Что измеряется единицами люкс. Что такое люксы в освещении

Давно уже пытаюсь разобраться с этим анализатором света... первые шаги освоения теории...

Оригинал взят с сайта http://usa.autodesk.com/3ds-max/white-papers/

Освещённость и измерение освещённости (lux).


Рис. 01 Пример измерения освещённости в lux в 3 ds Max

Для создания фотореалистичных изображений нам необходимо знать, как измерять свет.

Слово «Яркость» может означать разные понятия: количество света, испускаемое источником света или количество света, падающего на поверхность.

Количество света, падающего на поверхность, называется «освещенность» и измеряется в люксах (lux - метрическая система) или в канделах (foot-candles (ft - cd ) - Английская система). Это основные единицы измерения, с которыми нам придется работать для оптимизации освещенности наших сцен. Количество света, испускаемое источником во всех направлениях, измеряется в люменах (будь то световой поток или поток излучения).

Эти количественные меры различаются, поскольку, чем дальше поверхность от источника света, тем меньше света падает на нее. Источник света, например свеча, создает освещённость 1 люкс на объекте, удаленном от нее на один метр. 1/4 люкса, если этот же объект удален на два метра или 1/9 люкса если объект удален от свечи на три метра.

Некоторые основные уровни освещенности приведены в таблице ниже.

Таблица. 1. Уровни освещённости в различные погодные условия

Условия

Освещение

ft-cd)

lux

Дневной свет

1 000

10 752

Облачный день

100

1 075

Пасмурный день

10

107

Сумерки

1

10,8

Темные сумерки

0,1

1,08

Полнолуние

0,01

0,108

Четверть луны

0,001

0,0108

Звездное небо

0,0001

0,0011

Комфортные уровни освещенности

Нам, как дизайнерам и визуализаторам необходимо знать, что в создаваемом нашем изображении правдоподобное освещение, и мы должны быть уверены в достоверности освещения нашего проекта.

В помещениях может быть слишком темно или слишком светло, и эти уровни освещенности зависят от того, какое предназначение этих помещения. Яркость, требуемая для производства ювелирных украшений или сборки электронных компонентов гораздо больше, чем яркость, требуемая для нормального передвижения по комнате. Ниже приведена таблица освещенности для помещений различного назначения.

Активность

lux

ft-cd

Парковка/ тротуар ночью

20 - 50

2 - 5

Склады, дома, лобби, комната отдыха, обычный офис

100 - 200

10 - 20

Работа за компьютером, лаборатории, чтение и письмо (высококонтрастное), работа с документами

500

50

Супермаркеты, типовая работа с механикой/электроникой

750

75

Черчение, рисование набросков, детальная работа с механикой/электроникой, хирургия

1 000

100

Детальное черчение, рисование мелких деталей, работа с очень мелкими механическими или электронными деталями

1 500 - 2 000

100 - 200

Длительная работа с мелкими, низко контрастными деталями

2 000 - 10 000

200 - 1 000

Весь расчет – 2 минуты, 2 шага. Все быстро и просто!

Уважаемые читатели, в данной статье мы не будем приводить детальные сложные методики расчета освещенности помещений, не будем заставлять Вас внимательно всматриваться в СНИПы и таблицы в поисках нужных коэффициентов. Мы расскажем, как можно приблизительно, с помощью упрощенной быстрой методики, рассчитать необходимую освещенность помещения (комнаты), а также как рассчитать необходимое для комфортного освещения количество ламп.

Для начала нам нужно знать, что освещенность измеряется в люксах (Лк), а величина светового потока - в люменах (Лм). Опять же, данный метод расчета освещенности позволяет нам не разбираться во взаимосвязях и хитросплетениях этих величин. Подойдем к этому просто - нам нужно это знать для того, чтобы выбрать правильные светильники и количество ламп для помещения (комнаты).

Этапы расчета:

  1. Расчет необходимого светового потока на комнату (количесто Лм на все помещение).
  2. Расчет необходимого количества ламп на комнату (помещение).

1. Расчет необходимого светового потока на комнату (помещение).

Формула расчета светового потока в люменах (Лм):
Световой поток (люмен) = А * Б * В;

Где:
А - нормативное значение освещенности помещения (комнаты), представлено ниже в таблице;
Б - площадь помещения (комнаты) в м.кв.;
В - коэффициент высоты потолка (до 2,7 м - 1,0; 2,7-3,0 м - 1,2; 3,0-3,5 м - 1,5; 3,5-4,0 - 2,0);

2. Расчет необходимого количества ламп на комнату (помещение).

Итак, мы определили необходимую величину светового потока(количество люмен). Теперь мы можем рассчитать необходимое количество ламп на комнату (помещение). Ниже представлена таблица, в которой вы можете подобрать количество ламп для помещения (комнаты) и сравнить основные популярные типы ламп по их характеристикам светового потока и соотношению мощностей.

Все эти расчеты приблизительны и подходят для подбора люстры или светильника размещенного в центре комнаты.

Если же вы хотите понять сколько нужно точечных светильников со светодиодными лампочками, лучше исходить из расчета один светильник мощностью 5-7 W (450-550 Лм) на 1,2-1,5 кв.м

Таблица №1: Нормативные значения освещенности помещений/комнат, согласно СНиП:

Типы офисных помещений Норма освещенности согласно СНиП, Лк Типы жилых помещений Норма освещенности согласно СНиП, Лк
Офис общего назначения с использованием компьютеров 300 Жилая комната, кухня 150
Офис, в котором осуществляются чертежные работы 500 Детская комната 200
Зал для конференций, переговорная комната 200 Ванная комната, санузел, душевая, квартирные коридоры и холлы 50
Экскалатор, лестница 50-100 Гардеробная 75
Холл, коридор 50-75 Кабинет, библиотека 300
Архив 75 Лестница 20
Подсобные помещения, кладовая 50 Сауна, бассейн

Таблица №2: Усреднённый световой поток по типу лампочек (количество люмен).

Типы лампочек
(Light Bulb Type)


CFL

LED
Минимальное свечение
(Lumens)
450LM 40W 9W to 13W 4W to 5W
680LM 60W 13W to 15W 6W to 7W
1100LM 75W 18W to 25W 9W to 13W
1600LM 100W 23W to 30W 16W to 20W
2600LM 150W 30W to 55W 25W to 28W

Данные, представленные в таблице приблизительные, в зависимости от производителя, они могут отличаться.

Еще несколько небольших советов по расчету светового потока и выбору количества ламп:

  1. Помните, что СНиПы разрабатывались в советские времена. В то время о здоровье граждан (имеются в виду глаза) не очень-то заботились, не говоря уже о комфорте нахождения в помещении или работе в нем. Так что не лишним будет добавить небольшой коэффициент запаса в расчет вашей освещенности (светового потока).
  2. Если у Вас в комнате больше ламп, чем нужно – Вы всегда сможете отключить некоторые из них. А что Вы будете делать, если света не хватает, и как это будет выглядеть?
  3. Помните о том, что поверхности имеют свойство отражать свет. Чем светлее поверхность – тем больше света она отражает, чем темнее – тем меньше света от нее отбивается. Свет, который отражается от поверхности, тоже свет, т.е. отраженный свет тоже освещает помещение. Если у вас в комнате или помещении преобладают темные тона – стоит увеличить значение светового потока при подборе ламп, так как темные поверхности помещения поглотят большое количество света.

Таблица №3: Коэффициент отражения света.

высота комнаты S пола м 2 цвет помещения
светл. средн. темн.
<3м до 20 0,75 0,65 0,60
до 50 0,90 0,80 0,75
до 100 1,00 0,90 0,85
3-5м до 20 0,55 0,45 0,40
до 50 0,75 0,65 0,60
до 100 0,90 0,80 0,75
5-7м до 50 0,55 0,45 0,40
до 100 0,75 0,65 0,60

Если Вам нужно рассчитать освещенность и количество ламп для нестандартного помещения (с очень высокими потолками или замысловатой формы), или Вам нужно подобрать качественные осветительные приборы для комнаты, дома или офиса, позвоните нам и наши специалисты предоставят исчерпывающую информацию и предложат решение.

Конвертер длины и расстояния Конвертер массы Конвертер мер объема сыпучих продуктов и продуктов питания Конвертер площади Конвертер объема и единиц измерения в кулинарных рецептах Конвертер температуры Конвертер давления, механического напряжения, модуля Юнга Конвертер энергии и работы Конвертер мощности Конвертер силы Конвертер времени Конвертер линейной скорости Плоский угол Конвертер тепловой эффективности и топливной экономичности Конвертер чисел в различных системах счисления Конвертер единиц измерения количества информации Курсы валют Размеры женской одежды и обуви Размеры мужской одежды и обуви Конвертер угловой скорости и частоты вращения Конвертер ускорения Конвертер углового ускорения Конвертер плотности Конвертер удельного объема Конвертер момента инерции Конвертер момента силы Конвертер вращающего момента Конвертер удельной теплоты сгорания (по массе) Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему) Конвертер разности температур Конвертер коэффициента теплового расширения Конвертер термического сопротивления Конвертер удельной теплопроводности Конвертер удельной теплоёмкости Конвертер энергетической экспозиции и мощности теплового излучения Конвертер плотности теплового потока Конвертер коэффициента теплоотдачи Конвертер объёмного расхода Конвертер массового расхода Конвертер молярного расхода Конвертер плотности потока массы Конвертер молярной концентрации Конвертер массовой концентрации в растворе Конвертер динамической (абсолютной) вязкости Конвертер кинематической вязкости Конвертер поверхностного натяжения Конвертер паропроницаемости Конвертер паропроницаемости и скорости переноса пара Конвертер уровня звука Конвертер чувствительности микрофонов Конвертер уровня звукового давления (SPL) Конвертер уровня звукового давления с возможностью выбора опорного давления Конвертер яркости Конвертер силы света Конвертер освещённости Конвертер разрешения в компьютерной графике Конвертер частоты и длины волны Оптическая сила в диоптриях и фокусное расстояние Оптическая сила в диоптриях и увеличение линзы (×) Конвертер электрического заряда Конвертер линейной плотности заряда Конвертер поверхностной плотности заряда Конвертер объемной плотности заряда Конвертер электрического тока Конвертер линейной плотности тока Конвертер поверхностной плотности тока Конвертер напряжённости электрического поля Конвертер электростатического потенциала и напряжения Конвертер электрического сопротивления Конвертер удельного электрического сопротивления Конвертер электрической проводимости Конвертер удельной электрической проводимости Электрическая емкость Конвертер индуктивности Конвертер Американского калибра проводов Уровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицах Конвертер магнитодвижущей силы Конвертер напряженности магнитного поля Конвертер магнитного потока Конвертер магнитной индукции Радиация. Конвертер мощности поглощенной дозы ионизирующего излучения Радиоактивность. Конвертер радиоактивного распада Радиация. Конвертер экспозиционной дозы Радиация. Конвертер поглощённой дозы Конвертер десятичных приставок Передача данных Конвертер единиц типографики и обработки изображений Конвертер единиц измерения объема лесоматериалов Вычисление молярной массы Периодическая система химических элементов Д. И. Менделеева

1 люкс [лк] = 0,0001 люмен на кв. сантиметр [лм/см²]

Исходная величина

Преобразованная величина

люкс метр-кандела сантиметр-кандела фут-кандела фот нокс кандела-стерадиан на кв. метр люмен на кв. метр люмен на кв. сантиметр люмен на кв. фут ватт на кв. см (при 555 нм)

Метрическая система и СИ

Подробнее об освещенности

Общие сведения

Освещенность - это световая величина, которая определяет количество света, попадающего на определенную площадь поверхности тела. Она зависит от длины волны света, так как человеческий глаз воспринимает яркость световых волн разной длины, то есть разного цвета, по-разному. Освещенность вычисляют отдельно для волн разной длины, так как люди воспринимают свет с длиной волны в 550 нанометров (зеленый), и цвета, находящиеся рядом в спектре (желтый и оранжевый), как самые яркие. Свет, образуемый более длинными или короткими волнами (фиолетовый, синий, красный) воспринимается, как более темный. Часто освещенность связывают с понятием яркости.

Освещенность обратно пропорциональна площади, на которую падает свет. То есть, при освещении поверхности одной и той же лампой, освещенность большей площади будет меньше, чем освещенность меньшей площади.

Разница между яркостью и освещенностью

Яркость Освещенность

В русском языке слово «яркость» имеет два значения. Яркость может означать физическую величину, то есть характеристику светящихся тел, равную отношению силы света в определенном направлении к площади проекции светящейся поверхности на плоскость, перпендикулярную этому направлению. Также она может определять более субъективное понятие об общей яркости, которое зависит от многих факторов, например особенностей глаз того, кто смотрит на этот свет, или количества света в окружающей среде. Чем меньше света вокруг, тем ярче кажется источник света. Чтобы не путать эти два понятия с освещенностью стоит запомнить, что:

яркость характеризует свет, отраженный от поверхности светящегося тела или посылаемый этой поверхностью;

освещенность характеризует падающий на освещаемую поверхность свет.

В астрономии яркость характеризует как излучающую (звезды), так и отражающую (планеты) способность поверхности небесных тел и измеряется по фотометрической шкале звездных яркостей. Причем, чем ярче звезда, тем меньше величина ее фотометрической яркости. Самые яркие звезды имеют отрицательную величину звездной яркости.

Единицы измерения

Освещенность чаще всего измеряют в единицах СИ люксах . Один люкс равен одному люмену на квадратный метр. Те, кто предпочитают метрическим единицам имперские, используют для измерения освещенности фут-канделу . Часто ее применяют в фотографии и кино, а также в некоторых других областях. Фут в названии используется потому, что одна фут-кандела обозначает освещенность одной канделой поверхности в один квадратный фут, которую измеряют на расстоянии одного фута (чуть больше 30 см).

Фотометр

Фотометр - это устройство, которое измеряет освещенность. Обычно свет поступает на фотодетектор, преобразуется в электрический сигнал и измеряется. Иногда встречаются фотометры, которые работают по другому принципу. Большая часть фотометров показывают информацию об освещенности в люксах, хотя иногда используются и другие единицы. Фотометры, называемые экспонометрами, помогают фотографам и операторам определить выдержку и диафрагму. Кроме этого фотометры используют для определения безопасной освещенности на рабочем месте, в растениеводстве, в музеях, и во многих других отраслях, где необходимо знать и поддерживать определенную освещенность.

Освещенность и безопасность на рабочем месте

Работа в темном помещении грозит ухудшением зрения, депрессией и другими физиологическими и психологическими проблемами. Именно поэтому многие правила охраны труда включают требования о минимальной безопасной освещенности рабочего места. Измерения обычно проводят фотометром, который выдает конечный результат в зависимости от площади распространения света. Это необходимо для того, чтобы обеспечить достаточную освещенность во всем помещении.

Освещенность в фото- и видеосъемке

В большинстве современных камер имеются встроенные экспонометры, упрощающие работу фотографа или оператора. Экспонометр необходим для того, чтобы фотограф или оператор могли определить, сколько света нужно пропустить на пленку или фотоматрицу в зависимости от освещенности снимаемого объекта. Освещенность в люксах преобразуется экспонометром в возможные комбинации выдержки и диафрагмы, которые потом выбираются вручную или автоматически, в зависимости от того, как настроена камера. Обычно предлагаемые комбинации зависят от настроек в камере, а также от того, что фотограф или оператор хочет изобразить. В студии и на съемочной площадке часто используют внешний или встроенный в камеру экспонометр, чтобы определить, достаточно ли освещения обеспечивают используемые источники света.

Для получения хороших фотографий или видеоматериала в условиях плохого освещения на пленку или фотоматрицу должно попасть достаточное количество света. Этого не трудно добиться с помощью фотоаппарата - нужно только установить правильную экспозицию. С видеокамерами дело обстоит сложнее. Для видеосъемки высокого качества обычно нужно устанавливать дополнительное освещение, иначе видео будет слишком темным или с сильным цифровым шумом. Это не всегда возможно. Некоторые видеокамеры специально разрабатывают для съемки в условиях слабой освещенности.

Камеры, предназначенные для съемки в условиях слабой освещенности

Есть два вида камер для съемок в условиях слабой освещенности: в одних используется оптика более высокого уровня, а в других - более совершенная электроника. Оптика пропускает больше света в объектив, а электроника лучше обрабатывает даже тот малый свет, что попадает в камеру. Обычно именно с электроникой связаны проблемы и побочные эффекты, описанные ниже. Светосильная оптика позволяет снять видео более высокого качества, но ее недостатки - дополнительный вес из-за большого количества стекла и значительно более высокая цена.

Кроме этого, на качество съемки влияет установленная в видео- и фотокамерах одноматричная или трехматричная фотоматрица. В трехматричной матрице весь поступающий свет делится с помощью призмы на три цвета - красный, зеленый и синий. Качество изображения в темных условиях лучше в трехматричных камерах, чем в одноматричных, так как при прохождении через призму рассеивается меньше света, чем при его обработке фильтром в одноматричной камере.

Существует два основных вида фотоматриц - на приборах с зарядовой связью (ПЗС) и выполненные на основе КМОП-технологии (комплементарный металлооксидный полупроводник). В первом обычно установлен датчик, на который поступает свет, и процессор, который обрабатывает изображение. В КМОП-матрицах датчик и процессор обычно объединены. В условиях недостаточного освещения камеры с ПЗС-матрицами обычно дают изображение лучшего качества, а достоинства КМОП-матриц в том, что они дешевле и потребляют меньше энергии.

Размер фотоматрицы также влияет на качество изображения. Если съемка происходит с малым количеством света, то чем больше матрица - тем лучше качество изображения, а чем меньше матрица - тем больше проблем с изображением - на нем появляется цифровой шум. Большие матрицы устанавливают в более дорогих камерах, и для них необходима более мощная (и, как следствие - тяжелая) оптика. Фотокамеры с такими матрицами позволяют снимать профессиональное видео. Например, в последнее время появился ряд фильмов полностью снятых на такие камеры как Canon 5D Mark II или Mark III, у которых размер матрицы - 24 x 36 мм.

Производители обычно указывают, в каких минимальных условиях может работать камера, например при освещенности от 2 люкс. Эта информация не стандартизирована, то есть производитель решает сам, какое видео считать качественным. Иногда две камеры с одним и тем же показателем минимальной освещенности дают разное качество съемки. Альянс отраслей электронной промышленности EIA (от английского Electronic Industries Association) в США предложил стандартизированную систему определения светочувствительности камер, но пока он используется только некоторыми производителями и не принят повсеместно. Поэтому часто, чтобы сравнить две камеры с одинаковыми световыми характеристиками, нужно испробовать их в действии.

На данный момент любая камера, даже рассчитанная на работу в условиях низкой освещенности, может давать картинку низкого качества, с высокой зернистостью и послесвечением. Чтобы решить некоторые из этих проблем возможно предпринять следующие шаги:

  • Снимать на штативе;
  • Работать в ручном режиме;
  • Не использовать режим переменного фокусного расстояния, а вместо этого перенести камеру как можно ближе к объекту съемки;
  • Не использовать автоматическую фокусировку и автоматический выбор ISO - при большей величине ISO увеличивается шум;
  • Снимать с выдержкой в 1/30;
  • Использовать рассеянный свет;
  • Если нет возможности установить дополнительное освещение, то использовать весь возможный свет вокруг, например уличные фонари и лунный свет.

Несмотря на отсутствие стандартизации о чувствительности камер к освещенности, для ночной съемки все равно лучше выбрать камеру, на которой указано, что она работает при 2 люкс или ниже. Также следует помнить, что даже если камера действительно хорошо снимает в темных условиях, ее чувствительность к освещенности, указанная в люксах - чувствительность к свету, направленному на объект, но камера на самом деле получает свет, отраженный от объекта. При отражении часть света рассеивается, и чем дальше камера от объекта - тем меньше света попадает в объектив, что ухудшает качество съемки.

Экспозиционное число

Экспозиционное число (англ. Exposure Value, EV) - целое число, характеризующее возможные комбинации выдержки и диафрагмы в фото, кино- или видеокамере. Все сочетания выдержки и диафрагмы, при которых на пленку или светочувствительную матрицу попадает одинаковое количество света, имеют одинаковое экспозиционное число.

Несколько комбинаций выдержки и диафрагмы в камере при одном и том же экспозиционном числе позволяют получить примерно одинаковое по плотности изображение. Однако изображения при этом будут различными. Это связано с тем, что при разных значениях диафрагмы глубина резко изображаемого пространства будет различной; при разных значениях выдержки изображение на пленке или матрице будет находиться разное время, в результате чего оно будет в разной степени смазано или совсем не смазано. Например, сочетания f/22 - 1/30 и f/2.8 - 1/2000 характеризуются одним и тем же экспозиционным числом, но первое изображение будет иметь большую глубину резкости и может оказаться смазанным, а второе будет иметь малую глубину резкости и, вполне возможно, совсем не будет смазанным.

Бóльшие значения EV используются, если объект съемки лучше освещен. Например, экспозиционное число (при светочувствительности ISO 100) EV100 = 13 можно использовать при съемке ландшафта, если на небе имеется облачность, а EV100 = –4 годится для съемки яркого полярного сияния.

По определению,

EV = log 2 (N 2 /t )

2 EV = N 2 /t , (1)

    где
  • N - диафрагменное число (например: 2; 2,8; 4; 5,6, и т. д.)
  • t - выдержка в секундах (например: 30, 4, 2, 1, 1/2, 1/4, 1/30, 1/100, и т. д.)

Например, для комбинации f/2 и 1/30, экспозиционное число

EV = log 2 (2 2 /(1/30)) = log 2 (2 2 × 30) = 6.9 ≈ 7.

Это число может быть использовано для съемки ночных сцен и освещенных витрин. Комбинация f/5.6 с выдержкой 1/250 дает экспозиционное число

EV = log 2 (5.6 2 /(1/250)) = log 2 (5.6 2 × 250) = log 2 (7840) = 12.93 ≈ 13,

которое можно использовать для съемки пейзажа с облачным небом и без теней.

Следует отметить, что аргумент логарифмической функции должен быть безразмерным. В определении экспозиционного числа EV игнорируется размерность знаменателя в формуле (1) и используется только численное значение выдержки в секундах.

Взаимосвязь экспозиционного числа с яркостью и освещенностью объекта съемки

Определение экспозиции по яркости света, отраженного от объекта съемки

При использовании экспонометров или люксметров, измеряющих отраженный от объекта съемки свет, выдержка и диафрагма связаны с яркостью объекта съемки следующим соотношением:

N 2 /t = LS /K (2)

  • N - диафрагменное число;
  • t - выдержка в секундах;
  • L - усредненная яркость сцены в канделах на квадратный метр (кд/м²);
  • S - арифметическое значение светочувствительности (100, 200, 400, и т. д.);
  • K - калибровочный коэффициент экспонометра или люксметра для отраженного света; Canon и Nikon используют K = 12.5.

Из уравнений (1) и (2) получаем экспозиционное число

EV = log 2 (LS /K )

2 EV = LS /K

При K = 12,5 и ISO 100, имеем следующее уравнение для яркости:

2 EV = 100L /12.5 = 8L

L = 2 EV /8 = 2 EV /2 3 = 2 EV–3 .

Освещенность и музейные экспонаты

Скорость, с которой ветшают, выцветают и иным образом портятся музейные экспонаты, зависит от их освещенности и от силы источников света. Сотрудники музеев измеряют освещенность экспонатов, чтобы убедиться, что на экспонаты попадает безопасное количество света, а также и для того, чтобы обеспечить достаточно света для посетителей, чтобы они могли хорошо рассмотреть экспонат. Освещенность можно измерить фотометром, но во многих случаях это бывает нелегко, так как он должен находиться как можно ближе к экспонату, а для этого часто необходимо убрать защитное стекло и выключить сигнализацию, а также получить на это разрешение. Чтобы облегчить задачу, работники музея часто пользуются фотоаппаратами как фотометрами. Конечно, это не замена точным измерениям в ситуации, где найдена проблема с количеством света, который попадает на экспонат. Но для того, чтобы проверить, нужна ли более серьезная проверка с фотометром, фотоаппарата вполне достаточно.

Экспозиция определяется фотоаппаратом на основе показаний об освещенности, и, зная экспозицию, можно найти освещенность, проделав ряд несложных вычислений. В этом случае сотрудники музеев пользуются либо формулой, либо таблицей с переводом экспозиции в единицы освещенности. Во время вычислений не стоит забывать, что камера поглощает часть света, и учитывать это в конечном результате.

Освещенность в других сферах деятельности

Садоводы и растениеводы знают, что растения нуждается в свете для фотосинтеза, и им известно, сколько света необходимо каждому растению. Они измеряют освещенность в теплицах, садах и огородах, чтобы убедиться в том, что каждое растение получает достаточное количество света. Некоторые используют для этого фотометры.

Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.

Освещённость – самая распространённая фотометрическая величина, в повседневной жизни определяется простыми терминами: светло, темно, сумерки и т. д. Уровень освещённости оказывает значительное влияние на самочувствие и трудоспособность человека, его возможность получать информацию от самых разных источников с помощью зрения. Для создания комфортных условий необходимо измерить освещённость и определить оптимальные величины.

Понятие освещённости

Определение освещённости невозможно без применения других параметров видимого света – световых единиц:

  • Кандела (кд). Сила света относится к основным единицам международной системы СИ. Ранее применявшееся название – свеча, служившая эталоном для измерений. Сейчас одна кандела – это световая эффективность монохромного излучателя на строго определённой частоте, с заданной энергией. В бытовом применении одной канделе соответствует сила света одной обычной свечи, 100 кд – лампа накаливания мощностью100 Вт;
  • Световой поток – люмен (лм), производная единица измерения. Определение тесно связано с силой света. 1 люмен – это световой поток излучателя силой в одну канделу, распределённый в один стерадиан (телесный угол): 1 лм = 1 кд ∙ 1 ср. Типичное значение для ламп накаливания 100 Вт с прозрачной колбой составляет 1300-1400 лм.

Освещённость зависит от этих характеристик источника света и указывает на величину светового потока, падающего на некоторую площадь, измеряется в люксах (лк). За единицу освещённости принимается люкс – это световой поток в один люмен, падающий перпендикулярно на 1 м2 освещаемой площади и равномерно по ней распределённый. Так же определяется как освещённость сферы радиусом 1 метр, находящимся внутри излучателем с силой света 1 кд. Находится в прямо пропорциональной зависимости от интенсивности источника и в обратной – от квадрата расстояния до него. За источник принимается равномерно испускающий свет во все стороны (изотропный) точечный излучатель.

Вычисление конкретного значения кандел, люменов и люксов производится по формулам:

E = F / S, где Е – освещённость, люкс; S – площадь, м2.

E = I / R2, где R – расстояние до источника.

Из этих соотношений понятно, как перевести люксы в люмены, рассчитать требуемый поток при определённой освещённости:

F = E × S, где F – искомый световой поток в люменах, E – известная освещённость, люкс, S – площадь, м2 .

Величина уменьшается в том случае, если свет падает под углом, тогда результат необходимо умножить на значение косинуса угла падения лучей:

E = (F / S) × cos i;

E = (I / R2) × cos i.

В традиционной английской и американской системе измерений применяется понятие фут – кандела. Определяется как освещённость на расстоянии один фут, создаваемая источником силой света в одну канделу. Больше одного люкса приблизительно в десять раз, для пересчёта удобно использовать онлайн калькуляторы.

Средние значения для некоторых распространённых естественных и искусственных источников освещения:

  • Солнце, в средних широтах, полдень – до 400000 лк;
  • Пасмурная погода – 3000 лк;
  • Восход солнца – 1000 лк;
  • Полная луна без облаков – до 1 лк;
  • Стадион при искусственном освещении – до 1300 лк.

Указанные величины ориентировочные и не могут применяться для расчётов – разница в измерениях бывает очень велика.

Основные требования

Освещённость любого объекта, на который падает световой поток, никак не зависит от его свойств – они определяют только отражающую способность поверхности, которую принято называть светимостью или яркостью. Отражённый свет от потолка, зеркал и других конструкций часто используется для усиления эффективности основного освещения, так в большинстве конструкций подвесных светильников предусмотрено направление части света в верхнюю полусферу.

  • Гостиная – 200 лк;
  • Санузел, душевая – 80 лк;
  • Кабинет – 300 лк;
  • Подсобные помещения – 50 лк.

Для производственных и служебных объектов установлены нормированные величины, указанные в своде правил СНиП.

Расчёт освещения производится с помощью громоздких формул, куда входит множество параметров: люксы и люмены, площадь, различные коэффициенты, сколько светильников и пр. Для простых применений в Интернете существует множество калькуляторов, значительно облегчающих вычисления.

Измерение

Прямое измерение освещённости производится специальным прибором – люксметром, который отображает результат непосредственно в люксах. Работает на принципе фотоэффекта, свойственного некоторым материалам: селеновый элемент или полупроводники. В фотографии применяются экспонометры, дающие результат в экспозиционных числах EV.

Люксметр регистрирует световой поток в конкретном месте, с учётом всех видов освещения: искусственного, естественного, отражённого.

Обозначения на источниках света

Способность светотехнического изделия создать определённый уровень освещённости указывается в виде значения светового потока в люменах.