то информация о том, как рассчитать расход воды будет как нельзя кстати.. Расчет расхода воды поможет не только определить необходимый объем воды для конкретного помещения, но и позволит своевременно выявить снижение давления в трубопроводе. К тому же, благодаря нехитрым формулам все это можно сделать самостоятельно, не прибегая к помощи специалистов.

    Введение

    В данном курсовом проекте рассчитана и запроектирована наружная водопроводная сеть населенного пункта и железнодорожной станции.

    В основу проекта положены следующие исходные данные: план населенного пункта и железнодорожной станции в горизонталях, общие сведения о водопотребителях, расчетная плотность жителей в населенном пункте, характеристика санитарно-технического оборудования зданий, этажность застройки, потребители воды на железнодорожной станции и промышленных предприятиях, глубины промерзания грунта и залегания грунтовых вод.

    Грунты на территории населенного пункта, железнодорожной станции и на трассе водоводов представлены суглинками. Грунтовые воды залегают на глубине 2,9 м. Глубина промерзания грунта 1,4 м.

    Населенный пункт имеет пятиэтажную застройку. Все здания оборудованы водопроводом, канализацией и централизованным горячим водоснабжением. В населенном пункте основными потребителями воды являются население (численность 29110 человек), баня, прачечная, промышленное предприятие, а также большой объем воды расходуется на поливку улиц, тротуаров, зеленых насаждений и проездов.

    На железнодорожной станции основными потребителями воды являются локомотивное депо, компрессорная, котельная, дом локомотивных бригад, пассажирское здание (вокзал). Вода расходуется так же на заправку и обмывку вагонов (пассажирских и грузовых), а также на обмывку локомотивов.

    Проектируемая система водоснабжения относится к первой категории надежности подачи воды, т.к. обеспечивает пожаротушение. В проекте принята объединенная система водоснабжения.

    Водопроводная сеть населенного пункта и станции запроектирована по кольцевой схеме, устроена из пластмассовых труб в пределах населенного пункта, чугунных труб на железнодорожной станции, стальных труб при укладке под путями. Она состоит из магистральных и распределительных линий. В проекте рассчитана только магистральная сеть. В результате гидравлического расчета сети устанавливается действительное потокораспределение воды по всем ее участкам, и определяются потери напора на них при принятых диаметрах труб. Гидравлический расчет водопроводной сети на час максимального водопотребления, совпадающего с пожаром, произведен на ЭВМ. В результате этого расчета используются расчётные диаметры труб. Также, с помощью гидравлического расчета сети на ЭВМ, определяются пьезометрические отметки во всех узлах сети применительно к каждому расчетному случаю. По этим данным строится продольный профиль основной магистральной линии, проходящей через диктующую точку сети.

    Минимальный диаметр труб в населённом пункте – 140 мм, а на ж.-д. станции – 150 мм.


    Максимальный суточный расход в населенном пункте и на железнодорожной станции составляет 19519,02 м 3 . Расход воды на пожаротушение принят: 2 пожара в населённом пункте по 25 л/с и 15 л/с в депо. Дополнительно принят расход воды на внутреннее пожаротушение в депо в размере 5 л/с. Общий расход воды на пожаротушение равен 62,5 л/с. В проекте так же найден максимальный часовой расход 1206,51 м 3 , соответствующий времени с 8 до 9 часов.

    Водопроводная сеть рассчитана на два случая работы:

    1) работа водопроводной сети в час максимального водопотребления суток максимальных расходов воды.

    2) работа водопроводной сети в час максимального водопотребления суток максимальных расходов воды с учетом противопожарного расхода.

    Секундный расход воды в час максимального водопотребления равен 353,8 л/с, а подача противопожарного расхода в час максимального водопотребления равна 407,2 л/с.

    По данным расчетов построен график водопотребления по часам суток (рис.1). На этот же график нанесен график подачи воды ВНС II и запроектирована ступенчатая работа насосной станции. Принято: К I =5,36 %Q сут, t 1 =9 ч в период с 6 до 13, с 15 до 17 ; К II =3,45 %Q сут, t 2 = 15 ч в период с 0 до 6, с 13 до 15, с 17 до 24. При этом регулирующий объем водонапорной башни составляет: W рег = 482 м 3 .

    Водонапорная башня установлена в самой высокой точке населенного пункта. Высота водонапорной башни Н ВБ = 32,56 м. К установке принят типовой бак для водонапорной башни емкостью W ВБ = 500 м 3 . Диаметр бака: D б = 10 м. Высота бака: h б = 7 м.

    В проекте выполнен гидравлический расчет кольцевой водопроводной сети по методу В. Г. Лобачева – Х. Кросса на час максимального водопотребления и гидравлический расчет сети на час максимального водопотребления с учетом подачи противопожарного расхода с использованием программы WS2 (Водопроводная сеть, 2-я версия).

    Определение расчетных суточных расходов воды

    Водопроводную сеть рассчитываем на подачу требуемого количества воды в сутки наибольшего водопотребления. Для населенного пункта и железнодорожной станции этот расход включает суточный расход на хозяйственно-питьевые нужды населения; наибольший расчетный расход воды на производственные нужды промышленных предприятий и железнодорожной станции; расход на хозяйственно-питьевые нужды рабочих во время их пребывания на производстве; расход воды на поливку улиц и зеленых насаждений.

    Все вычисления по определению расчетного суточного расхода воды сведим в таблице 1.

    Для заполнения таблицы 1 используем следующие расчетные формулы и нормативные данные , .

    1) Средний суточный расход воды Q cy т ср на хозяйственно-питьевые нужды населения определен по формуле, м 3 /сут:

    Q cy т ср = ,

    где q ж – удельное водопотребление, принимаем по , q ж = 0,6*290 = 174 л/сут (застройка здания, оборудованными внутренним водопроводом и канализацией с централизованным горячим водоснабжением); q ж принимается по СНиП 2.04.02-84 (прил. 1 методич.ук.), в зависимости от степени благоустроенности населенного пункта, климатических условий и санитарно–технического оборудования. Для зданий оборудованных внутренним водопроводом с централизованным горячим водоснабжением составляет 230 - 350 л/с, в проекте принимается равным 290.

    При централизованной системе горячего водоснабжения с непосредственным отбором воды из тепловых сетей до 40% общего расхода воды подается из сети теплоснабжения. Поэтому норму водопотребления принимаем с коэффициентом 0,6

    N ж - расчетное число жителей в районах жилой застройки, чел.

    Вычисление расчетного числа жителей в районах жилой застройки производим по следующей формуле:

    N ж = ρ∙F

    где ρ – заданная плотность населения, чел./га; по заданию ρ = 201 чел/га;

    F - площадь жилой застройки населенного пункта, га, (без учета площади дорог, проездов, зеленых насаждений, территории предприятий). Определяем по плану населенного пункта.

    F = 145,55 га;

    N ж = 200*145,55 = 29110 чел;

    Q cy т ср = 0,174 *29110 = 5065,14 м 3 /сут.

    Максимальный суточный расход Q сут. max на хозяйственно – питьевые нужды населения определяем с учетом коэффициента суточной неравномерности водопотребления К сут. max по формуле, м 3 /сут:

    Q сут мах = К сут мах *Q сут.ср = 1,2*5065,14= 6078,17; м 3 /сут

    где К сут. max –коэффициент, учитывающий уклад жизни населения, режим работы предприятий, степень благоустройства зданий, изменение водопотребления по сезонам года и дням недели, принимаем равным 1,2 (по заданию).

    2)Количество воды на нужды местной промышленности, обеспечивающей население продуктами, и неучтенные расходы принимаем дополнительно в размере 10% расхода воды на хозяйственно – питьевые нужды населения.

    Расходы воды банями и прачечными являются сосредоточенными и характеризуются значительными величинами, поэтому выделяем их в отдельных узлах на сети. Суточные расходы этими водопотребителями определяем по формулам, м 3 /сут:

    · для бани

    где 5 - число мест в бане на 1000 жителей в час;

    100 - количество белья, подлежащего стирке в смену на 1000 жителей, кг;

    t б - продолжительность работы бани в сутки, t б = 16 ч, т.к. баня работает с 7 до 23 ч.;

    q б - норма расхода воды на 1 посетителя; принимается по СНиП 2.04.01-85 (для мытья в мыльной с тазами на скамьях и с ополаскива­нием в душе q 6 = 0,18 м 3);

    · для прачечной

    где n cm - число смен работы прачечной в сутки, n cm = 2;

    q n - норма расхода воды на 1 кг белья; принимается по (для меха­низированных прачечных q n - 0,075 м 3).

    3)Средний и максимальный суточные расходы воды для ТЭЦ определяем по той же методике, что и для населения, приняв норму удельного водопотребления с коэффициентом 0,4.

    q ж = 0,4*290 = 116, л/сут.

    Q сут. ср = q ж *N ж /1000= 116*29110/1000=3376,76 м 3 /сут.

    Q сут мах = К сут мах *Q сут.ср = 1,2*3376,76 = 4052,11 м 3 /сут.

    4) Суточный расход воды железнодорожной станции определяем отдельно по всем водопотребителям, заданным в курсовом проекте. В таблице 1 приведены основные потребители воды на железнодорожной станции и указаны нормы водопотребления для них.

    Нормы водопотребления на технические нужды других потребителей железнодорожной станции принимаем по прил.2.

    При разработке курсового проекта расходы воды на технологические нужды котельной, компрессорной, локомотивного и вагонного депо приведены в задании.

    Расход воды на хозяйственно-питьевые нужды рабочих депо и на прием душа во время их пребывания на производстве учитываем дополнительно к хозяйственно-питьевому водопотреблению населения поселка. Эти дополнительные расходы составляют 0,045 м 3 на 1 человека в смену в горячих цехах и 0,025 м 3 на 1 человека - в холодных цехах.

    Часовой расход воды на 1 душевую сетку принят 500 л при продолжительности пользования душем 45 мин (за это время расход составляет 0,375 м 3 /сут) после окончания каждой смены.

    Количество душевых сеток определяем по расчетному количеству человек на одну душевую сетку, работающих в смене, в зависимости от групп санитарной характеристики производственных процессов. Для группы санитарной характеристики производственных процессов I в расчетное количество человек на 1 душевую сетку равно 5, а для группы IIб – 3 (т.е. для холодных цехов принимаем 5 человек на 1 душевую сетку, а для горячих – 3 , согласно характеристики).

    По максимальному количеству душевых сеток m определяем расход воды на душевые нужды работающих в первую смену по формуле, м 3 /смену:

    Q душΙ = 0,375*m (m – количество сеток)

    Расходы воды на душевые нужды других смен определяем по соотношению работающих по сменам, м 3 /смену:

    Q душΙΙ = Q душΙ Q душΙΙΙ = Q душΙ

    где n Ι , n ΙΙ , n ΙΙΙ – число работающих по сменам.

    Количество душевых сеток в доме локомотивных бригад определяем по среднечасовому количеству (за сутки) локомотивных поездных бригад, прибывающих в депо, с коэффициентом 1,2 неравномерности подхода поездов. В доме локомотивных бригад установлены две душевые сетки, суточный расход воды через которые составляет 0,5∙2∙24 = 24 м 3 (0,5 м 3 - часовой расход на 1 душевую сетку; 24 ч - число часов работы душевых кабин в сутки).

    5) Суточный расход воды промышленным предприятием определяем по той же методике, что и для локомотивного или вагонного депо. Группа санитарной характеристики производственного процесса предприятия приведена в задании и относится к группе I в (т.к. по заданию на предприятии имеются только холодные цеха).

    6)Максимальный суточный расход воды на поливку определяется по числу жителей и удельному среднесуточному потреблению воды на поливку в расчете 50 – 90 л/сут на 1 жителя.

    Принимаем в проекте 70 л/сут на 1 человека.

    Q полив.мах = 70*N ж *n п /1000 = 70*29110*2/1000 = 4075,4 м 3 /сут

    Q полив.ср = Q полив.мах *n полив /12 = 4075,4*6/12 = 2037,7 м 3 /сут,

    где n п – количество поливок в сутки в зависимости от климатических условий, принимаем 2 раза/сут;

    n полив – число месяцев полива в году, принимаем 6 месяцев.