Законы термодинамики и их описание. Школьная энциклопедия Тепловая мощность формула термодинамика

Уравнение состояния идеального газа:

где p – давление;

V – объем;

M – молярная масса;

m – масса;

T

R =8,31 Дж/(моль·K)

n – концентрация;

k =1,38 · 10 -23 Дж/К постоянная Больцмана.

Уравнение состояния ван-дер-ваальсовского газа (для одного моля):

,

где V M – молярный объем, занимаемый при p и Т ;

a, b – постоянные Ван-дер-Ваальса, которые связаны с критической температурой T k , критическим давлением p k и критическим объемом V k соотношениями:

, .

Закон Дальтона:

p=p 1 +p 2 +…+p n ,

где p – давление смеси идеальных газов;

p 1 , p 2 , …, p n – парциальные давления входящих в смесь газов.

Средняя квадратичная скорость молекул:

,

где R – универсальная газовая постоянная;

T – термодинамическая температура;

M – молярная масса.

Энергия теплового движения молекул (внутренняя энергия) газа:

где R – универсальная газовая постоянная;

m – масса газа;

M – молярная масса газа;

T – термодинамическая температура;

i – число степеней свободы молекул:

для одноатомного газа i =3;

для двухатомного газа i =5;

для многоатомного газа i =6.

Уравнение адиабатного процесса (уравнение Пуассона):

pV γ = const,

где γ=с p /c V – показатель адиабаты.

Уравнение политропного процесса (уравнение Пуассона):

pV n = const,

где n – показатель политропы.

Связь между молярной С и удельной с теплоемкостями:

где M – молярная масса.

Молярная теплоемкость при постоянном объеме:

С V = R,

где i – число степеней свободы молекул;

R – универсальная газовая постоянная.

Молярная теплоемкость при постоянном давлении:

С p =C V +R.

Молярная теплоемкость газа при политропическом процессе (pV n =const):

,

где n – показатель политропы;

γ – показатель адиабаты.

Закон распределения молекул по скоростям (закон Максвелла):

,

где ΔN – число молекул, относительные скорости которых лежат в интервале от u до Δu :

u=v/v в – относительная скорость, v– данная скорость, v в = – наиболее вероятная скорость молекул;

Δu – интервал относительных скоростей, малый по сравнению со скоростью u ;

N – общее число молекул.

Распределение молекул по концентрациям:

,

где n – концентрация молекул на высоте h ;

n 0 – концентрация молекул на высоте h =0;

U – потенциальная энергия молекулы в поле тяготения;

k – постоянная Больцмана;

T

Барометрическая формула:

где p 0 – давление на высоте h =0.

M – молярная масса воздуха;

h – высота;

R – универсальная газовая постоянная;

T – термодинамическая температура.

Средняя длина свободного пробега молекул газа:

,

где σ – эффективный диаметр молекулы;

n – число молекул в единице объема (концентрация молекул).

Первое начало термодинамики:

Q= ΔU+A,

где Q – количество теплоты;

ΔU – приращение внутренней энергии системы;

A – работа, совершаемая газом.

Внутренняя энергия идеального газа:

где m – масса газа;

M – молярная масса газа;

T – термодинамическая температура;

С V – молярная теплоемкость при постоянном объеме.

Работа, совершаемая газом:

где V 1 – начальный объем;

V – конечный объем;

p – давление газа;

dV – изменение объема.

Коэффициент полезного действия тепловой машины:

где Q 1 – теплота, получаемая рабочим телом;

Q 2 отдаваемая теплота.

Коэффициент полезного действия цикла Карно:

где T 1 – температура нагревателя;

T 2 – температура холодильника.

Энтропия системы:

где k – постоянная Больцмана;

W – статистический вес (термодинамическая вероятность).

Приращение энтропии системы:

где δQ – элементарная теплота;

T – термодинамическая температура.

2.2. Понятия и определения молекулярной физики и термодинамики

? Перечислите основные положения МКТ.

1. Все тела состоят из мельчайших частиц.

2. Частицы-молекулы находятся в непрерывном тепловом движении.

3. Между молекулами существуют силы взаимодействия, природа сил - электромагнитная.

? Запишите основное уравнение МКТ. В чем заключается молекулярно-кинетический смысл температуры?

( - давление, n-концентрация, m 0 –масса молекулы, v - скорость молекулы). Температура – энергетическая характеристика.

? Что такое степень свободы молекулы? Сформулируйте закон равномерного распределения молекул по степеням свободы.

Количество независимых координат, полностью описывающих положение молекулы в пространстве называют степенями свободы молекулы. Для статистической системы, находящейся в состоянии термодинамического равновесия, на каждую поступательную и вращательную степени свободы приходится кинетическая энергия, равная ( -постоянная Больцмана, - температура).

? Поясните понятие «идеальный газ». Запишите уравнение состояния идеального газа. Что вы знаете о изопроцессах?

Идеальный газ – объем молекул пренебрежимо мал по сравнению с объемом сосуда, силы взаимодействия между молекулами отсутствуют, столкновения молекул между собой и со стенками сосуда носят абсолютно упругий характер. Уравнение: ( -давление, V -объем, m - масса газа, М - молярная масса, R -газовая постоянная, Т -температура). Изопроцесс – процесс, протекающий в системе с неизменной массой при постоянном значении одного из параметров (температуре, давлении, объеме)

? Какой процесс называют адиабатический процессом? Запишите уравнение Пуассона.

Процесс, при котором отсутствует теплообмен с окружающей средой. Уравнение: V g = const ( - давление, V -объем, g-показатель адиабаты)

? Что такое теплоемкость тела? Удельная и молярная теплоемкость?

Теплоемкость тела – количество тепла, необходимое, чтобы нагреть тело на 1 градус К. Удельная теплоемкость – количество тепла, необходимое, чтобы нагреть 1 кг вещества на 1 градус К. Молярная теплоемкость – количество тепла, необходимое, чтобы нагреть 1 моль вещества на 1 градус К.

? Работа идеального газа. Внутренняя энергия тела. Внутренняя энергия идеального газа.

Работа в термодинамике: (А -работа, - давление, DV -изменение объема). Внутренняя энергия термодинамической системы – сумма кинетической энергии теплового движения молекул (атомов) и потенциальной энергии их взаимодействия. В идеальном газе потенциальная энергия взаимодействия равна 0, поэтому (для одного моля, U- внутренняя энергия, i -степени свободы, R- газовая постоянная, Т -температура).

? Сформулируйте первое начало термодинамики. Его применение к изопроцессам.

Количество теплоты, сообщенное системе, расходуется на изменение внутренней энергии системы и совершение системой работы.

Изотермический процесс: Q=A.

Изобарный процесс: Q =DU+A .

Изохорный процесс Q =DU .

Адиабатный процесс Q =0.

? Сформулируйте второе начало термодинамики.

Отражает односторонность тепловых процессов – теплота не может сама собой переходить от холодного тела к горячему без совершения работы.

? Идеальная тепловая машина. КПД идеальной тепловой машины.

Идеальный тепловой двигатель – двигатель, не имеющий потерь на механическое трение и работающий по особому круговому циклу – циклу Карно. КПД идеального теплового двигателя (Т 1 - температура нагревателя, Т 2 - холодильника).

? Энтропия в термодинамике. Свойства энтропии.

(S - энтропия системы, - ее изменение). В термодинамике: энтропия замкнутой системы не убывает. Обладает свойством аддитивности – энтропия системы равна сумме энтропий тел, входящих в систему).

? Сформулируйте третье начало термодинамики (теорема Нернста ).

Энтропия всех тел в состоянии равновесия стремится к нулю по мере приближения температуры к нулю Кельвина.

? Четыре основные термодинамические функции. Принцип минимума свободной энергии, термодинамического потенциала.

В термодинамике можно получать информацию о т. системе с помощью метода термодинамических функций, характеризующих термодинамические свойства тел. Их 4: внутренняя энергия – W , энтальпия – Н , свободная энергия –F , термодинамический потенциал -G . Принцип минимума свободной энергии – если в системе, находящейся в условиях постоянного объема и постоянной температуры, протекает самопроизвольный необратимый процесс, то свободная энергия системы убывает и при достижении равновесия принимает минимальное значение (). Принцип минимума термодинамического потенциала – если в системе, находящейся в условиях постоянного давления и постоянной температуры, протекает самопроизвольный необратимый процесс, то термодинамический потенциал системы убывает и при достижении равновесия принимает минимальное значение. ().

? Реальные газы. Изотермы Ван-дер-Ваальса.

Молекулы реальных газов в отличие от идеального, занимают некоторый объем. Между ними существует притяжение. Добавки, учитывающие эти факторы, включены в уравнение Ван-дер-Ваальса. Теоретические зависимости , соответствующие при разных температурах этому уравнению, называют изотермами Ван-дер-Ваальса.

? Фазы и фазовые превращения.

Фаза - термодинамически равновесное состояние вещества, отличающееся физическими свойствами от других возможных равновесных состояний того же вещества. Фазовый переход –связан с качественными изменениями состояния вещества. Фазовый переход 1 рода –сопровождается выделением или поглощением тепла, 2 рода – скачкообразно меняющейся теплоемкостью.

? Что вы знаете о явлениях переноса? (диффузия, вязкость, теплопроводность).

Процессы переноса возникают в термодинамически неравновесных системах, когда системе невозможно приписать определенные термодинамические параметры. Диффузия – перенос массы некоторого вещества под действием градиента (перепада) его концентрации. Вязкость (внутреннее трение) - перенос импульса (за счет градиента скорости). Теплопроводность – перенос энергии за счет перепада температуры.

? Что вы знаете о распределении молекул по скоростям (распределении Максвелла)?

Максвелл вывел с помощью теории вероятностей вывел закон распределения молекул идеального газа по скоростям, т.е. формулу, определяющую, какое относительное число молекул приходится на некоторый интервал скоростей для системы, состоящей из большого числа тождественных частиц. Температура системы не меняется, силовые поля не действуют.

? Запишите барометрическую формулу. Что из себя представляет распределение Больцмана?

. Здесь р 0 –давление на уровне моря, М - молярная масса, g -ускорение свободного падения, h - высота над уровнем моря, R -газовая постоянная, Т -температура, р - изменение давления с высотой. Больцман предполагал, что молекулы находятся в поле тяготения Земли, температура не меняется с высотой. Распределение Больцмана для внешнего потенциального поля: (n 0 –концентрация молекул на нулевой высоте, n - концентрация на высоте h , к - постоянная Больцмана, Т -температура, П - потенциальная энергия молекулы газа).

? Какие физические обьекты описываются статистикой Ферми – Дирака. Что такое энергия Ферми?

Идеальный газ из фермионов – ферми-газ – описывается квантовой статистикой Ферми – Дирака. Фермионы – частицы с полуцелым спином, числа заполнения могут принимать два значения: 0 для свободных состояний и 1 для занятых. Сумма всех чисел заполнения должна быть равна числу частиц системы. При высоких температурах «квантовый» газ ведет себя подобно идеальному. Поведение такого газа при низких температурах и больших плотностях отличается от идеального, поэтому он называется вырожденным. Температурой вырождения Т Т >>Т

Энергия Ферми – максимальная кинетическая энергия, которую могут иметь электроны проводимости в металле, при нуле К называется энергией Ферми.

? Какие физические обьекты описываются статистикой Бозе –Эйнштейна. Их особенности.

Идеальный газ из бозонов – бозе - газ – описывается квантовой статистикой Бозе - Эйнштейна. Бозоны – частицы с нулевым или целым спином, числа заполнения могут принимать любые целые значения: 0,1, 2, … При высоких температурах «квантовый» газ ведет себя подобно идеальному. Поведение такого газа при низких температурах и больших плотностях отличается от идеального, поэтому он называется вырожденным. Температурой вырождения Т 0 называется температура, ниже которой отчетливо проявляются квантовые свойства идеального газа, обусловленные тождественностью частиц. Если Т >>Т 0 , то поведение газа описывается классическими законами.

Электродинамика

Основные формулы термодинамики и молекулярной физики, которые вам пригодятся.
Еще один отличный день для практических занятий по физике. Сегодня мы соберем вместе формулы, которые чаще всего используются при решении задач в термодинамике и молекулярной физике.

Итак, поехали. Попытаемся изложить законы и формулы термодинамики кратко.

Идеальный газ

Идеальный газ – это идеализация, как и материальная точка. Молекулы такого газа являются материальными точками, а соударения молекул – абсолютно упругие. Взаимодействием же молекул на расстоянии пренебрегаем. В задачах по термодинамике реальные газы часто принимаются за идеальные. Так гораздо легче жить, и не нужно иметь дела с массой новых членов в уравнениях.

Итак, что происходит с молекулами идеального газа? Да, они движутся! И резонно спросить, с какой скоростью? Конечно, помимо скорости молекул нас интересует еще и общее состояние нашего газа. Какое давление P он оказывает на стенки сосуда, какой объем V занимает, какая у него температура T.

Для того, чтобы узнать все это, есть уравнение состояния идеального газа, или уравнение Клапейрона-Менделеева

Здесь m – масса газа, M – его молекулярная масса (находим по таблице Менделеева), R – универсальная газовая постоянная, равная 8,3144598(48) Дж/(моль*кг).

Универсальная газовая потоянная может быть выражена через другие константы (постоянная Больцмана и число Авогадро )

Масс у , в свою очередь, можно вычислить, как произведение плотности и объема .

Основное уравнение молекулярно-кинетической теории (МКТ)

Как мы уже говорили, молекулы газа движутся, причем, чем выше температура – тем быстрее. Существует связь между давлением газа и средней кинетической энергией E его частиц. Эта связь называется основным уравнением молекулярно-кинетической теории и имеет вид:

Здесь n – концентрация молекул (отношение их количества к объему), E – средняя кинетическая энергия. Найти их, а также среднюю квадратичную скорость молекул можно, соответственно, по формулам:

Подставим энергию в первое уравнение, и получим еще один вид основного уравнения МКТ

Первое начало термодинамики. Формулы для изопроцессов

Напомним Вам, что первый закон термодинамики гласит: количество теплоты, переданное газу, идёт на изменение внутренней энергии газа U и на совершение газом работы A. Формула первого закона термодинамики записывается так:

Как известно, с газом что-то происходит, мы можем сжать его, можем нагреть. В данном случае нас интересуют такие процессы, которые протекают при одном постоянном параметре. Рассмотрим, как выглядит первое начало термодинамики в каждом из них.

Кстати! Для всех наших читателей сейчас действует скидка 10% на .

Изотермический процесс протекает при постоянной температуре. Тут работает закон Бойля-Мариотта: в изотермическом процессе давление газа обратно пропорционально его объёму. В изотермическом процессе:

протекает при поcтоянном объеме. Для этого процесса характерен закон Шарля: При постоянном объеме давление прямо пропорционально температуре. В изохорном процессе все тепло, подведенное к газу, идет на изменение его внутренней энергии.

идет при постоянном давлении. Закон Гей-Люссака гласит, что при постоянном давлении газа его объём прямо пропорционален температуре. При изобарном процессе тепло идет как на изменение внутренней энергии, так и на совершение газом работы.

. Адиабатный процесс – это такой процесс, который проходит без теплообмена с окружающей средой. Это значит, что формула первого закона термодинамики для адиабатного процесса выглядит так:

Внутренняя энергия одноатомного и двухатомного идеального газа

Теплоемкость

Удельная теплоемкость равна количеству теплоты, которое необходимо для нагревания одного килограмма вещества на один градус Цельсия.

Помимо удельной теплоемкости, есть молярная теплоемкость (количество теплоты, необходимое для нагревания одного моля вещества на один градус) при постоянном объеме, и молярная теплоемкость при постоянном давлении. В формулах ниже, i – число степеней свободы молекул газа. Для одноатомного газа i=3, для двухатомного – 5.

Тепловые машины. Формула КПД в термодинамике

Тепловая машина , в простейшем случае, состоит из нагревателя, холодильника и рабочего тела. Нагреватель сообщает тепло рабочему телу, оно совершает работу, затем охлаждается холодильником, и все повторяется вно вь. Типичным примером тепловой машины является двигатель внутреннего сгорания.

Коэффициент полезного действия тепловой машины вычисляется по формуле

Вот мы и собрали основные формулы термодинамики, которые пригодятся в решении задач. Конечно, это не все все формулы из темы термодинамика, но их знание действительно может сослужить хорошую службу. А если возникнут вопросы – помните о студенческом сервисе , специалисты которого готовы в любой момент прийти на выручку.

1. Основное уравнение молекулярно-кинетической теории газов

Р = (n m 0 <υ кв > 2 )/3 = (2/3)n,

Р = nkT,

где Р – давление;n – число молекул в единице объема;m 0 – масса одной молекулы газа; <υ кв > – средняя квадратичная скорость молекулы;k –постоянная Больцмана;Т – абсолютная температура.

2. Концентрация молекул

n = N/V,

где N – число молекул, содержащихся в данной системе;V – объем.

3. Средняя кинетическая энергия поступательного движения молекулы

= (3/2 ) kT.

4. Средняя кинетическая энергия молекулы

= (i/2 ) kT,

где i

5. Средняя квадратичная скорость молекулы

<υ кв > ==
,

где k – постоянная Больцмана;Т – абсолютная температура;m 0 – масса молекулы;μ – молярная масса;R – универсальная газовая постоянная.

6. Средняя арифметическая скорость молекулы

<υ> =
=
.

7. Наиболее вероятная скорость молекулы

υ в =
=
.

8. Количество вещества

= m/ μ = N/N A ,

где m – масса вещества;μ – его молярная масса;N – число молекул;N A – число Авогадро.

9. Уравнение состояния идеального газа (уравнение Менделеева –Клапейрона)

PV= (m/μ ) RT,

где Р – давление газа в сосуде;V – объем сосуда;m – масса газа, содержащегося в данном сосуде;μ – молярная масса газа;R – универсальная газовая постоянная;Т – абсолютная температура.

10. Изотермический процесс (Т = const,m = const)

P 1 V 1 = P 2 V 2 .

11. Изохорический процесс (V = const,m = const)

P = P 0 (1+ t ) или P 1 /P 2 = T 1 /T 2 ,

где t – температура по шкале Цельсия;T – температура по шкале Кельвина;– температурный коэффициент.

12. Изобарический процесс (Р = const,m = const)

V = V 0 (1+ t ) или V 1 /V 2 = T 1 /T 2 .

13. Работа расширения газа:

в общем случае

A=
;

при изобарическом процессе

A = P V;

при изотермическом процессе

A= νRT ln(V 2 /V 1 );

при адиабатическом процессе

A= – ν С V ΔТ,

где V – изменение объема;R – универсальная газовая постоянная; ν – количество вещества; С V – теплоемкость при постоянном объеме;Т – изменение температуры.

14. Внутренняя энергия идеального газа

U= (ν RT )(i/2 ) = ν С V Т,

где i – число степеней свободы молекулы.

15. Удельные теплоемкости газа:

при постоянном объеме

с v = (i/2 ) (R/μ ),

при постоянном давлении

с р = (i+2/2 ) (R/μ ).

16. Уравнение Майера для удельных теплоемкостей

с р – с v = R/μ.

17. Уравнение Пуассона

(PV ) γ = const,

где γ = С р / С v = (i + 2 )/i , С р v – молярные теплоемкости при постоянном давлении, объеме.

18. Связь между удельной (с ) и молярной (С ) теплоемкостями

c = С/μ.

19. Уравнение теплового баланса

Q=cm (t 2 –t 1 ),

где Q – количество теплоты, необходимое для нагревания тела массойm от температурыt 1 до температурыt 2 ;c – удельная теплоемкость вещества.

20. Теплота плавления

Q = m,

где – удельная теплота плавления вещества.

21. Теплота парообразования

Q = r m,

где r – удельная теплота парообразования вещества.

22. Первый закон термодинамики

Q = U + A,

где Q – количество теплоты, сообщенное термодинамической системе;U – изменение внутренней энергии системы;А – работа, совершенная системой против внешних сил.

23. Коэффициент полезного действия цикла Карно

= (Q 1 –Q 2 )/Q 1 = (T 1 –T 2 ) /T 1 ,

где Q 1 – количество теплоты, полученное от нагревателя;Q 2 – количество теплоты, переданное холодильнику;Т 1 – абсолютная температура нагревателя;Т 2 – абсолютная температура холодильника.

24. Разность энтропий двух состояний В иА

.

25. Закон распределения молекул по скоростям (закон Максвелла)

N=N f(u ) u

f(u ) = (4/
)
u 2 ,

где ΔN – число молекул, относительные скорости которых лежат в интервале отu до (u + Δu );u =υ/υ в – относительная скорость, гдеυ – данная скорость,υ в – наиболее вероятная скорость молекул;Δu – величина интервала относительных скоростей, малая по сравнению со скоростьюu .

26. Барометрическая формула

P h =P 0 e ( –μ gh / RT ) ,

где P h – давление газа на высотеh ;P 0 – давление на высотеh = 0 ;g – ускорение свободного падения.

27. Средняя длина свободного пробега молекул газа

<λ> = <υ>/ = 1/ (
πσ 2 n
),

где <υ > – средняя арифметическая скорость; <z > – среднее число столкновений каждой молекулы с остальными в единицу времени;σ – эффективный диаметр молекулы;n – число молекул в единице объема.

28. Общее число столкновений всех молекул в единице объема за единицу времени

Z= (1/2 ) n.

Внутренняя энергия идеального газа.

Внутренняя энергия U и.г. идеального газа есть кинетическая энергия движения молекул:

Внутренняя энергия идеального газа - это функция состояния. Она зависит только от состояния газа, а не от пути, по которому он приведён в данное состояние.

Внутренняя энергия реальных газов.

Внутренняя энергия реальных газов зависит от температуры, объёма и структуры его молекул:

Внутренняя энергия реального газа включает кинетическую энергию поступательного, вращательного E вращ и колебательного E колеб движения молекул, а также потенциальную энергию E п их взаимодействия.

Первый закон термодинамики.

Закон сохранения энергии в применении к тепловым явлениям называют первым законом термодинамики.

Основная формулировка первого закона термодинамики.

Количество теплоты, сообщённое системе, идёт на изменение её внутренней энергии и на совершение работы над внешними телами:

Другая формулировка первого закона термодинамики.

Нельзя осуществить вечный двигатель первого рода.

Первый закон термодинамики и термодинамические процессы.

Изохорный процесс:

Изобарный процесс:

при этом:

Изотермически процесс:

Адиабатный процесс.

Адиабатным называется процесс, при котором система не получает и не отдаёт энергию посредством теплопередачи, то есть

В этом случае работа равна:

Направленность тепловых процессов.

Внутренняя энергия тела ни при каких условиях не может целиком превратиться в другие виды энергии. Это определяет направление протекания процессов в природе.

Второй закон термодинамики.

Внутренняя энергия не может самопроизвольно переходить от тела с меньшей температурой к телу с большей температурой.

Другая формулировка второго закона термодинамики.

Вечный двигатель второго рода не возможен.

КПД теплового двигателя:

КПД реального теплового двигателя равен

Q 1 - количество теплоты, отнятое у нагревателя, Q 2 - количество теплоты,переданное холодильнику.

Идеальный тепловой двигаель. Цикл Карно.

При использовании цикла Карно, включающего два изотермических и два адиабатных процесса, достигается максимальный КПД теплового двигателя

T 1 - температура нагревателя, T 2 - температура холодильника в кельвинах.

Термодинамика (греч. θέρμη – «тепло», δύναμις – «сила») – раздел физики, изучающий наиболее общие свойства макроскопических систем и способы передачи и превращения энергии в таких системах.

В термодинамике изучаются состояния и процессы, для описания которых можно ввести понятие температуры. Термодинамика (Т.) – это феноменологическая наука, опирающаяся на обобщения опытных фактов. Процессы, происходящие в термодинамических системах, описываются макроскопическими величинами (температура, давление, концентрации компонентов), которые вводятся для описания систем, состоящих из большого числа частиц, и не применимы к отдельным молекулам и атомам, в отличие, например, от величин, вводимых в механике или электродинамике.

Современная феноменологическая термодинамика является строгой теорией, развиваемой на основе нескольких постулатов. Однако связь этих постулатов со свойствами и законами взаимодействия частиц, из которых построены термодинамические системы, даётся статистической физикой. Статистическая физика позволяет выяснить также и границы применимости термодинамики.

Законы термодинамики носят общий характер и не зависят от конкретных деталей строения вещества на атомарном уровне. Поэтому термодинамика успешно применяется в широком круге вопросов науки и техники, таких как энергетика, теплотехника, фазовые переходы, химические реакции, явления переноса и даже чёрные дыры. Термодинамика имеет важное значение для самых разных областей физики и химии, химической технологии, аэрокосмической техники, машиностроения, клеточной биологии, биомедицинской инженерии, материаловедения и находит своё применение даже в таких областях, как экономика.

Важные годы в истории термодинамики

  • Зарождение термодинамики как науки связано с именем Г. Галилея (G. Galilei), корый ввёл понятие температуры и сконструировал первый прибор, реагирующий на изменения температуры окружающей среды (1597).
  • Вскоре Г. Д. Фаренгейт (G. D. Fahrenheit, 1714), Р. Реомюр (R. Reaumur, 1730} и А. Цельсий (A. Celsius, 1742) создали температурные шкалы в соответствии с этим принципом.
  • Дж.Блэк (J. Black) в 1757 году уже ввёл понятия скрытой теплоты плавления и теплоемкости (1770). А Вильке (J. Wilcke, 1772) ввёл определение калории как количества тепла, необходимого для нагревания 1 г воды на 1 °С.
  • Лавуазье (A. Lavoisier) и Лаплас (P. Laplace) в 1780 сконструировали калориметр (см. Калориметрия) и впервые экспериментально определили уд. теплоёмкости ряда веществ.
  • В 1824 С. Карно (N. L, S. Carnot) опубликовал работу, посвящённую исследованию принципов работы тепловых двигателей.
  • Б. Клапейрон (В. Clapeyron) ввёл графическое представление термодинамических процессов и развил метод бесконечно малых циклов (1834).
  • Г. Хельмгольц (G. Helmholtz) отметил универсальный характер закона сохранения энергии (1847). Впоследствии Р. Клаузиус (R. Clausius) и У. Томсон (Кельвин; W. Thomson) систематически развили теоретический аппарат термодинамики, в основу которого положены первое начало термодинамики и второе начало термодинамики.
  • Развитие 2-го начала привело Клаузиуса к определению энтропии (1854) и формулировке закона возрастания энтропии (1865).
  • Начиная с работ Дж. У. Гиббса (J. W. Gibbs, 1873), предложившего метод термодинамических потенциалов, развивается теория термодинамического равновесия.
  • Во 2-й пол. 19 в. проводились исследования реальных газов. Особую роль сыграли эксперименты Т. Эндрюса (Т. Andrews), который впервые обнаружил критическую точку системы жидкость-пар (1861), её существование предсказал Д. И. Менделеев (1860).
  • К концу 19 в. были достигнуты большие успехи в получении низких температур, в результате чего были ожижены О2, N2 и Н2.
  • В 1902 Гиббс опубликовал работу, в которой все основные термодинамические соотношения были получены в рамках статистической физики.
  • Связь между кинетич. свойствами тела и его термодинамич. характеристиками была установлена Л. Онсагером (L. Onsager, 1931).
  • В 20 в. интенсивно исследовали термодинамику твёрдых тел, а также квантовых жидкостей и жидких кристаллов, в которых имеют место многообразные фазовые переходы.
  • Л. Д. Ландау (1935-37) развил общую теорию фазовых переходов, основанную на концепции спонтанного нарушения симметрии.

Разделы термодинамики

Современную феноменологическую термодинамику принято делить на равновесную (или классическую) термодинамику, изучающую равновесные термодинамические системы и процессы в таких системах, и неравновесную термодинамику, изучающую неравновесные процессы в системах, в которых отклонение от термодинамического равновесия относительно невелико и ещё допускает термодинамическое описание.

Равновесная (или классическая) термодинамика

В равновесной термодинамике вводятся такие переменные, как внутренняя энергия, температура, энтропия, химический потенциал. Все они носят название термодинамических параметров (величин). Классическая термодинамика изучает связи термодинамических параметров между собой и с физическими величинами, вводимыми в рассмотрение в других разделах физики, например, с гравитационным или электромагнитным полем, действующим на систему. Химические реакции и фазовые переходы также входят в предмет изучения классической термодинамики. Однако изучение термодинамических систем, в которых существенную роль играют химические превращения, составляет предмет химической термодинамики, а техническими приложениями занимается теплотехника.

Классическая термодинамика включает в себя следующие разделы:

  • начала термодинамики (иногда также называемые законами или аксиомами)
  • уравнения состояния и свойства простых термодинамических систем (идеальный газ, реальный газ, диэлектрики и магнетики и т. д.)
  • равновесные процессы с простыми системами, термодинамические циклы
  • неравновесные процессы и закон неубывания энтропии
  • термодинамические фазы и фазовые переходы

Кроме этого, современная термодинамика включает также следующие направления:

  • строгая математическая формулировка термодинамики на основе выпуклого анализа
  • неэкстенсивная термодинамика

В системах, не находящихся в состоянии термодинамического равновесия, например, в движущемся газе, может применяться приближение локального равновесия, в котором считается, что соотношения равновесной термодинамики выполняются локально в каждой точке системы.

Неравновесная термодинамика

В неравновесной термодинамике переменные рассматриваются как локальные не только в пространстве, но и во времени, то есть в её формулы время может входить в явном виде. Отметим, что посвящённая вопросам теплопроводности классическая работа Фурье «Аналитическая теория тепла» (1822) опередила не только появление неравновесной термодинамики, но и работу Карно «Размышления о движущей силе огня и о машинах, способных развивать эту силу» (1824), которую принято считать точкой отсчёта в истории классической термодинамики.

Основные понятия термодинамики

Термодинамическая система – тело или группа тел, находящихся во взаимодействии, мысленно или реально обособленные от окружающей среды.

Гомогенная система – система, внутри которой нет поверхностей, разделяющих отличающиеся по свойствам части системы (фазы).

Гетерогенная система – система, внутри которой присутствуют поверхности, разделяющие отличающиеся по свойствам части системы.

Фаза – совокупность гомогенных частей гетерогенной системы, одинаковых по физическим и химическим свойствам, отделённая от других частей системы видимыми поверхностями раздела.

Изолированная система – система, которая не обменивается с окружающей средой ни веществом, ни энергией.

Закрытая система – система, которая обменивается с окружающей средой энергией, но не обменивается веществом.

Открытая система – система, которая обменивается с окружающей средой и веществом, и энергией.

Совокупность всех физических и химических свойств системы характеризует её термодинамическое состояние . Все величины, характеризующие какое-либо макроскопическое свойство рассматриваемой системы – параметры состояния . Опытным путем установлено, что для однозначной характеристики данной системы необходимо использовать некоторое число параметров, называемых независимыми ; все остальные параметры рассматриваются как функции независимых параметров. В качестве независимых параметров состояния обычно выбирают параметры, поддающиеся непосредственному измерению, например температуру, давление, концентрацию и т.д. Всякое изменение термодинамического состояния системы (изменения хотя бы одного параметра состояния) есть термодинамический процесс .

Обратимый процесс – процесс, допускающий возможность возвращения системы в исходное состояние без того, чтобы в окружающей среде остались какие-либо изменения.

Равновесный процесс – процесс, при котором система проходит через непрерывный ряд равновесных состояний.

Энергия – мера способности системы совершать работу; общая качественная мера движения и взаимодействия материи. Энергия является неотъемлемым свойством материи. Различают потенциальную энергию, обусловленную положением тела в поле некоторых сил, и кинетическую энергию, обусловленную изменением положения тела в пространстве.

Внутренняя энергия системы – сумма кинетической и потенциальной энергии всех частиц, составляющих систему. Можно также определить внутреннюю энергию системы как её полную энергию за вычетом кинетической и потенциальной энергии системы как целого.

Формы перехода энергии

Формы перехода энергии от одной системы к другой могут быть разбиты на две группы.

  1. В первую группу входит только одна форма перехода движения путем хаотических столкновений молекул двух соприкасающихся тел, т.е. путём теплопроводности (и одновременно путём излучения). Мерой передаваемого таким способом движения является теплота. Теплота есть форма передачи энергии путём неупорядоченного движения молекул.
  2. Во вторую группу включаются различные формы перехода движения, общей чертой которых является перемещение масс, охватывающих очень большие числа молекул (т.е. макроскопических масс), под действием каких-либо сил. Таковы поднятие тел в поле тяготения, переход некоторого количества электричества от большего электростатического потенциала к меньшему, расширение газа, находящегося под давлением и др. Общей мерой передаваемого такими способами движения является работа – форма передачи энергии путём упорядоченного движения частиц.

Теплота и работа характеризуют качественно и количественно две различные формы передачи движения от данной части материального мира к другой. Теплота и работа не могут содержаться в теле. Теплота и работа возникают только тогда, когда возникает процесс, и характеризуют только процесс. В статических условиях теплота и работа не существуют. Различие между теплотой и работой, принимаемое термодинамикой как исходное положение, и противопоставление теплоты работе имеет смысл только для тел, состоящих из множества молекул, т.к. для одной молекулы или для совокупности немногих молекул понятия теплоты и работы теряют смысл. Поэтому термодинамика рассматривает лишь тела, состоящие из большого числа молекул, т.е. так называемые макроскопические системы.

Три начала термодинамики

Начала термодинамики – совокупность постулатов, лежащих в основе термодинамики. Эти положения были установлены в результате научных исследований и были доказаны экспериментально. В качестве постулатов они принимаются для того, чтобы термодинамику можно было построить аксиоматически.

Необходимость начал термодинамики связана с тем, что термодинамика описывает макроскопические параметры систем без конкретных предположений относительно их микроскопического устройства. Вопросами внутреннего устройства занимается статистическая физика.

Начала термодинамики независимы, то есть ни одно из них не может быть выведено из других начал. Аналогами трех законов Ньютона в механике, являются три начала в термодинамике, которые связывают понятия «тепло» и «работа»:

  • Нулевое начало термодинамики говорит о термодинамическом равновесии.
  • Первое начало термодинамики – о сохранении энергии.
  • Второе начало термодинамики – о тепловых потоках.
  • Третье начало термодинамики – о недостижимости абсолютного нуля.

Общее (нулевое) начало термодинамики

Общее (нулевое) начало термодинамики гласит, что два тела находятся в состоянии теплового равновесия, если они могут передавать друг другу теплоту, но этого не происходит.

Нетрудно догадаться, что два тела не передают друг другу теплоту в том случае, если их температуры равны. Например, если измерить температуру человеческого тела при помощи термометра (в конце измерения температура человека и температура градусника будут равны), а затем, этим же термометром измерить температуру воды в ванной, и при этом окажется, что обе температуры совпадают (наблюдается тепловое равновесие человека с термометром и термометра с водой), можно говорить о том, что человек находится в тепловом равновесии с водой в ванной.

Из сказанного выше, можно сформулировать нулевое начало термодинамики следующим образом: два тела, находящиеся в тепловом равновесии с третьим, также находятся в тепловом равновесии между собой.

С физической точки зрения нулевое начало термодинамики устанавливает точку отсчета, поскольку, между двумя телами, которые имеют одинаковую температуру, тепловой поток отсутствует. Другими словами, можно сказать, что температура есть не что иное, как индикатор теплового равновесия.

Первое начало термодинамики

Первое начало термодинамики есть закон сохранения тепловой энергии, утверждающий, что энергия никуда не девается бесследно.

Система может либо поглощать, либо выделять тепловую энергию Q, при этом система выполняет над окружающими телами работу W (или окружающие тела выполняют работу над системой), при этом внутренняя энергия системы, которая имела начальное значение Uнач, будет равна Uкон:

Uкон-Uнач = ΔU = Q-W

Тепловая энергия, работа и внутренняя энергия определяют общую энергию системы, которая является постоянной величиной. Если системе передать (забрать) некое кол-во тепловой энергии Q, при отсутствии работы кол-во внутренней энергии системы U, увеличится (уменьшится) на Q.

Второе начало термодинамики

Второе начало термодинамик гласит, что тепловая энергия может переходить только в одном направлении – от тела с более высокой температурой, к телу, с более низкой температурой, но не наоборот.

Третье начало термодинамики

Третье начало термодинамики гласит, что любой процесс, состоящий из конечного числа этапов, не позволит достичь температуры абсолютного нуля (хотя к нему можно существенно приблизиться).