Расстояние от края отверстия до края детали. Расчет и конструирование болтовых соединений

Для обмера деталей необходимо приобрести навыки в пользовании измерительными инструментами.

При обмере деталей приходится измерять: 1) диаметральные размеры, 2) толщины, 3) расстояния между отверстиями, 4) криволинейные контуры.

Измерение линейных размеров. Для определения линейных разме­ров детали пользуются стальным метром или стальной линейкой, штанген­циркулем, глубиномером и др.

На фиг. 222 приведён пример обмера пустотелого цилиндра. Сталь­ной линейкой измерена высота стакана H и глубина h. Измерения вели­чины H и h позволяют определить толщину донышка b, которая равна разности H - h = b = 8 мм

При необходимости сделать более точные замеры следовало бы измерения произвести штангенциркулем и глубиномером.

Измерение диаметральных размеров. Измерение внутренних и наружных размеров детали производится при помощи нутромера и крон­циркуля. Нутромером измеряются внутренние поперечные, а кронцир­кулем-наружные размеры. На главном виде (фиг. 222) показан приём измерения внутреннего диаметра стакана d 1 , а на плане-приём измерения наружного диаметра D. Измеренные таким образом размеры переносятся на стальную линейку. Если взять разность этих измерений и разделить пополам, то получим толщину стенки стакана b 0 , равную (D - d 1)/2.

Для более точных измерений диаметров применяется штангенциркуль или штихмас.

Измерение толщины стенок. Толщина стенок для полых деталей может быть определена так, как показано на фиг. 222. Толщина стенок может быть измерена и кронциркулем 3.

В тех случаях, когда измерить толщину стенки этим способом невозможно, так как кронциркуль нельзя вынуть без раскрытия ножек, пользуются линейкой (фиг. 223).

Определение расстояния от опорной поверхности до центра отверстия. Для того чтобы определить расстояние h 2 от опорной поверх­ности стакана до центра отверстия диаметра d, прикладывают линейку так, чтобы её кромка с делениями заняла положение, отмеченное циф­рой 1 (фиг. 222). Затем по линейке делают отсчёт h 1 . Тогда центр отверстия будет на высоте h 2 = h 1 +d/2 , при этом имеется в виду, что диаметр отверстия d измерен был раньше.

Расстояние до центра отверстия можно определить: 1) с помощью линейки и 2) с помощью кронциркуля и линейки (фиг. 223).

1- й способ. Прикладывают линейку 3 вдоль вертикальной оси фланца и делают отсчёты: h 1 = 34 мм и h = 86 мм.

h 0 = (h 1 + h)/2 = 60 мм.

2- й способ. Прикладывают линейку, как и в первом способе. Отсчитывают h 1 = 34 мм. Кронциркулем З измеряют диаметр фланца D = 52 мм.

h 0 = h 1 + D/2 = 60 мм.

Для этой же фигуры приведён пример определения вылета фланца (размера l 0).

Вылет фланца определяется так же, как и расстояние центра отверстия до опорной поверхности.

l 0 = (l 1 + l)/2 = (18 + 78)/2 = 48 мм.

Определение расстояния между центрами отверстий . Отверстия на деталях могут быть расположены в один ряд, параллельными рядами, в шахматном порядке, по окружностям и т. д.

Пример 1 (фиг. 224). Для определения расстояния между цент­рами двух отверстий одинакового диаметра пользуются нутромером, линейкой или штангенциркулем. На этой фигуре показаны приёмы изме­рения нутромером и линейкой.

Нутромер устанавливается так, как это показано на главном виде, затем его вынимают, прикладывают к линейке с делениями я отсчиты­вают измеренное расстояние. Это расстояние, обозначенное на чертеже размером l = l 0 , и будет искомым расстоянием между центрами этих

отверстий. Можно определить расстояние между центрами при помощи линейки. В этом случае линейку прикладывают так, как это показано на плане. Размер l 0 , показывающий рас­стояние между кромками отверстий, и будет искомым расстоянием, т. е. l 0 = l. На фиг. 223 приведён пример измерения расстояний между центрами отверстий, расположенных на квадратном фланце.

Для более точного измерения расстояния между центрами следует при­менить штангенциркуль или специальный штихмас.

П p и м e p 2. Определить расстояние между центрами двух отверстий разного диаметра: d = 20 мм и d 1 = 8 мм (фиг. 225).

Расстояние между центрами можно определить при помощи нутромера или линейки. Измеряют расстояние между кромками отверстий l 1 или l 2 . Резуль­таты в обоих случаях будут одинако­выми.

Для первого положения нутромера расстояние между центрами равняется

l = l 1 + (d - d 1)/2 = 36 + (20 - 8)2 = 42 мм.

Для второго положения

l = l 2 - (d - d 1)/2 = 48 - (20 - 8)2 = 42 мм.

П p и м e p 3. Определить диаметр окружности центров отверстий, расположенных на круглом фланце для чётного и нечётного числа отверстий (фиг. 226).

Для того чтобы определить диаметр окружности центров при чётном числе отверстий, надо произвести измерения диаметрально противо­положных отверстий между точками а и b, с и e. Полученные величины

ab = l 1 и се = l 2 надо просуммировать и разделить на число измерений n, т. е.

Что определит средне-

арифметический диаметр цен­тров отверстий. Измере­ние можно производить ли­нейкой, нутромером и для более точных измерений штангенциркулем.

При нечётном числе от­верстий измерения произво­дятся между диаметрально противоположными точками а и b = l 1 с и e = l 2 , f и k = l 3 и т. д.

Суммируя измеренные величины l 1 , l 2 , l 3 и разделив сумму на число

измерений, получим среднеарифметическую величину L=El/n.Радиус окружности центров отверстий определяется из формулы

R = L - (d-d1)/2

R = L - (d - d1)/2

Измерение криволинейных очертаний деталей . Вычерчивание дета­лей с кривыми поверхностями выполняется дугами окружностей или по точкам при помощи лекала.

Пример 1. На фиг. 227 изображена часть детали, представляющей собой тело вращения, очертание которой составлено из дуг окруж­ностей.

На практике радиусы этих дуг можно определить при помощи свинцовой пластинки толщиной 1 -1,5 мм и шириной 8-10 мм. Прикла­дывая пластинку к детали и согнув её по кривой так, как это показано на фиг. 227, накладываем затем

согнутую пластинку на бумагу и очерчиваем карандашом. На полученной кривой находим центры и радиусы сопряжений.

Пример 2 . Сложные очертания плоской части де­тали вычерчиваются по отпе­чатку на бумаге этого очер­тания. Для этого накладывают на деталь кусок бумаги и об­жимают её по контуру кривой так, чтобы на бумаге чётко вырисовалась кривая контура, а затем, так же как и в пре­дыдущем примере, определяют центры и радиусы кривых.

Пример 3. Иногда встречаются такие детали, выявление кривизны очертания которых приведёнными способами встречает затруднения. В таких случаях прибегают к определению координат ряда точек детали.

Например, для того чтобы построить наружное очертание детали (фиг. 220), её устанавливают на разметочную плиту и с помощью рейс­маса проводят на поверхности ряд окружностей, при этом каждый раз измеряют высоту установки острия чертилки и диаметр окружности, очерченной этой чертилкой. Результаты измерения сводятся в таблицу, по данным которой легко можно построить очертание детали.

Предельные измерительные инструменты . Производство машин, как уже отмечалось выше, требует взаимозаменяемости деталей. Поэтому на заводах, изготовляющих такие детали, введён строгий контроль всех размеров. Контроль размеров осуществляется спе­циальными контрольными инструментами: предельными скобами, предельными пробками, конусными калибрами, шаблонами и т. п.

Предельные скобы бывают односторонние (фиг. 228, а) и двусторонние (фиг. 228,б). В двусторонней скобе одна сторона соответствует верхнему предельному размеру диаметра де­тали и является проходной, а дру­гая - непроходная или, как её ещё называют, браковочная, соответ­ствует нижнему предельному раз­меру детали.

Деталь считается годной в том случае, когда проходная сторона скобы при измерении проходит без усилия по диаметру вала, а другая - бра­ковочная сторона - не проходит.

Предельные пробки. Предельные пробки бывают односторонние и двусторонние. Они служат для кон­троля цилиндрических отверстий. В двусторонних проб­ках (фиг. 229) различают проходную и непроходную (браковочную) стороны.

Диаметр проходной стороны (конца) пробки соответствует нижнему предельному размеру отверстия, а браковочной-верхнему предельному размеру измеряемого отверстия. Браковочный конец, в отличие от про­ходного, делают по длине короче.

Деталь считается годной в том случае, когда проходной конец пробки входит в отверстие без усилия, а непроходной не входит.

Конусные калибры. Для проверки конусности изделия, кроме уни­версальных измерительных средств, применяются нормальные и предель­ные калибры. Для проверки наружного конуса применяется конусное кольцо. Проверка нормальным кольцом делается так: проводятся мягким карандашом на поверхности конуса вдоль его оси две риски так, чтобы расстояние между ними было не менее четверти окружности конуса. Затем осторожно вводят конус в конусное кольцо и, слегка повернув несколько раз, вынимают для осмотра. Если обе риски на всём протя­жении будут размазаны, то угол конуса изделия равен углу калибра. Если же риски размазаны лишь на отдельных участках, - угол изделия не совпадает с углом калибра.

Часто нормальные калибры снабжаются срезом (фиг. 230, а). В этом случае на плоскости среза конусного кольца проходят две риски, за пределы которых не должны выходить, например, линии проточки детали.

Чтобы проверить предельным калибром коническое отверстие, на поверхности калибра делают две кольцевые риски (фиг. 230, б). Если отверстие детали имеет одинаковый угол с калибром, то калибр не дол­жен входить дальше второй риски и ближе первой.

Конусные калибры повышенной точности используются для установки плоских регулируемых втулок.

Изделия, имеющие коническую поверхность, как правило, прове­ряются по соответствующим калибрам на краску.

Шаблоны. При помощи шаблонов производится проверка правиль­ности очертаний детали, углов, радиусов и других элементов.

Стальные конструкции на строительной площадке почти всегда соединяются при помощи болтового соединения и у него есть много преимуществ перед другими способами соединения и прежде всего сварным соединением — это простота монтажа и контроля качества соединения.

Из недостатков можно отметить большую металлоемкость по сравнению со сварным соединением т.к. в большинстве случаев нужны накладки. Кроме того отверстие для болта ослабляет сечение.

Видов болтового соединения великое множество, но в данной статье рассмотрим классическое соединение, применяемое в строительных конструкций.

СНиП II-23-81 Стальные конструкции

СП 16.13330.2011 Стальные конструкции (Актуализированная редакция СНиП II-23-81)

СНиП 3.03.01-87 Несущие и ограждающие конструкции

СП 70.13330.2011 Несущие и ограждающие конструкции (Актуализированная редакция СНиП 3.03.01-87)

СТО 0031-2004 Болтовые соединения. Сортамент и области применения

СТО 0041-2004 Болтовые соединения. Проектирование и расчет

СТО 0051-2006 Болтовые соединения. Изготовление и монтаж

Виды болтовых соединений

По числу болтов: одноболтовые и многоболтовые. Думаю смысл объяснять не нужно.

По характеру передачи усилия от одного элемента к другому:

Не сдвигоустойчивые и сдвигоустойчивые (фрикционные). Чтобы понять смысл этой классификации рассмотрим как в общем случае работает болтовое соединение при работе на срез.

Как видим болт сжимает 2-е пластины и часть усилия воспринимается силами трения. Если болты сжимают пластины не достаточно сильно то происходит проскальзывание пластин и усилие Q воспринимается болтом.

Расчет не сдвигоустойчивых соединений подразумевает, что сила затяжки болтов не контролируется и вся нагрузка передается только через болт без учета возникающих сил трения. Такое соединение называют соединение без контролируемого натяжения болтов.

В сдвигоустойчивых или фрикционных соединениях используют высокопрочные болты которые затягивают пластины с такой силой, что нагрузка Q передается посредством сил трения между 2-мя пластинами. Такое соединение может быть фрикционным или фрикционно-срезным, в первом случае при расчете учитываются только силы трения, во втором учитываются силы трения и прочность болта на срез. Хотя и фрикционно-срезное соединение более экономичное, но практически его реализовать в многоболтовом соединении очень трудно — нет уверенности что все болты одновременно смогут нести нагрузку на срез, поэтому фрикционное соединение лучше рассчитывать без учета среза.

При больших сдвигающих нагрузках фрикционное соединение более предпочтительно т.к. металлоемкость данного соединения меньше.

Виды болтов по классу точности и их применение

Болты класса точности А — данные болты устанавливают в отверстия рассверленные на проектный диаметр (т.е. болт встает в отверстие без зазора). Изначально отверстия делают меньшего диаметра и поэтапно рассверливают до нужного диаметра. Диаметр отверстия в таких соединениях не должен быть больше диаметра болта больше чем на 0,3 мм. Сделать такое соединение крайне сложно, поэтому в строительных конструкциях они практически не используются.

Болты класса точности B (нормальной точности) и С (грубой точности) устанавливают в отверстия на 2-3 мм больше диаметров болтов. Разница между этими болтами заключается в погрешности диаметра болта. Для болтов класса точности B фактический диаметр может отклонится не более чем на 0,52 мм, для болтов класса точности C до 1 мм (для болтов диаметром до 30 мм).

Для строительных конструкций как правило применяют болты класса точности В т.к. в реалиях монтажа на строительной площадке добиться высокой точности практически невозможно.

Виды болтов по прочности и их применение

Для углеродистых сталей класс прочности обозначают двумя цифрами через точку.

Существуют следующие классы прочности болтов: 3.6; 3.8; 4.6; 4.8; 5.6; 5.8; 6.6; 8.8; 9.8; 10.9; 12.9.

Первая цифра в классификации предела прочности болтов обозначает предел прочности болта при растяжении — одна единица обозначает предел прочности в 100 МПа, т.е. предел прочности болта класса прочности 9.8 равен 9х100=900 МПа (90 кг/мм²).

Вторая цифра в классификации класса прочности обозначает отношение предела текучести к пределу прочности в десятках процентов — для болта класса прочности 9.8 предел текучести равен 80% от предела прочности, т.е. предел текучести равен 900 х 0.8 = 720 МПа.

Что означают данные цифры? Давайте посмотрим на следующую диаграмму:

Здесь приведен общий случай испытания стали на растяжение. На горизонтальной оси обозначено изменение длины испытуемого образца, по вертикали — прилагаемое усилие. Как видим из диаграммы при увеличении усилия длина болта изменяется линейно только на участке от 0 до точки А, напряжение в этой точке и есть предел текучести, далее при не большом увеличении нагрузки болт растягивается уже сильнее, в точке Д болт ломается — это есть предел прочности. В строительных конструкциях необходимо обеспечить работу болтового соединения в пределах предела текучести.

Класс прочности болта должен быть указан на торцевой или боковой поверхности головки болта

Если на болтах нет маркировки, то скорее всего это болты класса прочности ниже 4.6 (их маркировка не требуется по ГОСТ). Применение болтов и гаек без маркировки запрещается согласно СНиП 3.03.01.

На высокопрочных болтах дополнительно указывается условное обозначение плавки.

Для применяемых болтов требуется применять соответствующие им классу прочности гайки: для болтов 4.6, 4.8 применяются гайки класса прочности 4, для болтов 5.6, 5.8 гайки класса прочности 5 и т.д. Можно заменить гайки одного класса прочности на более высокие (например если удобнее комплектовать на объект гайки одного класса прочности).

При работе болтов только на срез допускается применять класс прочности гаек при классе прочности болтов: 4 – при 5.6 и 5.8; 5 – при 8.8; 8 – при 10.9; 10 – при 12.9.

Для болтов из нержавеющей стали также наносится маркировка на головке болта. Класс стали — А2 или А4 и предел прочности в кг/мм² — 50, 70, 80. Например А4-80: марка стали А4, прочность 80 кг/мм²=800 МПа.

Класс прочности болтов в строительных конструкциях следует определять согласно таблице Г.3 СП 16.13330.2011

Выбор марки стали болта

Марку стали болтов следует назначать согласно таблице Г.4 СП 16.13330.2011

Подбор диаметра болта для строительных конструкций

Для соединений строительных металлических конструкций следует применять болты с шестигранной головкой нормальной точности по ГОСТ 7798 или повышенной точности по ГОСТ 7805 с крупным шагом резьбы диаметров от 12 до 48 мм классов прочности 5.6, 5.8, 8.8 и 10.9 по ГОСТ 1759.4, шестигранные гайки нормальной точности по ГОСТ 5915 или повышенной точности по ГОСТ 5927 классов прочности 5, 8 и 10 по ГОСТ 1759.5, круглые шайбы к ним по ГОСТ 11371 исполнение 1 класса точности А, а также болты, гайки и шайбы высокопрочные по ГОСТ 22353 — ГОСТ 22356 диаметров 16, 20, 22, 24, 27, 30, 36, 42 и 48 мм.

Диаметр и количество болтов подбираются так, чтобы обеспечить необходимую прочность узла.

Если через соединение не передаются значительные нагрузки, то можно использовать болты М12. Для соединения нагруженных элементов рекомендуется использовать болты от М16, для фундаментов от М20.

для болтов М12 — 40 мм;

для болтов М16 — 50 мм;

для болтов М20 — 60 мм;

для болтов М24 — 100 мм;

для болтов М27 — 140 мм.

Диаметр отверстия под болт

Для болтов класса точности А отверстия выполняют без зазора, но использовать такое соединение не рекомендуется ввиду большой сложности его изготовления. В строительных конструкциях, как правило, используют болты класса точности B.

Для болтов класса точности В диаметр отверстия можно определить по следующей таблице:

Расстояния при размещении болтов

Расстояния при размещении болтов следует принимать согласно таблице 40 СП 16.13330.2011

В стыках и узлах болты необходимо располагать ближе друг к другу, а конструктивные соединительные болты (служащие для соединения деталей без передачи значимых нагрузок) на максимальных расстояниях.

Допускается крепить детали одним болтом.

Выбор длины болта

Длину болта определяем следующим образом: складываем толщины соединяемых элементов, толщины шайб и гаек, и добавляем 0,3d (30% от диаметра болта) и далее смотрим сортамент и подбираем ближайшую длину (с округлением в большую сторону). Согласно строительным нормам болт должен выступать из гайки как минимум на один виток. Слишком длинный болт использовать не получится т.к. резьба имеется только на конце болта.

Для удобства можно воспользоваться следующей таблицей (из советского справочника)

В болтовых соединениях работающих на срез, при толщине наружного элемента до 8 мм, резьба должна находиться вне пакета соединяемых элементов; в остальных случаях резьба болта не должна входить вглубь отверстия более чем на половину толщины крайнего элемента со стороны гайки или свыше 5 мм. Если выбранная длина болта не соответствует этому требованию, то необходимо увеличить длину болта так, чтобы это требование выполнялось.

Приведем пример:

Болт работает на срез, толщина скрепляемых элементов 2х12 мм, согласно расчету принят болт диаметром 20 мм, толщина шайбы 3 мм, толщина пружинной шайбы 5 мм, толщина гайки 16 мм.

Минимальная длина болта равна: 2х12+3+5+16+0,3х20=54 мм, согласно ГОСТ 7798-70 выбираем болт М20х55. Длина нарезаной части болта составляет 46 мм, т.е. условие не удовлетворяется т.к. резьба должна входить вглубь отверстия не более чем на 5 мм, поэтому увеличиваем длину болта до 2х12+46-5=65 мм. Согласно нормам можно принять болт М20х65, но лучше использовать болт М20х70, тогда вся резьба будет вне отверстия. Пружинную шайбу можно заменить на обычную и добавить еще одну гайку (очень часто так делают т.к. применение пружинных шайб ограничено).

Мероприятия про предотвращению отвинчиванию болтов

Для того, чтобы крепление со временем не ослабло требуется использовать 2-ю гайку или стопорные шайбы, предотвращающие отвинчивание болтов и гаек. Если болт работает на растяжение, то необходимо использовать 2-ой болт.

Также есть специальные гайки со стопорным кольцом или фланцем.

Применять пружинные шайбы при овальных отверстиях запрещено.

Установка шайб

Под гайку необходимо устанавливать не более одной шайбы. Также допускается устанавливать одну шайбу под головкой болта.

Прочностной расчет болтового соединения

Болтовое соединение можно разделить на следующие категории:

1) соединение работающее на растяжение;

2) соединение работающее на срез;

3) соединение работающее на срез и растяжение;

4) фрикционное соединение (работающее на срез, но с сильным натяжением болтов)

Расчет болтового соединения, работающего на растяжение

В первом случае прочность болта проверяется по формуле 188 СП 16.13330.2011

где Nbt — несущая способность одного болта на растяжение;

Rbt — расчетное сопротивление болта на растяжение;

Расчет болтового соединения, работающего на срез

Если соединение работает на срез, то необходимо проверить 2-а условия:

расчет на срез по формуле 186 СП 16.13330.2011

где Nbs — несущая способность одного болта на срез;

Rbs — расчетное сопротивление болта на срез;

Ab — площадь сечения болта брутто (принимается согласно таблице Г.9 СП 16.13330.2011);

ns — число срезов одного болта (если болт соединяет 2-е пластины, то число срезов равно одному, если 3-и, то 2-а и т.д.);

γb — коэффициент условия работы болтового соединения, принимаемый согласно таблице 41 СП 16.13330.2011 (но не больше 1.0);

γc — коэффициент условия работы, принимаемый согласно таблице 1 СП 16.13330.2011.

и расчет на смятие по формуле 187 СП 16.13330.2011

где Nbp — несущая способность одного болта на смятие;

Rbp — расчетное сопротивление болта на смятие;

db — наружный диаметр стрежня болта;

∑t — наименьшая суммарная толщина соединяемых элементов, сминаемых в одном направлении (если болт соединяет 2-е пластины, то принимается толщина одной самой тонкой пластины, если болт соединяет 3 пластины, то считается сумма толщин для пластин, которые передают нагрузку в одном направлении и сравнивается с толщиной пластины, передающей нагрузку в другом направлении и берется наименьшее значение);

γb — коэффициент условия работы болтового соединения, принимаемый согласно таблице 41 СП 16.13330.2011 (но не больше 1.0)

γc — коэффициент условия работы, принимаемый согласно таблице 1 СП 16.13330.2011.

Расчетные сопротивления болтов можно определить по таблице Г.5 СП 16.13330.2011

Расчетное сопротивление Rbp можно определить по таблице Г.6 СП 16.13330.2011

Расчетные площади сечения болтов можно определить по таблице Г.9 СП 16.13330.2011

Расчет соединения, работающего на срез и растяжение

При одновременном действии на болтовое соединение усилий,вызывающих срез и растяжение болтов, наиболее напряженный болт, наряду спроверкой по формуле (188), следует проверять по формуле 190 СП 16.13330.2011

где Ns, Nt — усилия, действующие на болт, срезывающие и растягивающие соответственно;

Nbs, Nbt — расчетные усилия, определяемые по формулам 186 и 188 СП 16.13330.2011

Расчет фрикционного соединения

Фрикционные соединения, в которых усилия передаются через трение, возникающее по соприкасающимся поверхностям соединяемых элементов вследствие натяжения высокопрочных болтов, следует применять: в конструкциях из стали с пределом текучести свыше 375 Н/мм² и непосредственно воспринимающих подвижные, вибрационные и другие динамические нагрузки; в многоболтовых соединениях, к которым предъявляются повышенные требования в отношении ограничения деформативности.

Расчетное усилие, которое может быть воспринято каждой плоскостью трения элементов, стянутых одним высокопрочным болтом, следует определять по формуле 191 СП 16.13330.2011

где Rbh — расчетное сопротивление растяжению высокопрочного болта, определяемое согласно требованиям 6.7 СП 16.13330.2011;

Abn — площадь поперечного сечения нетто (принимается согласно таблице Г.9 СП 16.13330.2011);

μ — коэффициент трения между поверхностями соединяемых деталей (принимается по таблице 42 СП 16.13330.2011);

γh — коэффициент, принимаемый по таблице 42 СП 16.13330.2011

Количество необходимых болтов для фрикционного соединения можно определить по формуле 192 СП 16.13330.2011

где n — требуемое количество болтов;

Qbh — расчетное усилие, которое воспринимает один болт (расчитывается по формуле 191 СП 16.13330.2011, расписано чуть выше);

к — количество плоскостей трения соединяемых элементов (обычно 2-а элемента соединяют через 2-е накладные пластины, расположенные с разных сторон, в этом случае к=2);

γc — коэффициент условия работы, принимаемый согласно таблице 1 СП 16.13330.2011;

γb — коэффициент условий работы, принимаемый в зависимости от количества болтов, требуемых для восприятия усилия и принимаемый равным:

0,8 при n < 5;

0,9 при 5 ≤ n < 10;

1,0 при n ≤ 10.

Обозначение болтового соединения на чертежах

Центры болтовых отверстий должны располагаться по прямым линиям, параллельным действующему усилию, называемыми рисками. Расстояние a между центрами соседних отверстий вдоль риски называется шагом, расстояние с между соседними рисками – дорожкой.

Болты размещаются в рядовом или шахматном порядке (рис. 10.37) согласно требованиям табл. 10.23, при этом в расчетных соединениях (стыках и узлах) устанавливается минимальный шаг болтов a min. Он определяется из

Рис. 10.37. Размещение болтов:

а – рядовое; б – шахматное

условия прочности основного металла. Этим достигается экономия материала накладок, фасонок и других элементов в соединении. Максимальное расстояние между болтами a max назначается в нерасчетных (связующих) соединениях для уменьшения количества болтов. Оно определяется устойчивостью более тонкого наружного элемента t min при сжатии в промежутках между болтами и плотностью соединения растянутых элементов в целях устранения коррозионной опасности (зависит от диаметра болта d ).

Таблица 10.23

Размещение болтов

Характеристика расстояния

Расстояние

1. Расстояния между центрами болтов в любом направлении:

а) минимальное

б) максимальное в крайних рядах при отсутствии окаймляющих уголков при растяжении и сжатии

в) максимальное в средних рядах, а также в крайних рядах при наличии окаймляющих уголков:

при растяжении

при сжатии

8d или 12t

16d или 24t

12d или 18t

2. Расстояния от центра болта до края элемента:

а) минимальное вдоль усилия

б) минимальное поперек усилия:

при обрезных кромках

при прокатных кромках

в) максимальное

г) минимальное для высокопрочных болтов при любой кромке и любом направлении усилия

д) то же максимальное

4d или 8t

* В соединяемых элементах из стали с пределом текучести свыше 380 МПа минимальное расстояние между болтами следует принимать равным 3d .

Обозначения, принятые в таблице:

d – диаметр отверстия для болта;

t – толщина наиболее тонкого наружного элемента

При размещении болтов в шахматном порядке расстояние между их центрами вдоль усилия следует принимать не менее а + 1,5d , где а – расстояние между рядами поперек усилия, d – диаметр отверстия для болта. При таком размещении сечение элемента An определяется с учетом ослабления его отверстиями, расположенными только в одном сечении поперек усилия (не по «зигзагу»).

Под гайки болтов следует устанавливать шайбы. В болтовом соединении на высокопрочных болтах необходимо устанавливать две шайбы – под головку болта и гайку, так как основное назначение шайб заключается в уменьшении трения по торцевой поверхности головки болта или гайки при закручивании. В соединениях с болтами классов точности А, В и С (за исключением крепления второстепенных конструкций и соединений на высокопрочных болтах) должны быть предусмотрены меры против развинчивания гаек (постановка пружинных шайб или контргаек).

2.2.3.1. Минимальное расстояние по срединной линии между центрами двух соседних отверстий не должно быть менее 1,4 полусуммы диаметров этих отверстий (рис. 3 ). Контроль указанного расстояния допускается проводить путем измерения расстояний по наружной и внутренней поверхностям с последующим пересчетом.

2.2.3.2. Расстояние по внутренней поверхности от кромки отверстия в сферических, эллиптических, торо-сферических и тарельчатых крышках и днищах до их цилиндрической части, измеренное по проекции, должно быть не менее 0,1 внутреннего диаметра цилиндрической части (рис.4 ).

2.2.3.3. Расстояние между центром отверстия под болт или шпильку во фланцах, крышках или нажимных кольцах и их кромкой (внутренней или наружной) должно быть не менее 0,85 диаметра отверстия (рис. 5 ). Указанное требование не распространяется на фланцы с откидными болтами.

2.2.3.4. В случае технической необходимости, определяемой конструкторской (проектной) организацией, допускаются отступления от требований п. 2.2.1 - 2.2.3 при условии выполнения расчета на прочность в полном объеме, требуемом "Нормами расчета на прочность", или проведения соответствующих экспериментальных исследований.

Рис. 5. Расположение отверстий под шпильки (а ) и болты (б )(l 2 ≥ 0,85d )

2.2.4. Разъемные соединения

С целью повышения сопротивления циклической повреждаемости крепежных деталей рекомендуется использовать положения, изложенные в Приложении 14 .

2.3. Трубопров оды

2.3.1. Соединение деталей и сборочных единиц трубопроводов между собой и присоединение трубопроводов к оборудованию должно производиться сваркой. Допускается использование разъемных фланцевых соединений трубопроводов (включая резьбовые соединения с уплотнением шар по конусу), если их необходимость определяется требованиями обслуживания оборудования или трубопроводов.

2.3.2. Компенсация тепловых расширений трубопроводов может осуществляться как за счет их самокомпенсации, так и с помощью специальных компенсаторов. Применение линзовых компенсаторов допускается только для трубопроводов, работающих при рабочем давлении до 2,45 МПа (24 кгс/см 2).

2.3.3. Средний радиус кривизны колен (гнутых отводов) трубопроводов должен составлять:

1) при изготовлении методом холодной гибки - не менее 3,5 номинального наружного диаметра колена (нормально изогнутые колена);

2) при изготовлении методами горячего деформирования с применением гибки, протяжки, штамповки, осадки, а также для штампо-сварных колен - не менее номинального наружного диаметра колена (крутоизогнутые колена, если средний радиус их кривизны менее 3,5 номинального наружного диаметра колена).

Рис. 6. Схема секторного отвода

Номинальный наружный диаметр принимается равным его значению на концах колена (в местах присоединения колена к другим деталям трубопроводов).

2.3.4. Допускается применение штампосварных колен, изготовленных из двух заготовок, сваренных двумя продольными швами или кольцевым швом, при соблюдении требований п. 2.3.3 .

2.3.5. Применение сварных секторных отводов, сварных тройников и переходов допускается для трубопроводов группы В с рабочим давлением до 1,57 МПа (16 кгс/см 2) и расчетной температурой до 100 °С, а также для трубопроводов группы С с рабочим давлением до 3,9 МПа (40кгс/см 2) и расчетной температурой до 350°С.

В сварных секторных отводах угол q должен быть не более 15°, расстояние l - не менее 100 мм (рис. 6 ).

2.3.6. Расположение отверстий на прямых участках трубопроводов должно удовлетворять требованиям п. 2.2.3 . Расположение отверстий на криволинейных участках колен не допускается, за исключением отверстий диаметром, не более 0,1 номинального наружного диаметра колена, но не более 20 мм для приварки штуцеров, труб и бобышек систем контрольно-измерительных устройств в количестве, не более одного отверстия на колено.

2.3.7. В нижних точках каждого отключаемого задвижками участка трубопровода, не имеющего естественного стока за счет уклона, следует предусматривать устройства для дренажа трубопровода. Для трубопроводов с номинальным наружным диаметром до 89 мм, изготовленных из коррозионно-стойких сталей аустенитного класса, указанное требование не является обязательным.

Устройство дренажей должно обеспечивать возможность проверки исправности их состояния.

2.3.8. В верхних точках трубопроводов (при отсутствии возможности удаления воздуха через оборудование) для отвода воздуха должны устанавливаться воздушники. На трубопроводах, работающих под вакуумом, воздушники допускается не устанавливать при наличии возможности удаления воздуха при гидравлических испытаниях другим способом.

2.3.9. На дренажных трубопроводах и линиях воздушников контуров с радиоактивным теплоносителем должны устанавливаться два запорных органа, причем для воздушников допускается устанавливать один дроссельный и один запорный орган.

Допускается объединение линий отвода воздуха и линий дренажа в общий трубопровод после первых запорных органов с установкой на нем общего запорного органа. Линии отвода воздуха из неотключаемых друг от друга участков оборудования или трубопроводов допускается объединять после дроссельных вентилей.

2.3.10. Все участки паропроводов, которые могут быть отключены запорными органами, для возможности прогрева и продувки должны быть снабжены в концевых точках штуцером с вентилем, а при рабочем давлении свыше 2,15 МПа (22 кгс/см 2) и на паропроводах систем группы В независимо от давления - штуцером и двумя последовательно расположенными вентилями - запорным и дроссельным. В случае прогрева участка паропровода в двух направлениях должна быть предусмотрена продувка с каждого конца участка.

2.3.11. Горизонтальные участки трубопроводов должны иметь уклон не менее 0,004 в сторону организованного дренажа. Для паропроводов указанный уклон должен сохраняться при температуре, равной температуре насыщения пара при рабочем давлении.

На горизонтальных участках трубопроводов с номинальным наружным диаметром до 60 мм из коррозионно-стойких сталей аустенитного класса, работающих в контакте с водой, пароводяной смесью и паром, допускается отсутствие уклона при условии обеспечения возможности промывки трубопроводов. На горизонтальных участках трубопроводов с номинальным наружным диаметром более 60 мм из сталей того же структурного класса или из плакированных сталей перлитного класса, работающих в контакте с указанными средами, допускается отсутствие уклона, если отношение длины этих участков к номинальному внутреннему диаметру трубопровода не превышает 25.

2.3.12. Для паропроводов насыщенного пара и для тупиковых участков паропроводов перегретого пара должен обеспечиваться непрерывный отвод конденсата.

Сварные соединения

2.4.1. Общие требования

2.4.1.1. Сварка и наплавка должны проводиться в соответствии с требованиями и указаниями ОП.

2.4.1.2. Стыковые сварные соединения должны выполняться с полным проплавлением.

Примечание. Сварные соединения с остающимися стальными подкладками (в том числе с подкладными кольцами) считаются сварными соединениями с полным проплавлением.

2.4.1.3. Угловые сварные соединения с конструкционным зазором допускается применять при их расположении в зонах, не подверженных воздействию внешних силовых изгибающих нагрузок (например, при вварке труб в трубные доски, при приварке технологических каналов к стоякам, защитных антикоррозионных рубашек и измерительных устройств к корпусам и др.), а также при наличии специальных креплений, опор, связок или других конструкторских решений, разгружающих сварные соединения от указанных нагрузок.

Рис. 7. Труба, изготовленная из двух секторов:

а - а ≥ 90 °- допускается; б - а < 90 ° - не допускается

2.4.1.4. Тавровые сварные соединения с конструкционным зазором допускается применять для приварки опор и вспомогательных деталей (подвесок, скоб, ребер жесткости) к оборудованию и трубопроводам, а также направляющих ребер в арматуре (последнее только при расчетном давлении не выше 4,9 МПа (50 кгс/см 2)).

2.4.1.5. Применение нахлесточных сварных соединений допускается при приварке к оборудованию и трубопроводам укрепляющих накладок, опорных плит, подкладных листов, пластин, планок под площадки, лестницы, кронштейны, мембраны и т.п. Привариваемые изнутри корпусов оборудования кольца, укрепляющие отверстия люков, штуцеров и т.п., должны иметь сигнальные отверстия для контроля герметичности.

2.4.1.6. В стыковых сварных соединениях элементов с различной номинальной толщиной стенки должен быть обеспечен плавный переход от одного элемента к другому. Конкретные формы указанного перехода должны устанавливаться конструкторской (проектной) организацией исходя из требований расчета на прочность и необходимости обеспечения контроля сварных соединений всеми предусмотренными методами.

2.4.2. Расположение сварных соединений

2.4.2.1. Изготовление сварных труб и обечаек с номинальным наружным диаметром до 920 мм с продольными швами из трех и более секторов не допускается. При изготовлении труб и обечаек из двух секторов центральный угол малого сектора а должен быть не менее 90 (рис. 7 ).

Рис. 8. Расположение сварных швов в нижней части оборудования и трубопроводов:

Допускается изготовление сварных труб и обечаек с номинальным наружным диаметром более 920 мм из трех секторов; при этом центральный угол каждого сектора должен быть не менее 90°.

2.4.2.2. Продольные сварные соединения корпусов оборудования, предназначенного для работы в горизонтальном положении, не следует располагать в пределах нижнего центрального угла, равного 140° (рис. 8 ), за исключением случаев, когда обеспечена доступность указанных соединений для осмотра и контроля и процессе эксплуатации.

2.4.2.3. Сварные соединения должны располагаться, как правило, вне опор.

Расположение опор над (под) сварными соединениями допускается при одновременном соблюдении следующих условий:

1) конструкция и размещение опоры обеспечивают возможность контроля сварного соединения под опорой в процессе эксплуатации (рис. 9 );

2) при изготовлении или монтаже оборудования выполненное сварное соединение подвергается сплошному ультразвуковому или радиографическому контролю, а участок сварного соединения, расположенный под опорой, кроме того, подвергается магнитопорошковому или капиллярному контролю.

Во всех случаях не допускается перекрывать опорами зоны пересечения и сопряжения сварных соединений.

2.4.2.4. Наличие сварных швов на участках труб, подлежащих гибке, как правило, не допускается.

2.4.2.5. В пределах криволинейного участка сварных колен допускается только одно поперечное кольцевое соединение.

Штампосварные колена должны удовлетворять следующим требованиям:

1) номинальный наружный диаметр колена должен быть больше 100 мм, а средний радиус его кривизны должен соответствовать нормам, приведенным в п. 2.3.3 ;

Рис. 9. Расположение опор в зоне сварных швов:

а - допускаемое; б - недопускаемое

Рис. 10. Расположение сварных швов в секторных отводах (l ³ 100 мм)

2) все сварные соединения колена должны быть подвергнуты сплошному неразрушающему контролю методами, предусмотренными для сварных соединений соответствующей категории;

3) на коленах с продольными сварными соединениями в пределах криволинейного участка не допускается наличие поперечных кольцевых сварных соединений.

2.4.2.6. В секторных отводах, изготовленных из сварных труб, расстояние между сопряжениями поперечного кольцевого шва отвода с продольными или спиральными швами соединяемых секторов или труб должно быть не менее 100 мм (рис. 10 ). Указанное расстояние измеряется между точками сопряжения осей соответствующих швов.

2.4.2.7. Расположение поперечных сварных соединений на кольцевых коллекторах и спирально изогнутых трубах поверхностей теплообмена допускается при условии сплошного радиографического или ультразвукового контроля указанных соединений.

В случае недоступности поперечных сварных соединений спирально изогнутых труб поверхностей теплообмена для сплошного контроля после окончания их изготовления допускается выполнение сварных соединений и проведение указанного контроля до гибки труб.

2.4.3. Расстояния между сварными швами

2.4.3.1 . В поперечных стыковых сварных соединениях деталей (сборочных единиц) с продольными сварными соединениями совмещение осей продольных швов двух соседних деталей не допускается. Оси указанных швов должны быть смещены относительно друг друга на расстояние, составляющее не менее трехкратной номинальной толщины более толстостенной из соединяемых деталей, но не менее, чем на 100 мм (последнее условие не распространяется на сварные соединения деталей с номинальным наружным диаметром менее 100 мм).

Для цилиндрических деталей (сборочных единиц) с продольными швами, выполненными автоматической сваркой, допускается уменьшение указанного расстояния (в том числе расположение продольных швов соединяемых деталей по одной оси) при условии радиографического и ультразвукового, а также капиллярного или магнитопорошкового контроля участков сопряжения или пересечения продольных и поперечных сварных соединений (ультразвуковой контроль сварных соединений деталей из сталей аустенитного класса не является обязательным).

2.4.3.2. При сварке днищ или крышек из нескольких деталей (листов) с расположением сварных швов по хорде расстояние от внешнего края шва до параллельного хорде диаметра днища или крышки должно быть не менее 0,2 номинального внутреннего диаметра днища или крышки (рис. 11 ).

Расстояние между внешним краем кругового сварного шва на днищах и крышках (за исключением сферических и тарельчатых) и центром днища или крышки должно быть не более 0,25 номинального внутреннего диаметра днища или крышки, а минимальное расстояние между краями двух соседних радиальных или меридиональных сварных швов должно быть не менее трех номинальных толщин днища или крышки, но не менее 100 мм (рис. 12 ). При этом требование по расположению кругового шва не распространяется на швы приварки крышек и днищ к фланцам и обечайкам.

2.4.3.3. Расстояние С между краем углового сварного шва приварки штуцера, люка, трубы или других цилиндрических полых деталей и краем ближайшего стыкового сварного шва оборудования или трубопровода должно быть одновременно не меньше трехкратной расчетной высоты углового шва h и трехкратной номинальной толщины стенки привариваемой детали (рис. 13 ).

2.4.3.4. Расстояние l между краем стыкового сварного шва оборудования или трубопровода и центром ближайшего к нему отверстия должно быть не менее 0,9 диаметра отверстия при одновременном соблюдении требований п. 2.4.3.3 (см. рис. 13 ).

2.4.3.5. Допускается уменьшение указанных в п. 2.4.3.3 и 2.4.3.4 расстояний (в том числе расположение отверстий в стыковом сварном шве) при одновременном соблюдении следующих требований:

1) сверление отверстий должно быть произведено после термической обработки (если таковая предусмотрена) стыкового сварного соединения и его сплошного неразрушающего контроля методами, предусмотренными для сварных соединений соответствующей категории; сверление отверстий допускается производить до термической обработки стыкового сварного соединения, если после приварки патрубков (штуцеров) и выполнения термической обработки производится расточка (рассверловка) отверстия с удалением корневой части шва; в этом случае термическую обработку стыковых сварных соединений, в которых выполнены отверстия для приварки патрубков, допускается совмещать с термической обработкой (если таковая предусмотрена) угловых сварных соединений приварки патрубков;



Рис. 13. Расположение сварных швов приварки патрубков:

C ³ 3h ; C ³ 3S 1 ; l ³ 0,9d ; b ³ 3h 2 ; b ³ 3S 2 (S 2 > S 1 , h 2 > h 1)

2) предел текучести металла шва стыкового сварного соединения при расчетной температуре должен быть не ниже предела текучести основного металла (пределы текучести принимаются по стандартам или техническим условиям на материалы и (или) таблицам Норм расчета на прочность и ПК; при отсутствии таких сведений в указанной документации допускается использовать сертификатные данные); это требование не является обязательным в случае приварки патрубков (штуцеров) и труб без развальцовки, если напряжения в стыковом сварном соединении оборудования или трубопровода не превышают пределы текучести металла шва и основного металла при расчетной температуре;

3) внутренняя поверхность отверстий должна быть подвергнута капиллярному или магнитопорошковому контролю.

Указанные требования должны быть оговорены в конструкторской документации на изделие.

2.4.3.6. Расстояние между осями соседних поперечных стыковых сварных швов на цилиндрических и конических изделиях должно быть не менее трехкратной номинальной толщины стенки сваренных деталей (по большей толщине), но не менее 100 мм для изделий, имеющих в зоне сварных соединений номинальный наружный диаметр свыше 100 мм, и не менее указанного диаметра при его значении до 100 мм включительно. Указанное требование не распространяется на сварные швы приварки трубопроводов кпатрубкам оборудования и арматуры, если указанные патрубки подвергались термической обработке в составе оборудования и арматуры, а также на сварные швы приварки трубных досок и элементов типа колец, имеющих толщину более, чем в два раза превышающую толщину отбортовки под сварку.

2.4.3.7. Расстояние от края сварного шва штуцера до края ближайшего поперечного сварного шва трубы при приварке штуцеров к камерам измерительных диафрагм должно быть одновременно не менее трех толщин стенки привариваемого штуцера и трехкратной расчетной высоты углового шва. Допускается размещение штуцеров с наружным диаметром до 30 мм в зоне термического влияния кольцевых швов измерительных устройств с соплами и диафрагмами.

2.4.3.8. Расстояние в между краями ближайших угловых швов приварки патрубков (штуцеров) или труб к оборудованию или трубопроводам должно быть не менее трех расчетных высот углового шва или трех номинальных толщин стенок привариваемых патрубков или труб (см. рис. 13 ). При различных значениях указанных высот или толщин следует принимать их большее значение. Требования настоящего пункта не распространяются на вварку труб в трубные доски (решетки) и коллекторы, трубные доски технологических каналов, каналов СУЗ и других каналов.

2.4.3.9. При приварке не нагружаемых давлением плоских деталей к поверхностям оборудования и трубопроводов расстояние между краем углового шва приварки этих деталей и краем ближайшего стыкового шва оборудования или трубопровода а ,а также между краями угловых швов ближайших привариваемых деталей в должно быть не менее трех расчетных высот угловых швов (рис. 14 ).


Рис. 14. Расположение сварных швов приварки деталей к поверхностям оборудования и трубопроводов

Расстояние в определяется по наибольшей расчетной высоте углового шва (при различных ее значениях).

При приварке внутрикорпусных (внекорпусных) деталей и устройств допускается пересечение стыковых швов оборудования угловыми швами с расчетной высотой не более 0,5 номинальной толщины стенки корпуса, но не более 10 мм.

2.4.3.10. Расстояние между краем шва стыкового сварного соединения трубопровода с патрубком (штуцером) оборудования и краем шва ближайшего стыкового сварного соединения на трубопроводе должно быть не менее 100 мм для трубопроводов с номинальным наружным диаметром свыше 100 мм и не менее номинального наружного диаметра для трубопроводов меньшего диаметра (рис. 15 ).

Рис. 15. Расположение сварных швов при приварке трубопровода к патрубку (при D 0 > 100 мм l > 100 мм; при D 0 £ 100 мм l >D 0)

Таблица 2

2.4.3.11. В подлежащих местной термической обработке стыковых сварных соединениях цилиндрических деталей длина свободного прямого участка в каждую сторону от оси шва (или от осей крайних швов при одновременной местной термической обработке группы сварных соединений) должна быть не менее значения, определяемого по формуле:

где L - длина свободного прямого участка; D И - номинальный наружный диаметр соединяемых деталей; S И - номинальная толщина соединяемых деталей.

При этом длина указанных участков должна быть не менее номинального наружного диаметра сваренных деталей при его значениях до 100 мм включительно и не менее 100 мм при значениях диаметра более 100 мм.

Примечание. Свободным прямым участком считается участок (с наклоном не более 15°) от оси шва до края ближайшей приварной детали, начала гиба, края соседнего поперечного сварного шва и т.д.

2.4.3.12. В подлежащих ультразвуковому контролю стыковых сварных соединениях длина свободного прямого участка в каждую сторону от оси шва должна быть не менее указанной в табл. 2 .

2.4.3.13 . Расстояние от края стыкового сварного шва до начала криволинейного участка гиба па трубопроводах с номинальным наружным диаметром 100 мм и более должно быть не менее 100 мм, а для трубопроводов с номинальным наружным диаметром до 100 мм - не менее номинального наружного диаметра трубы (рис. 16 ).

Для штампованных, кованых и штампосварных колен (отводов), гнутых труб поверхностей теплообмена и крутоизогнутых колен допускается уменьшение прямого участка колена (отвода), а также расположение поперечного сварного шва на границе прямого и криволинейного участков.

2.4.3.14. При приварке к оборудованию или трубопроводам деталей (сборочных единиц), прямые участки которых имеют ограниченную длину или отсутствуют (тройники, арматура, крутоизогнутые колена, штампованные и штампосварные переходы и т.п.), требования п. 2.4.3.1 -2.4.3.13 не являются обязательными при условии обеспечения возможности проведения местной термической обработки или (и) ультразвукового контроля сварных соединений. При этом возможность выполнения указанного условия должна быть подтверждена предприятием-изготовителем (монтажной организацией) в процессе разработки чертежей изделий конструкторской организацией.

Рис. 16. Расположение сварных швов при приварке колена к трубе (при D H > 100 мм l ³100 мм; при D H £ 100 мм l ³ D H

Рис. 17 . Вварка штуцеров в трубопроводы со спиральными швами:

а - не допускается; б - допускается; 1,2 - угловые точки пересечения образующих штуцера и трубопроводов ³100 мм)

2.4.3.15. При вварке патрубков (штуцеров) в трубопроводы из труб с продольными или спиральными швами не допускается выход сварных швов труб в угловые (верхние и нижние) точки пересечения образующих трубы и штуцера. Измеряемое на наружной поверхности минимальное расстояние от указанных точек до осей сварных швов труб должно быть не менее 100 мм (рис. 17 ).

При приварке накладок под опоры и подвески к трубопроводам из труб со спиральными швами минимальное расстояние между краем углового шва приварки накладки и краем стыкового спирального шва трубы должно быть не менее трех номинальных толщин стенки трубы.

СПЕЦИАЛЬНЫЕ ТРЕБОВАНИЯ К ОБОРУДОВАНИЮ И ТРУБОПРОВОДАМ АЭУ С РЕАКТОРАМИ НА БЫСТРЫХ НЕЙТРОНАХ С ЖИДКОМЕТАЛЛИЧЕСКИМ ТЕПЛОНОСИТЕЛЕМ

2.5.1. На оборудование и трубопроводы АЭУ с реакторами на быстрых нейтронах с жидкометаллическим теплоносителем распространяются все требования п. 2.1 - 2.4 , а также требования, изложенные в настоящем пункте.

2.5.2. Корпус реактора и примыкающие к нему трубопроводы первого контура с жидкометаллическим теплоносителем должны быть заключены в страховочные корпуса (кожухи) до максимально возможного уровня теплоносителя (с учетом повышения уровня при эксплуатации) в корпусе реактора.

На трубопроводах страховочные кожухи следует выполнять до запорной (отсечной) арматуры включительно.

Угловые сварные швы приварки страховочных корпусов (кожухов) к оборудованию и трубопроводам допускается выполнять с конструкционным зазором.

Необходимость установки страховочных кожухов за первой запорной арматурой, дополнительной арматуры и т.п. определяется конструкторской организацией в соответствии с требованиями ОПБ-88 .

Присоединение вспомогательных трубопроводов к корпусу реактора, а также устройство люков в страховочном корпусе в пределах зоны (по высоте), заполненной жидкометаллическим теплоносителем ниже уровня, при котором происходит нарушение циркуляции теплоносителя первого контура, не допускается.

Присоединение патрубков вспомогательных трубопроводов к страховочному корпусу ниже уровня теплоносителя по первому контуру допускается при условии их демонтажа и глушения патрубков на страховочном корпусе после заполнения реактора теплоносителем.

2.5.4. Устройство люков в пределах зоны, заполняемой жидкометаллическим теплоносителем до максимально возможного уровня, не допускается.

2.5.5. Приварка трубопроводов с номинальным наружным диаметром более 300 мм к корпусу реактора или страховочному корпусу должна выполняться стыковым сварным швом к отбортованной части корпуса.

2.5.6. При изготовлении страховочных корпусов (кожухов) допускается применение секторных отводов и сварных переходов.

2.5.7. При проектировании оборудования с жидкометаллическим теплоносителем должны предусматриваться меры по поддержанию температуры теплоносителя выше температуры его затвердевания (для натрия рекомендуется минимальная температура разогрева, равная 200 °С). С этой целью все оборудование и трубопроводы, постоянно или периодически заполняемые жидкометаллическим теплоносителем или его парами, должны оснащаться системой электрического или газового обогрева и приборами для контроля и регулирования температуры. Системы электрического обогрева и температурного контроля оборудования и трубопроводов первого контура должны иметь необходимое резервирование.

2.5.8. Оборудование и трубопроводы с жидкометаллическим теплоносителем должны иметь системы контроля утечек теплоносителя и контроля герметичности страховочных корпусов (кожухов), как правило, со 100%-ным резервированием.

2.5.9. Системы обогрева оборудования и трубопроводов, в которых жидкометаллический теплоноситель может охлаждаться ниже температуры плавления ("замораживаться"), должны обеспечивать возможность их последовательного разогрева, начиная от объемов со свободной поверхностью теплоносителя.

2.5.10. Коммуникации, заполненные жидкометаллическим теплоносителем, которые могут быть отсечены от объема со свободной поверхностью указанного теплоносителя, должны иметь устройства, предохраняющие их от повышения давления выше расчетного значения.

2.5.11. В оборудовании и трубопроводах должна быть предусмотрена возможность дренирования жидкометаллического теплоносителя за исключением оборудования, для которого в связи с функциональным назначением или требованиями безопасности такое дренирование нецелесообразно (например, холодные фильтры-ловушки очистки теплоносителя первого и второго контуров, промежуточные теплообменники).

2.5.12. Конструкция насосов, приводов СУЗ, арматуры и других устройств должна исключать возможность попадания масла, воды и других веществ из систем охлаждения и смазки в теплоноситель (полностью или сверх установленных в проекте пределов).

2.5.13. На всех трубопроводах сдувки (сброса) газа из полостей с жидкометаллическим теплоносителем (сдувочных, вакуумно-отборных) должны устанавливаться ловушки паров жидкого металла.

МАТЕРИАЛЫ

3.1. Общие требования

3.1.1. Материалы для изготовления оборудования и трубопроводов должны выбираться с учетом требуемых физико-механических характеристик, технологичности, свариваемости и работоспособности в условиях эксплуатации в течение срока службы.

3.1.2. Для изготовления, монтажа и ремонта оборудования и трубопроводов следует применять основные материалы, приведенные в обязательном Приложении 9 . Допускается применение плакированных и наплавленных основных материалов, если материалы основного и плакирующего слоев указаны в Приложении 9 , а наплавочные материалы - в ОП.

3.1.3. Качество и свойства основных материалов (полуфабрикатов и заготовок) должны удовлетворять требованиям соответствующих стандартов и технических условий и должны быть подтверждены сертификатами заводов-поставщиков.

3.1.4. Данные сертификатов должны подтверждать соответствие поставляемых основных материалов требованиям стандартов или технических условий на конкретные полуфабрикаты и заготовки. При неполноте сертификатных данных применение материалов допускается только после проведения предприятием-изготовителем оборудования и трубопроводов необходимых испытаний и исследований, подтверждающих полное соответствие материалов требованиям стандартов или технических условий.

3.1.5. Предприятие-изготовитель оборудования и трубопроводов должно осуществлять входной контроль качества поступающих основных материалов по номенклатуре и в объеме, устанавливаемыми техническими условиями на изделие. Оценка качества материалов проводится в соответствии с требованиями стандартов и технических условий на конкретные полуфабрикаты и заготовки.

3.1.6. Методы и объем контроля основных материалов должны определяться на основании стандартов и технических условий конструкторской (проектной) организацией, указываться в конструкторской документации и согласовываться с предприятием-изготовителем (монтажной организацией). Для головного объекта (проекта первой АЭУ с реактором данного типа) методы и объемы контроля основных материалов должны согласовываться также с головной материаловедческой организацией.

3.1.7. Для сварки и наплавки оборудования и трубопроводов следует применять сварочные и наплавочные материалы, допущенные ОП. Входной контроль сварочных и наплавочных материалов должен проводиться согласно требованиям и указаниям ПК.

Полуфабрикаты

3.2.1. Качество полуфабрикатов должно удовлетворять требованиям стандартов и (или) технических условий.

3.2.2. При составлении технических условий на полуфабрикаты для оборудования и трубопроводов групп А и В рекомендуется включать в них требования, изложенные в рекомендуемом Приложении 10 .

Применение труб с продольными или спиральными швами, а также кованосверленых, центробежнолитых, биметаллических и других труб, изготавливаемых по специальной технологии, разрешается только при их поставке по стандартам или техническим условиям, разрешенным к применению Госатомнадзором России.

Для труб с продольными или спиральными швами должен быть предусмотрен сплошной ультразвуковой или радиографический контроль сварных соединений независимо от категории сварных соединений подлежащих изготовлению (монтажу) трубопроводов. Остальные требования должны быть не ниже установленных для бесшовных труб того же сортамента из стали той же марки и для сварных соединений соответствующей категории.

Требование настоящего пункта в части согласования стандартов и технических условий с Госатомнадзором России не распространяется на трубы, изготавливаемые из штампованных полуобечаек.

(Измененная редакция. Изм. № 1).

3.2.4. Плакированные и наплавленные листы должны подвергаться ультразвуковому контролю или контролю другими методами, обеспечивавшими выявление отслоений плакирующего (наплавленного) слоя от основного слоя металла. При этом нормы оценки качества устанавливаются стандартами или техническими условиями на плакированные или наплавленные листы.

3.2.5. Качество литых полуфабрикатов, используемых для изготовления крышек и корпусных деталей оборудования, должно удовлетворять требованиям "Правил контроля стальных отливок для атомных энергетических установок".

Крепежные детали

3.3.1. Материалы крепежных деталей должны удовлетворять требованиям стандартов, указанных в обязательном Приложении 9 .

3.3.2. Крепежные детали (болты, шпильки, гайки) для соединения фланцев, узлов уплотнения разъемов и присоединения крышек, как правило, должны изготавливаться из сталей того же структурного класса, что и соединяемые элементы.

Допускается применение крепежных деталей из материалов различных структурных классов в следующих случаях:

1) если расчетная температура эксплуатации крепежных, деталей не превышает 50 °С;

2) во всех других случаях, когда работоспособность соединения подтверждена расчетом или экспериментально.

Новые материалы

3.4.1. К новым материалам относятся:

1) основные материалы, не приведенные в Приложении 9 настоящих Правил;

2) основные материалы, приведенные в Приложении 9 , в случае их применения при температурах, превышающих максимально допустимые по указанному приложению;

3) сварочные и наплавочные материалы (покрытые электроды, сварочные и наплавочные проволоки и ленты, флюсы и защитные газы), не предусмотренные ОП для сварки (наплавки) деталей из сталей (сплавов) соответствующих марок (сочетаний марок) применительно к конкретным способам сварки (наплавки).

3.4.2. Основные материалы, марки которых приведены в Приложении 9 , выплавляемые методами, не предусмотренными указанными в приложении стандартами и техническими условиями (в том числе вакуумно-дуговым или электрошлаковым переплавом), к новым материалам не относятся.

3.4.3. Для включения в настоящие Правила или ОП новых материалов министерство (ведомство) или эксплуатирующая организация, заинтересованные в применении новых материалов, должны обратиться с соответствующим предложением в Госатомнадзор России, приложив к нему отчет, содержащий данные испытаний и исследований новых материалов, а также стандарты или технические условия на полуфабрикаты и сварочные (наплавочные) материалы.

Элементы в узле допускается крепить одним болтом.
Болты, имеющие по длине ненарезанной части участки с различными диаметрами, не допускается применять в соединениях, в которых эти болты работают на срез.
Под гайки болтов следует устанавливать круглые шайбы по ГОСТ 11371-78*. Каждый болт устанавливается в соединение с двумя круглыми шайбами (одна ставится под головку болта, другая под гайку). (См. Рекомендации и нормативы по технологии постановки болтов в монтажных соединениях металлоконструкций п.7.8).

Образование отверстий

Образование отверстий следует производить продавливанием или сверлением (См. СП53-101-98 "Изготовление и контроль качества стальных строительных конструкций п.8.2).

Отверстия во фланцах следует выполнять сверлением (См. Рекомендации по расчету, проектированию, изготовлению и монтажу фланцевых соединений стальных строительных конструкций п.6.6).

Образование отверстий в расчетных соединениях работающих на срез и смятие с болтами классов прочности 5.8, 8.8, 10.9 следует предусматривать сверлением в кондукторах. В нерасчетных соединениях допускается продавливание отверстий (См. Рекомендации и нормативы по технологии постановки болтов в монтажных соединениях металлоконструкций стр18-19).

Диаметр отверстия под болты

Диаметр рассверленных отверстий не должен превышать диаметр болта более чем на 3мм. (См. Рекомендации и нормативы по технологии постановки болтов в монтажных соединениях металлоконструкций п.7.6)

Закрепление болтов от развинчивания

Решения по предупреждению самоотвинчивания гаек - постановка пружинных шайб (ГОСТ 6402), контргаек или других способов закрепления гаек от самоотвинчивания - должны быть указаны в рабочих чертежах марки КМ.Применение пружинных шайб не допускается при овальных отверстиях, при разности номинальных диаметров отверстия и болта более 3 мм, при совместной установке с круглой шайбой (ГОСТ 11371), а также в соединениях на болтах, работающих на растяжение . Запрещается стопорение гаек путем забивки резьбы болта или приварки гаек к стержню болта. (См. СП70.13330-2012 п.4.5.5)

Гайки высокопрочных болтов и болтов класса прочности 10.9, затанутых на усилие свыше 50 процентов от расчетного предела прочности ничем дополнительно не закрепляются. Гайки болтов без контролируемого натяжения закрепляются постановкой разрезных шайб или контргаек. В соединениях на болтах, работающих на растяжение, устанавливаются только контгайки.Установка пружинных шайб не рекомендуется. (См. Рекомендации и нормативы по технологии постановки болтов в монтажных соединениях металлоконструкций п.7.9)

Резьба болта, воспринимающего сдвигающее усилие, не должна находиться на глубине более половины толщины элемента, прилегающего к гайке, или свыше 5 мм, кроме структурных конструкций, опор линий электропередачи и открытых распределительных устройств и линий контактных сетей транспорта, где резьба должна находиться вне пакета соединяемых элементов. (См. СНиП II-23-81* п.12.18)

Выступающая часть болта над гайкой

Длины болтов во фрикционных и фланцевых соединениях назначают в зависимости от суммарной толщины собираемых деталей. При этом, выступающая за пределы гайки резьба должна иметь не менее одного витка с полным профилем. В соединениях без контролируемого натяжения болтов, работающих на срез и смятие, длину болтов подбирают таким образом, что бы резьба отстояла от ближайшей плоскости среза не менее, чем на 5 мм. (См. Рекомендации и нормативы по технологии постановки болтов в монтажных соединениях металлоконструкций п.7.16).

Гайки и головки болтов, в том числе фундаментных, после затяжки должны плотно (без зазоров) соприкасаться с плоскостями шайб или элементов конструкций, а резьба болтов выступать из гаек не менее чем на один виток с полным профилем.(СП70.13330 п.4.5.7).

Болты (в том числе высокопрочные) следует размещать в соответствии с табл. 39.

Характеристика расстояния

Расстояния при размещении болтов

1. Расстояния между центрами болтов в любом направлении:

а) минимальное

б) максимальное в крайних рядах при отсутствии окаймляющих уголков при растяжении и сжатии

8d или 12t

в) максимальное в средних рядах, а также в крайних рядах при наличии окаймляющих уголков:

при растяжении

16d или 24t

12d или 18t

2. Расстояния от центра болта до края элемента:

а) минимальное вдоль усилия

б) то же, поперек усилия:

при обрезных кромках

« прокатных

в) максимальное

4d или 8t

г) минимальное для высокопрочных болтов при любой кромке и любом направлении усилия

* В соединяемых элементах из стали С235, С245, и С255 минимальное расстояние между болтами следует принимать равным 3d.
Обозначения, принятые в табл. 39:
d - диаметр отверстия для болта;
t - толщина наиболее тонкого наружного элемента.
Соединительные болты должны размещаться, как правило, на максимальных расстояниях; в стыках и узлах следует размещать болты на минимальных расстояниях.
При размещении болтов в шахматном порядке расстояние между их центрами вдоль усилия следует принимать не менее a + 1,5d, где a - расстояние между рядами поперек усилия, d - диаметр отверстия для болта. При таком размещении сечение элемента Аn определяется с учетом ослабления его отверстиями, расположенными только в одном сечении поперек усилия (не по «зигзагу»).
При прикреплении уголка одной полкой отверстие, наиболее удаленное от его конца, следует размещать на риске, ближайшей к обушку.