Ударная волна. Источники образования ударной волны Распространение ударной волны

Содержание статьи

УДАРНАЯ ВОЛНА –этораспространяющийся по среде фронт резкого, почти мгновенного, изменения параметров среды: плотности, давления, температуры, скорости. Ударные волны называют также сильными разрывами или скачками. Причины возникновения ударных волн в газах – полеты со сверхзвуковыми скоростями (звуковой удар), истечения с большими скоростями через сопла, мощные взрывы, электрические разряды, интенсивное горение.

Ударные волны в воде носят название гидравлического удара. С этим явлением пришлось столкнуться при устройстве первых водопроводов: первоначально водопроводные задвижки перекрывали воду слишком быстро. Резкое прекращение тока воды вызывало ударную волну (гидравлический удар), распространявшуюся в трубе водопровода и часто вызывавшую разрыв такой трубы. Для решения этой проблемы в России был привлечен Жуковский, и она была успешно решена (1899). Ударные волны существуют и на поверхности воды: при открывании ворот шлюзов, при «запирании» течения реки (бора).

Ударные волны могут возникать и из первоначально непрерывных течений. Любая достаточно интенсивная волна сжатия порождает ударную волну из-за того, что в этих волнах задние частицы движутся быстрее впереди бегущих (нелинейное укручение фронта волны).

Ударные волны являются частью детонационных волн, волн конденсации (хорошо известным примером этого явления служат шлейфы тумана, остающиеся за самолетом при пролете через участки атмосферы с повышенной влажностью), могут возникать при взаимодействии лазерного излучения с веществом (светодетонационные волны). Сход снежной лавины также может рассматриваться как ударная волна.

В твердых телах ударные волны возникают при высокоскоростном соударении тел, в астрофизических условиях – при взрывах звезд.

Одним из примеров ударной волны является катастрофическое нарастание давки в охваченной паникой толпе, протискивающейся через узкий проход. Родственным явлением приходится затор в потоке транспорта. Ударные волны в газах были обнаружены в середине 19 в. в связи с развитием артиллерии, когда возросшая мощь артиллерийских орудий позволила метать снаряды со сверхзвуковой скоростью.

Введение понятия ударной волны приписывают немецкому ученому Бернхарду Риману (1876).

Условия на фронте ударной волны.

При переходе через ударную волну должны выполняться общих законов сохранения массы, импульса и энергии. Соответствующие условия на поверхности волны – непрерывность потока вещества, потока импульса и потока энергии:

(r – плотность, u – скорость, p – давление, h – энтальпия, теплосодержание) газа. Индексом «0» отмечены параметры газа перед ударной волной, индексом «1» – за ней. Эти условия носят название условий Ренкина – Гюгонио, поскольку первыми из опубликованных работ, где были сформулированы эти условия, считаются работы британского инженера Вильяма Ренкина (1870) и французского баллистика Пьера Анри Гюгонио (1889).

Условия Ренкина – Гюгонио позволяют получить давление и плотность за фронтом ударной волны в зависимости от начальных данных (интенсивности ударной волны и давления и плотности перед ней):

h – энтальпия газа (функция r и p ). Эта зависимость носит название адиабаты Гюгонио, или ударной адиабаты (рис. 1).

Фиксируя на адиабате точку, соответствующую начальному состоянию перед ударной волной, получаем все возможные состояния за волной заданной интенсивности. Состояниям за скачками сжатия отвечают точки адиабаты, расположенные левее выбранной начальной точки, за скачками разрежения – правее.

Анализ адиабаты Гюгонио показывает, что давление, температура и скорость газа после прохождения скачка сжатия неограниченно возрастают при увеличении интенсивности скачка. В это же время плотность возрастает лишь в конечное число раз, сколь бы ни была велика интенсивность скачка. Количественно увеличение плотности зависит от молекулярных свойств среды, для воздуха максимальный рост 6 раз. При уменьшении амплитуды УВ она вырождается в слабый (звуковой) сигнал.

Из условий Ренкина – Гюгонио также можно получить уравнение прямой в плоскости , p

называемой прямой Рэлея – Михельсона. Угол наклона прямой определяется значением скорости газа перед ударной волной u 0 , сечение адиабаты Гюгонио этой прямой дает параметры газа за фронтом ударной волны. Михельсон (в России) ввел это уравнение при исследовании воспламенения гремучих газовых смесей в 1890, работы британца лорда Рэлея по теории ударных волн относятся к 1910.

Скачки разрежения.

В воздухе наблюдаются только скачки уплотнения. В этом случае по отношению к среде перед ее фронтом ударной волны движется со скоростью, превышающей скорость звука в этой среде, по среде за ее фронтом волна движется с дозвуковой скоростью. Звуковые волны могут нагнать ударную волну сзади, сама же волна надвигается бесшумно. Привлечение законов термодинамики позволило теоретически обосновать это свойство ударных волн для сред с обычными термодинамическими свойствами (теорема Цемплена). Однако, в средах со специальными термодинамическими свойствами скачки разрежения возможны: известны скачки такого рода в средах с фазовыми переходами, например, пар – жидкость.

Структура ударной волны.

Типичная ширина ударной волны в воздухе – 10 –4 мм (порядка нескольких длин свободного пробега молекул). Малая толщина такой волны дает возможность во многих задачах считать ее поверхностью разрыва. Но в некоторых случаях имеет значение структура ударной волны. Такая задача представляет и теоретический интерес. Для слабых ударных волн хорошее согласие эксперимента и теории дает модель, учитывающая вязкость и теплопроводность среды. Для ударных волн достаточно большой интенсивности структура должна учитывать (последовательно) стадии установления термодинамического равновесия поступательных, вращательных, для молекулярных газов еще и колебательных степеней свободы, в определенных условиях – диссоциацию и рекомбинацию молекул, химические реакции, процессы с участием электронов (ионизацию, электронное возбуждение).

Контактные разрывы.

Ударные волны следует отличать от контактных разрывов, также являющихся поверхностями раздела сред с различными плотностями, температурами и, может быть, скоростями. Но, в отличие от ударных волн, через контактный разрыв нет протекания вещества и давление с обеих его сторон одинаково. Контактные разрывы называют также тангенциальными.

Распад произвольного разрыва.

Поверхность произвольного разрыва, разделяющая две области среды с заданными давлением, плотностью, скоростью, в последующие моменты времени в общем случае перестает существовать (распадается). В результате такого распада может возникнуть две, одна или ни одной ударной волны, а также волны разрежения (являющиеся непрерывными) и контактный разрыв, что может быть рассчитано по начальным данным. Решение этой задачи впервые было сообщено Н.Е.Кочиным (доклад 1924 на первом международном конгрессе по прикладной механике в г. Дельфте (Нидерланды), опубликовано в 1926).

Легко представить практические случаи, которые приводят к задачам такого рода, например, разрыв диафрагмы, разделяющей газы различного давления и т.д. Решение такой задачи актуально для расчета работы ударной трубы.

Ударная труба.

Простейшая ударная труба состоит из камер высокого и низкого давления, разделенных диафрагмой (рис. 2).

После разрыва диафрагмы в камеру низкого давления устремляется толкающий газ из камеры высокого давления, формируя волну сжатия, которая, быстро увеличивая свою крутизну, образует ударную волну. За ударной волной в камеру низкого давления движется контактный разрыв. Одновременно в камеру высокого давления распространяется волна разрежения.

Первые ударные трубы появились в конце 19 в., с тех пор развитие техники ударных труб позволило превратить ударные волны в самостоятельный инструмент для исследований. В ударной трубе можно получить газ, однородно нагретый до 10 000 ° К и выше. Такие возможности широко используются при изучении многих химических реакций, различных физических процессов. В астрофизических исследованиях основными данными являются спектры звезд. Точность интерпретации этих спектров определяется результатами сравнения со спектрами, полученными на ударных трубах.

С конца 1920-х стала развиваться сверхзвуковая аэродинамика. Первая сверхзвуковая аэродинамическая труба в США (в Национальном консультативном комитете по аэронавтике, NACA) была создана к 1927, в СССР – в 1931–1933 (в Центральном аэрогидродинамическом институте), это открыло новые возможности экспериментального исследования ударных волн. Сверхзвуковое течение качественно отличается от дозвукового, в первую очередь, наличием ударных волн. Возникновение ударных волн приводит к значительному повышению сопротивления движущихся тел (столь значительному, что возник термин – волновой кризис), а также к изменению действующих на эти тела тепловых нагрузок. Вблизи ударных волн эти нагрузки очень велики и, если не предприняты соответствующие меры защиты, может произойти прогорание корпуса летательного аппарата и его разрушение. Крайне важная проблема в аэродинамике – предотвращение бафтинга (появления нестационарных ударных волн у поверхности летательного аппарата). При бафтинге действие динамических и тепловых нагрузок становится переменным по времени и месту приложения, противостоять таким нагрузкам намного сложнее.

Косые и прямые ударные волны.

В поле течения ударная волна может быть перпендикулярной невозмущенному течению (прямая ударная волна) или составлять с невозмущенным течением некоторый угол (косая ударная волна). Прямые ударные волны обычно создаются в специальных экспериментальных устройствах – ударных трубах. Косые ударные волны возникают, например, при сверхзвуковом обтекании тел, при истечении газа из сверхзвуковых сопел и т.п.

Есть еще одна классификация ударных волн. Примыкающие к твердой поверхности волны носят название присоединенных, не имеющие точек соприкосновения – отошедших. Отошедшие ударные волны возникают при сверхзвуковом обтекании затупленных тел (например, сферы), присоединенные волны имеют место в случае остроконечных тел (клина, конуса); такие волны не столько тормозят течение, сколько резко разворачивают его, так что и за ударной волной течение остается сверхзвуковым.

В ряде случаев газодинамическая теория допускает оба случая течения за фронтом присоединенной волны и сверхзвуковое (в этом случае ударная волна называется слабой), и дозвуковое течение (сильная ударная волна).

Экспериментально наблюдаются только такие ударные волны.

Регулярное и маховское отражение волн.

В зависимости от угла падения ударной волны на препятствие волна может отражаться непосредственно на поверхности препятствия или на некотором расстоянии от него. Во втором случае отражение называется трехволновым, поскольку в этом случае возникает третья ударная волна, соединяющая падающую и отраженную волны с поверхностью препятствия.

Впервые зафиксированное австрийским ученым Эрнстом Махом в 1878, трехволновое отражение получило также название маховского, для отличия от двухфронтового (или регулярного) отражения.

Выполненный Махом эксперимент, позволивший обнаружить трехволновой режим отражения, заключался в следующем (рис. 5): в двух точках, расположенных на некотором расстоянии друг от друга, одновременно проскакивали две искры, порождавшие две сферических ударных волны.

Распространяясь над поверхностью, зачерненной сажей, эти волны оставляли отчетливый след точек их пересечения, начинающийся посередине между точками инициализации волн, а затем идущий по срединному перпендикуляру отрезка, соединяющего эти точки инициализации. Далее отрезок на концах разделялся на две симметрично расходящиеся линии. Полученная картина соответствует тому, что на ранней стадии взаимодействия ударные волны отражаются друг от друга так, как будто происходит отражение в регулярном режиме от воображаемой плоскости, расположенной посередине между точками инициализации волн. Затем образуется скачок Маха, соединяющий соответствующие точки кривых, приведенных на рис. 3. Поскольку на зачерненной поверхности остаются лишь траектории точек пересечения волн, Мах продемонстрировал впечатляющую проницательность, сумев расшифровать смысл полученных следов.

Задача о сильном взрыве.

К 1945 было создано мощное оружие разрушения – атомная бомба. Оценка последствий ядерного взрыва во многом связана с расчетом воздействия образовавшейся в результате взрыва ударной волны. Такая задача, называемая задачей о сильном взрыве, впервые была решена Л.И.Седовым в СССР (опубликовано в 1946), получившим точное аналитическое решение поставленной задачи (в виде конечных формул). В 1950 опубликовал свое исследование этой же задачи (с использованием приближенных численных методов) Дж. Тейлор (США).

Сходящаяся ударная волна.

Впервые задача о фокусировке ударной волны была сформулирована и решена Г.Гудерлеем в Германии (1942) и независимо Л.Д.Ландау и К.П.Станюковичем в СССР (опубликовано в 1955). По мере приближения волны к центру фокусировки происходит концентрация энергии и ударная волна усиливается. В моменты, близкие к фокусировке, волна выходит на некоторый предельный (называемый автомодельным) режим, когда предшествующие условия создания и распространения ударной волны не важны. Сходящиеся ударные волны позволяют получать гигантские давления и температуры в точке фокусировки, в настоящее время изучение таких волн – одно из перспективных направлений создания управляемого термоядерного синтеза.

Устойчивость ударной волны.

Если условия течения таковы, что его малые возмущения имеют тенденцию к росту, то со временем рост этих возмущений может привести к изменению режима течения или даже к полному его разрушению. Специальные исследования устойчивости УВ в среде с общими свойствами впервые проведены в СССР (С.П.Дьяков, 1954, и В.М.Конторович, 1957 – уточнение результатов Дьякова). Были определены области устойчивости (затухание возмущений) и неустойчивости (рост возмущений), нейтральной устойчивости (ударная волна не реагирует на возмущения), а также обнаружена область спонтанного излучения звука поверхностью ударной волны. Простые расчеты, основанные на полученных результатах, показали, что в воздухе ударная волна абсолютно устойчива. Вместе с тем, неустойчивость проявляется, например, у детонационных волн, что приводит к особенностям распространения волн такого рода: галопирующая и спиновая детонация, ячеистая структура детонационных волн.

Тенденция даже слабых волн сжатия к опрокидыванию приводит к тому, что звуковые волны переходят в слабые скачки и более уже не распространяются со звуковой скоростью – скорость слабого скачка равна полусумме скоростей звука в среде до скачка и после него. В этом сложность экспериментального определения точной скорости звука. Теория дает следующие результаты – в воздухе (при нормальных условиях) 332 м/с, в воде (при 15 ° С) 1490 м/с.

Число Маха.

Отношение скорости течения к скорости звука – важная характеристика течения и носит название числа Маха:

u – скорость газа, a – скорость звука. При сверхзвуковом течении число Маха больше единицы, при дозвуковом – меньше единицы, при течении со звуковой скоростью – равно единице.

Предложил название «число Маха» швейцарский ученый Якоб Аккерет в знак признания заслуг Э.Маха в области исследования сверхзвуковых течений.

Угол Маха.

Для источника слабых возмущений, обтекаемого сверхзвуковым потоком, наблюдается интересное явление: четко выраженные границы поля возмущений – линии Маха (рис. 6). При этом синус образованного линией Маха и направлением основного течения угла есть обратное число Маха: .

Этого и следовало ожидать, так как скорость распространения слабых возмущений поперек направления набегающего потока есть скорость звука. Чем больше скорость набегающего потока, тем уже делается угол Маха.

Взаимодействие ударных волн с пограничным слоем.

В пограничном слое, возникающем вблизи ограничивающих поток стенок, происходит торможение потока до нулевых скоростей на стенке (условие «прилипания»). Фронт ударной волны, взаимодействующей с пограничным слоем, претерпевает изменения: образуется, так называемый, l -образный скачок (лямбда-образный скачок, по сходству конфигурации такого скачка с греческой буквой лямбда, рис. 7).

При течении в канале с развитыми пограничными слоями у стенок прямой скачок заменяется Х -образным скачком, составленным двумя l -образными скачками (обычным и перевернутым). За фронтом такого скачка происходит нарастание толщины пограничного слоя, пограничный слой турбулизуется, могут образовываться другие Х -образные скачки и, в конце концов, может возникнуть ситуация, когда падение скорости потока от сверхзвуковой до дозвуковой происходит в сложной системе скачков и неодномерного течения – псевдоскачке.

Теория мелкой воды.

Сверхзвуковое течение, как оказалось, аналогично течению воды (или другой несжимаемой жидкости) в открытом водоеме, глубина которого достаточно мала («мелкая» вода) и на жидкость действует сила тяжести. Формально аналогия проявляется в том, что уравнения, описывающие соответствующие движения и газа, и воды, оказываются одинаковыми. Используя это свойство можно совершенно ясно наблюдать явления, происходящие в сверхзвуковом потоке. Например, в обычном быстротекущем ручейке отчетливо видны аналоги отошедших и присоединенных ударных волн, картины процесса возникновения ударной волны при обтекании криволинейной стенки, пересечения и отражения ударных волн, распространения возмущений от точечного источника – линий Маха, картины истечения сверхзвуковых струй в область покоящегося газа, Х -образных скачков и т.п. Впервые обратившим внимание на такую аналогию считается Д.Рябушинский (Франция, 1932).

Андрей Богданов

Органические растворители - химические соединения для растворения твердых веществ (смол, пластмасс, красок и т.д.). В эту группу входят спирты, эфиры, хлорированные углеводороды, кетоны, углеводороды и т.п.

Понятие об ударной волне, ее характеристики

Быстрое и неконтролируемое высвобождение энергии порождает взрыв.

Высвобождаемая энергия проявляется в виде теплоты, света, звука и механической ударной волны. Источником взрыва чаще служит химическая реакция. Но взрывом могут быть высвобождения механической и ядерной энергии (паровой котел, ядерный взрыв). Горючие, пыль, газ и пар в смеси с воздухом (веществом, поддерживающим горение) способны взрываться при зажигании. В технологических процессах невозможно полностью исключить вероятность образования взрывоопасной ситуации. Одним из основных поражающих факторов взрыва является ударная волна.

Ударная волна - это область резкого сжатия среды, которая в виде сферического слоя распространяется во все стороны от места взрыва со сверхзвуковой скоростью.

Ударная волна образуется за счет энергии, выделяемой в зоне реакции. Возникшие при взрыве пары и газы, расширяясь, производят резкий удар по окружающим слоям воздуха, сжимают их до больших давлений и плотностей и нагревают до высоких температур. Эти слои воздуха приводят в движение последующие слои. И так, сжатие и перемещение воздуха происходит от одного слоя к другому, образуя ударную волну. Величина давления изменяется во времени в точке пространства при прохождении через нее ударной волны. С приходом ударной волны в данную точку давление достигает максимального Рф = Ро + ΔРф, где Ро атмосферное давление. Образовавшиеся слои сжатого воздуха называют фазой сжатия. После прохождения волны давление уменьшается, становится ниже атмосферного. Эта зона пониженного давления называется фазой разрежения.

Непосредственно за фронтом ударной волны движутся массы воздуха. Вследствие торможения этих масс воздуха при встрече с преградой возникает давление скоростного напора воздушной ударной волны.

Основными характеристиками поражающего действия ударной волны являются:

- Избыточное давление во фронте ударной волны (Рф) - это разность между максимальным давлением во фронте ударной волны и нормальным атмосферным давлением (Ро), измеряется в Паскалях (Па). Избыточное давление во фронте ударной волны рассчитывается по формуле:

где: ΔРф - избыточное давление, кПа;

qэ - тротиловый эквивалент взрыва (qэ = 0,5q, q - мощность взрыва, кг);

R - расстояние от центра взрыва, м.

- Давление скоростного напора - это динамическая нагрузка, создаваемая потоком воздуха; скоростной напор Рек зависит от скорости и плотности воздуха.

где V - скорость частиц воздуха за фронтом ударной волны, м/с;

ρ - плотность воздуха, кг/куб.м.

-Длительность фазы сжатия, то есть время действия повышенного давления.

τ = 0,001 q1/6 R1/2,

где R в метрах, q в килограммах и τ - в секундах.

Ударная волна в воде отличается от воздушной тем, что на одних и тех же расстояниях давление во фронте ударной волны в воде гораздо больше, чем в воздухе, а время действия меньше. Волны сжатия в грунте в отличие от ударной волны в воздухе характеризуются менее резким увеличением давления во фронте волны и более медленным ослаблением за фронтом.

Ударная волна может нанести человеку травматические поражения и быть причиной его гибели. Поражение может быть непосредственным или косвенным. Непосредственное поражение возникает от действия избыточного давления и скоростного напора воздуха. Ударная волна подвергает человека сильному сжатию в течение нескольких секунд. Скоростной напор может привести к перемещению тела в пространстве. Косвенное поражение человека может быть результатом ударов обломков, летящих с большой скоростью.

Характер и степень поражения человека зависят от мощности и вида взрыва, расстояния, а также от места нахождения и положения человека. Крайне тяжелые контузии и травмы возникают при избыточном давлении более 100 кПа (1 кгс/кв.см): разрывы внутренних органов, переломы гостей, внутренние кровотечения и т.п. При избыточных давлениях от 60 до 100 кПа (от 0,6 до 1 кгс/кв.см) имеют место тяжелые контузии и травмы: потеря сознания, переломы костей, кровотечение из носа и ушей, возможны повреждения внутренних органов. Средней тяжести поражения возникают при избыточном давлении 40-60 кПа (0,4-0,6 кгс/кв.см): вывихи, повреждения органов слуха и т.п. И легкие поражения при давлении, 20-40 кПа (0,2-0,4 кгс/кв.см). Ударная волна оказывает механическое воздействие на здания, сооружения, может вызвать их разрушение. Здания с металлическим каркасом получают средние разрушения при 20-40 кПа и полные при 60-80 кПа, здания кирпичные при 10-20 кПа и 30-40, здания деревянные при 10 и 20 кПа.

При ядерном взрыве в атмосфере примерно 50% энергии взрыва расходуется на образование ударной волны. В зоне реакции давление достигает миллиардов атмосфер (до 10 млрд. Па). Воздушная ударная волна ядерного взрыва средней мощности проходит 1000 м за 1,4 с, а 5000 за 12 С. Избыточное давление во фронте ударной волны составляет на расстоя­нии от взрыва 2,2 км 100 кПа (1 кгс/кв.см), 5,3 км 30 кПа (0,3 кгс/кв.см).

Защитное заземление

Существуют следующие способы защиты, применяемые отдельно или в сочетании друг с другом: защитное заземление, зануление, защитное отключение, электрическое разделение сетей разного напряжения, применение малого напряжения, изоляция токоведущих частей, выравнивание потенциалов.

В электроустановках (ЭУ) напряжением до 1000 В с изолированной нейтралью и в ЭУ постоянного тока с изолированной средней точкой применяют защитное заземление в сочетании с контролем изоляции или защитное отключение.

В этих электроустановках сеть напряжением до 1000 В, связанную с сетью напряжением выше 1000 В через трансформатор, защищают от появления в этой сети высокого напряжения при повреждении изоляции между обмотками низшего и высшего напряжения пробивным предохранителем, который может быть установлен в каждой фазе на стороне низшего напряжения трансформатора.

В электроустановках напряжением до 1000 В с глухозаземленной нейтралью или заземленной средней точкой в ЭУ постоянного тока применяется зануление или защитное отключение. В этих ЭУ заземление корпусов электроприемников без их заземления запрещается.

Защитное отключение применяется в качестве основного или дополнительного способа защиты в случае, если не может быть обеспечена безопасность применением защитного заземления или зануления или их применение вызывает трудности.

При невозможности применения защитного заземления, зануления или защитного отключения допускается обслуживание ЭУ с изолирующих площадок.

Взрывная волна

порожденное взрывом движение среды. Под воздействием высокого давления газов, образовавшихся при взрыве, первоначально невозмущённая среда испытывает резкое сжатие и приобретает большую скорость. Состояние движения передаётся от одного слоя среды к другому так, что область, охваченная В. в., быстро расширяется. На фронте расширяющейся области среда скачком переходит из исходного невозмущённого состояния в состояние движения с более высокими давлением, плотностью и температурой. Происходящее скачком изменение состояния среды - Ударная волна - распространяется со сверхзвуковой скоростью.

В. в. характеризуется изменением давления, плотности и скорости среды с течением времени в различных точках пространства или распределением этих величин в пространстве в фиксированные моменты времени.

Одним из важных параметров, определяющих механическое действие В. в., служит создаваемое волной максимальное давление. При взрывах в газообразных и жидких средах максимальное давление достигается в момент сжатия среды в ударной волне. Др. важным параметром является интервал времени действия В. в. По мере удаления от места взрыва максимальное давление уменьшается, а время действия увеличивается (рис. 1 ).

При распространении В. в. в твердых средах ударный фронт сравнительно быстро исчезает, и В. в. превращается в ряд последовательных быстро затухающих колебаний, распространяющихся со скоростью упругих волн.

В. в. обладают свойством подобия. В соответствии с этим свойством при взрывах зарядов химического взрывчатого вещества одинаковой формы, но различной массы, расстояния, на которых максимальное давление во В. в. имеет одно и то же значение, относятся между собой как кубические корни из масс зарядов. В том же отношении изменяется интервал времени действия В. в. Например, если увеличить расстояния и интервал времени, приведённые на рис. 1 , в 10 раз, то такая В. в. будет соответствовать взрыву уже не 1 кг, а 1 т тринитротолуола (тротила).

В. в. имеет тенденцию к быстрой утрате особенностей, обусловленных природой взрыва, так что её последующее движение в основном определяется лишь величиной энергии, передаваемой окружающей среде. Благодаря этому обстоятельству В. в., порожденные в одной и той же среде взрывами разного типа, в основных чертах оказываются подобными, что позволяет ввести для характеристики взрывов так называемый Тротиловый эквивалент .

Распространяющаяся В. в. затрачивает на нагревание среды вблизи очага взрыва значительную часть своей механической энергии. Например, на расстоянии 10 км воздушная В. в., порожденная взрывом 1000 т химического взрывчатого вещества, содержит примерно 10% первоначальной энергии взрыва, а при ядерном взрыве той же энергии - вдвое меньше (из-за бо́льших потерь на нагревание воздуха). Максимальное повышение давления в волне для указанных значений расстояния и энергии взрыва измеряется сотнями н/м 2 (тысячными долями кгс/см 2). На больших расстояниях В. в. представляет собой звуковую волну (или упругую волну в твёрдой среде).

Звуковые волны в атмосфере (или упругие волны в земной коре), порождённые взрывами достаточно большой энергии, могут быть зарегистрированы специальными приборами (микробарографами, Сейсмограф ами и др.) на очень больших расстояниях. Например, при взрывах с энергией порядка 10 13 дж (несколько тысяч т тринитротолуола) волны регистрируются на расстояниях в нескольких тысяч км, а при энергиях взрывов Взрывная волна 10 16 дж (нескольких млн. т ) - практически в любой точке земного шара. На таких больших расстояниях В. в. представляет собой длинную последовательность колебаний атмосферного давления (или колебаний почвы - при подземных взрывах) очень низкой частоты (рис. 2 ).

Лит.: Расчет точечного взрыва с учетом противодавления, М., 1957; Седов Л. И., Методы подобия и размерности в механике, 4 изд., М., 1957; Ляхов Г. М., Покровский Г. И., Взрывные волны в грунтах, М., 1962; Губкин К. Е., Распространение взрывных волн, в сб.: Механика в СССР за 50 лет, т. 2, М., 1970.

К. Е. Губкин.

Изменение давления со временем в воздушной взрывной волне на расстояниях 1 м , 2,7 м и 11 м от центра взрыва сферического заряда тринитротолуола массой 1 кг .

Запись колебаний атмосферного давления в воздушной волне на расстоянии 11 500 км от места взрыва с энергией 1016 дж. Волна пробегает такое расстояние примерно за 10 ч.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Взрывная волна" в других словарях:

    Порождённое взрывом движение среды. Под воздействием высокого давления газов, образовавшихся при взрыве, окружающая очаг взрыва среда испытывает сжатие и приобретает большую скорость. Движение передаётся от одного слоя к другому, так что область … Физическая энциклопедия

    Современная энциклопедия

    Взрывная волна - ВЗРЫВНАЯ ВОЛНА, возникающее в результате взрыва движение среды. Скачкообразное изменение состояния вещества на фронте взрывной волны распространяется со сверхзвуковой скоростью (смотри Ударная волна). Поверхность фронта взрывной волны непрерывно… … Иллюстрированный энциклопедический словарь

    - (a. blast wave, blast air, explosive wave; н. Explosionswelle; ф. onde explosive; и. onda explosiva) процесс кратковременного нарушения равновесного состояния среды (газообразной, жидкой или твёрдой), распространяющийся из взрывного… … Геологическая энциклопедия

    Ударная волна, возникающая при взрыве. Фронт взрывной волны движется от центра взрыва со скоростью, превышающей скорость звука, при этом поверхность фронта взрывной волны монотонно увеличивается, а скорость ее движения и интенсивность убывают … Большой Энциклопедический словарь

    Порожденное взрывом движение среды, при котором происходит резкое повышение ее плотности, давления и температуры. Происходящее скачком изменение состояния среды ударная волна распространяется со сверхзвуковой скоростью. На больших расстояниях… … Морской словарь

    Взрывная волна - порождаемая взрывом область сильного сжатия среды (газообразной, жидкой или твердой), быстро распространяющаяся во все стороны от места взрыва. Импульс от одного слоя к др. передается за счет ударного сжатия, вызывающего в среде скачок уплотнения … Российская энциклопедия по охране труда

    ВЗРЫВНАЯ ВОЛНА - (ударная волна) упругая деформация среды, в которой произошёл (см.) В. в. представляет собой область сильного сжатия среды (воздуха, воды, земли), распространяющуюся от места взрыва со сверхзвуковой скоростью. Образуется в результате расширения… … Большая политехническая энциклопедия

    Область сжатой продуктами взрыва среды, распространяющаяся от места взрыва со сверхзвуковой скоростью. На внешней границе этой области, представляющей собой фронт ударной волны, среда скачком переходит в состояние движения с более высокими… … Словарь черезвычайных ситуаций

    взрывная волна - — Тематики нефтегазовая промышленность EN detonation waveexplosion waveblast wave … Справочник технического переводчика

    Ударная волна, возникающая при взрыве. Фронт взрывной волны движется от центра взрыва со скоростью, превышающей скорость звука, при этом поверхность фронта взрывной волны монотонно увеличивается, а скорость её движения и интенсивность убывают. *… … Энциклопедический словарь

Книги

  • Криминальные войны РУОП , П. Дашкова , А. Молчанов , С. Устинов , Б. Руденко , А. Волос , А. Сергеев , Кто самый серьезный противник РУОП? Как разрабатываются операции по внедрению в организованные преступные группировки? Какова специфика работы для настоящих мужчин? Кто такие бойцы в масках?… Категория: Отечественный мужской детектив Издатель:

Ударная волна

Со словом «волна» в житейской практике связано представление о периодическом процессе, наглядным примером которого является волнение на море. Покачаться на «волнах» – излюбленное развлечение купальщиков.

В физике пользуются словом «волна» в более широком смысле и говорят о распространении волны и в том случае, когда местное повышение или понижение давления вызвано однократным ударом, взрывом или засосом воздуха.

Очень своеобразно выглядит воздушная волна, создаваемая взрывом. (Мы уже говорили, что воздушную волну можно сфотографировать, поэтому слово «выглядит» вполне подходит к волне давления.)

На рис. 128 изображен мгновенный профиль такой взрывной волны – кривая изображает распределение давления вдоль какого-либо направления распространения волны. Профиль волны составляется постепенным подъемом, завершающимся отвесным спуском. Направление движения волны показано на схеме слева направо. Участки воздуха, расположенные правее фронта, в рассматриваемое мгновение покоятся – до них волна еще доберется.

Основная особенность описываемой взрывной или, как ее называют, ударной волны – это резкий скачок давления на «фронте»; точки, находящиеся в покое, захватываются максимумом давления практически мгновенно: частица воздуха только что находилась при атмосферном давлении, а в следующее мгновение давление в этом месте максимально. Затем по мере дальнейшего продвижения ударной волны давление в точке, на которой мы остановили внимание, будет постепенно падать в соответствии с профилем левого пологого склона горки.

На рис. 128 изображено распределение давления вдоль какой-либо линии распространения волны. Волна распространяется в пространстве, и фронтом является поверхность.

Фронт ударной волны несет с собой скачок не только давления, но также и плотности и температуры.

Кроме изменения давления и температуры ударная волна несет с собой и движение. И в звуковой волне воздух приходит в движение вдоль линии распространения волны, но там это явление мало заметно. В ударной волне воздух увлекается столь сильно, что «увлечение» становится слишком мягким словом. Ударная волна создает сильнейший ветер, ураган… Для движения в мощных ударных волнах, пожалуй, и вообще не подберешь подходящего слова.

Скачок свойств, о котором мы говорим, исключительно резок – переход от полного покоя к максимальной скорости движения происходит на отрезке пути, равном нескольким длинам свободного пробега газовой молекулы. Для воздуха это субмикроскопическая величина порядка стотысячных долей сантиметра. Время скачка измеряется десятимиллиардными (10 ?10) долями секунды. Такое поистине мгновенное изменение состояния давления, плотности, температуры, скорости движения и есть признак ударной волны.

В зависимости от силы взрыва скачок давления, который несет с собой ударная волна, или, другими словами, высота фронта, может быть весьма различной: в момент прихода ударной волны может возрасти давление от нескольких процентов до десятков раз.

Значения скачков всех величин на фронте ударной волны связаны одно с другим. Зная величину скачка давления, можно рассчитать также и величину скачка плотности, температуры и скорости движения. Высота фронта определяет также и скорость распространения ударной волны. Скорость слабых ударных волн не отличается от скорости распространения обычной звуковой волны. По мере роста высоты фронта растет и скорость распространения ударной волны.

Приведем цифровые данные для «скромной» ударной волны, увеличивающей давление в полтора раза. Оказывается, что такое возрастание давления влечет за собой увеличение плотности воздуха на 30 % и повышение температуры на 35°. Скорость фронта такой ударной волны около 400 м/с. Уже при относительно небольшом скачке давления в 1,5 раза ударная волна будет увлекать с собой воздух со скоростью около 100 м/с, т.е. 360 км/ч. Такой скорости ветра не даст ни один ураган.

Однако возможны взрывы, способные создать несравненно более сильные ударные волны. Если волна несет с собой десятикратное возрастание давления, то на фронте волны происходит скачкообразное увеличение плотности в четыре раза и возрастание температуры на 500°. Скорость ветра достигает при этом 725 м/с. Скорость распространения такой ударной волны равна уже 1 км/с.

Ударные волны, порождаемые сильными взрывами, распространяются на десятки километров. Скачок свойств, который несет с собой ударная волна, действует как резкий удар на препятствия, встречающиеся на пути волны. Слабые ударные волны вышибают оконные стекла, разрушают стены домов, вырывают с корнем деревья. Разрушительное действие минометов во многом основано на действии ударных волн.

Разрушительное действие ударных волн резко зависит от многих обстоятельств и в особенности от длительности действия волны. Чтобы все же дать некоторое представление о связи разрушительного действия волны с основным ее параметром – повышением давления, укажем, что ударная волна с фронтом высотой всего лишь 2 % способна вышибать стекла, а волна, несущая увеличение давления вдвое, ломает толстые стены.

Из книги Революция в физике автора де Бройль Луи

2. Частица и волна, связанная с ней В чем же в основном заключалась задача? По существу в установлении определенного соответствия между распространением некоей волны и движением частицы, причем величины, описывающие волну, должны быть связаны с динамическими

Из книги Откровения Николы Теслы автора Тесла Никола

Из книги Эволюция физики автора Эйнштейн Альберт

Что такое волна? Какая-нибудь сплетня, пущенная в Вашингтоне, очень быстро доходит до Нью-Йорка, несмотря на то что ни одно лицо, принимавшее участие в ее распространении, не передвигалось между этими двумя городами. Имеются два совершенно различных способа передачи или

Из книги Движение. Теплота автора Китайгородский Александр Исаакович

Звуковая волна Если бы звук распространялся мгновенно, то все частицы воздуха колебались бы, как одна. Но звук распространяется не мгновенно, и объемы воздуха, лежащие на линии распространения, приходят в движение по очереди, как бы подхватываются волной, идущей от

Из книги Как понять сложные законы физики. 100 простых и увлекательных опытов для детей и их родителей автора Дмитриев Александр Станиславович

Ударная волна Со словом «волна» в житейской практике связано представление о периодическом процессе, наглядным примером которого является волнение на море. Покачаться на «волнах» – излюбленное развлечение купальщиков.В физике пользуются словом «волна» в более

Из книги Атомная проблема автора Рэн Филипп

17 Стоячая волна, или Буря в стакане воды Для опыта нам потребуются: большая пластмассовая миска (можно взять широкую пластиковую бутылку с отрезанным горлышком), миксер. Раз уж мы начали про веревки, подумаем, какие законы физики можно изучить с помощью веревки. Жидкости

Из книги автора

18 Звуковая стоячая волна Для опыта нам потребуются: пустая бутылка, узкий колпачок от фломастера или пустая ручка без стержня. Волна, которую мы пускали по веревке, почти ничем не отличается от волн, которые летают вокруг нас по воздуху и которые мы слышим как звуки.

Из книги автора

I. Ударная волна При определении действия ударной волны обычно руководствуются следующей формулой: механическое действие взрыва, или действие ударной волны, пропорционально корню кубическому из мощности бомбы.Как надо понимать эту формулу?Кубический корень из 2000 равен

Структура ударной волны

Ширина ударных волн большой интенсивности имеет величину порядка длины свободного пробега молекул газа (более точно - ~10 длин свободного пробега, и не может быть менее 2 длин свободного пробега; данный результат получен Чепменом в начале 1950-х). Так как в макроскопической газодинамике длина свободного пробега должна рассматриваться равной нулю, чисто газодинамические методы непригодны для исследований внутренней структуры ударных волн большой интенсивности.

Для теоретического изучения микроскопической структуры ударных волн применяется кинетическая теория. Аналитически задача о структуре ударной волны не решается, но применяется ряд упрощённых моделей. Одной из таких моделей является модель Тамма-Мота-Смита.

Скорость распространения ударной волны

Скорость распространения ударной волны в среде превышает скорость звука в данной среде. Превышение тем больше, чем выше интенсивность ударной волны (отношение давлений перед и за фронтом волны): (p уд.волны - p сп.среды)/ p сп.среды.

Например, недалеко от центра ядерного взрыва скорость распространения ударной волны во много раз выше скорости звука. При удалении с ослаблением ударной волны, скорость её быстро снижается и на большой дистанции ударная волна вырождается в звуковую (акустическую) волну, а скорость её распространения приближается к скорости звука в окружающей среде. Ударная волна в воздухе при ядерном взрыве мощностью 20 килотонн проходит дистанции: 1000 м за 1,4 с, 2000 м - 4 с, 3000 м - 7 с, 5000 м - 12 с. Поэтому у человека, увидевшего вспышку взрыва, есть какое-то время для укрытия (складки местности, канавы и пр.) и тем самым уменьшения поражающего воздействия ударной волны (если, конечно, человек не ослепнет от вспышки).

Ударные волны в твёрдых телах (например, вызванные ядерным или обычным взрывом в скальной породе, ударом метеорита или кумулятивной струёй) при тех же скоростях имеют значительно большие давления и температуры. Твёрдое вещество за фронтом ударной волны ведёт себя как идеальная сжимаемая жидкость, то есть в нём как бы отсутствуют межмолекулярные и межатомные связи, и прочность вещества не оказывает на волну никакого воздействия. В случае наземного и подземного ядерного взрыва ударная волна в грунте не может рассматриваться, как поражающий фактор, так как она быстро затухает; радиус её распространения невелик и будет целиком в пределах размеров взрывной воронки, внутри которой и без того достигается полное поражение прочных подземных целей.

Детонация

Детонация - это режим горения, в котором по веществу распространяется ударная волна, инициирующая химические реакции горения, в свою очередь, поддерживающие движение ударной волны за счёт выделяющегося в экзотермических реакциях тепла. Комплекс, состоящий из ударной волны и зоны экзотермических химических реакций за ней, распространяется по веществу со сверхзвуковой скоростью и называется детонационной волной. Фронт детонационной волны - это поверхность гидродинамического нормального разрыва.

Скорость распространения фронта детонационной волны относительно исходного неподвижного вещества называется скоростью детонации . Скорость детонации зависит только от состава и состояния детонирующего вещества и может достигать нескольких километров в секунду как в газах, так и в конденсированных системах (жидких или твёрдых взрывчатых веществах). Скорость детонации значительно превышает скорость медленного горения, которая всегда существенно меньше скорости звука в веществе и не превышает десятков сантиметров в секунду или нескольких метров в секунду (при горении водород-кислородных смесей).

Многие вещества способны как к медленному горению, так и к детонации. В таких веществах для распространения детонации её необходимо инициировать внешним воздействием (механическим или тепловым). В определённых условиях медленное горение может самопроизвольно переходить в детонацию.

Детонацию, как физико-химическое явление, не следует отождествлять со взрывом.

Взрыв - это процесс, в котором за короткое время в ограниченном объёме выделяется большое количество энергии и образуются газообразные продукты взрыва, способные совершить значительную механическую работу или вызвать разрушения в месте взрыва. Взрыв может иметь место и при воспламенении и быстром сгорании газовых смесей или взрывчатых веществ в ограниченном пространстве, хотя при этом детонационная волна не образуется. Так, быстрое (взрывное) сгорание пороха в стволе артиллерийского орудия в процессе выстрела не является детонацией. Стук, возникающий в двигателях внутреннего сгорания при взрывном сгорании топлива, также называют детонацией.