Дыхание микроорганизмов. Типы дыхания микроорганизмов

Существует два типа дыхания мкробов – аэробное и анаэробное.

Аэробное дыхание микроорганизмов - это процесс, при котором акцептором водорода (прото­нов и электронов) является молекулярный кислород. В результате окисления, главным образом сложных орга­нических соединений, образуется энергия, которая вы­деляется в среду или накапливается в макроэргических фосфатных связях АТФ. Различают полное и неполное окисление.

Полное окисление. Основной источник энергии у ми­кроорганизмов- углеводы. При их расщеплении, кото­рое происходит разными путями, получается важный промежуточный продукт - пировиноградная кислота. Полное окисление пировиноградной кислоты происходит в цикле трикарбоновых кислот (цикл Креб-са) и дыхательной цепи. В результате расщеп­ления глюкозы в аэробных условиях процесс окисления идет до конца--до образования углерода диоксида и воды с освобождением большого количества энергии: С 6 Н 12 О 6 + 6О 2 -*■ 6СО 2 + 6Н 2 О + 2874,3 к Дж.

Неполное окисление. Не все аэробы доводят реакции окисления до конца. При избытке углеводов в среде образуются продукты неполного окисления, в которых заключена энергия. Конечными продуктами неполного аэробного окисления сахара могут быть органические кислоты: лимонная, яблочная, щавелевая, янтарная и другие, они образуются плесневыми грибами. Например, осуществляется аэробное дыхание уксуснокислыми бак­териями, у которых при окислении этилового спирта об­разуется уксусная кисло­та и вода:

СН 3 СН 2 ОН + О 2 -* СН 3 СООН + Н 2 О + 494,4 к Дж.

У некоторых бактерий в процессе дыхания происхо­дит окисление неорганических соединений. Примером окисления неорганических соединений могут служить процессы нитрификации, при которых нитрифицирующие бактерии вначале окисляют аммиак до азотистой кис­лоты, а затем до азотной. В каждом случае при этом выделяется энергия: в первой фазе 274,9 кДж, во вто­рой-87,6 кДж.

Анаэробное дыхание осуществляется без участия мо­лекулярного кислорода. Различают анаэроб­ное нитратное дыхание, анаэроб­ное сульфатное дыхание и брожение. При анаэробном дыхании акцептором водорода являются окисленные неорганические соединения, которые легко отдают кислород и превращаются в более восстанов­ленные формы, что сопровождается выделением энергии.

1. анаэроб­ное нитратное дыхание - восстановление нитратов до молекулярного азота

2. анаэроб­ное сульфатное дыхание - восстановление сульфатов до сероводорода.

3. Брожение - расщепление органических углеродсо-держащих соединений в анаэробных условиях. Оно ха­рактеризуется тем, что последним акцептором водорода служит молекула органического вещества с ненасыщен­ными связями. Вещество при этом разлагается только до промежуточных продуктов, представляющих собой сложные органические соединения (спирты, органиче­ские кислоты). Заключенная в них энергия в небольших количествах выделяется в окружающую среду. При бро­жении энергии освобождается меньше. Например, при брожении глюкозы освобождается в 24,5 раза меньше энергии, чем при ее аэробном окислении.



Все виды броже­ний до образования пировиноградной кислоты протека­ют одинаково. Дальнейшее превращение пировиноград­ной кислоты зависит от свойств микроба. Гомофермен-тативные молочнокислые бактерии превращают ее в молочную кислоту, дрожжи - в этиловый спирт и т. д.

Классификация микробов по типу дыхания.

По типу дыхания микроорганизмы классифицируют на четыре группы.

1. Облигатные (безусловные) аэробы растут при свободном доступе кислорода. К ним относятся уксуснокислые бактерии, возбудители туберкулеза, сибирской язвы и многие другие.

2. Микроаэрофильные бактерии развиваются при низкой (до 1 %) концентрации кислорода в окружающей атмосфере. Такие условия благоприятны для актиномицетов, лептоспир, бруцелл.

3. Факультативные анаэробы развиваются как при доступе кислорода воздуха, так и в отсутствие его. Имеют соответственно два набора ферментов. Это энтеробактерии, возбудитель рожи свиней.

4. Облигатные (безусловные) анаэробы развиваются при полном отсутствии кислорода в окружающей среде. Анаэробные условия (обходимы маслянокислым бактериям, возбудителям столбняка, ботулизма, газовой гангрены, эмфизематозного карбункула, некробактериоза.

Дыхание бактерий. Необходимую для своей жизнедеятельности энергию клетка бактерии получает в процессе дыхания бактерии.

По типу дыхания все микроорганизмы делятся на две группы: микробы, у которых процесс дыхания связан с использованием свободного кислорода воздуха, и микроорганизмы, не нуждающиеся в свободном кислороде, который для них оказывается даже вредным.

Первая группа микроорганизмов получила название аэробов (тип дыхания аэробный); вторая группа - анаэробов (тип дыхания - анаэробный).

Расщепление углеводов в бескислородных условиях называется брожением. В зависимости от вида микроорганизмов, вызывающих процесс брожения, последний бывает спиртовым, уксуснокислым и др. Это значит, что в процессе брожения может образовываться либо спирт, либо уксусная кислота и т. д.

Ферменты бактерий. Процессы питания и дыхания бактерий протекают обязательно при участии ферментов - особых веществ белкового характера. Ферменты даже в самых незначительных количествах намного ускоряют соответствующие химические процессы, сами почти не изменяясь.

Без ферментов процессы питания и дыхания могли бы протекать, но очень медленно. Ферменты образуются только в живых клетках. Одна группа ферментов не связана с микробной клеткой, и они выделяются бактериями в окружающую среду. Функция этой группы заключается в том, что ферменты способствуют расщеплению сложных соединений на более простые, доступные усвоению. Другая группа ферментов (таких большинство) находится внутри бактериальной клетки и связана ней.

Кроме того, существуют ферменты, которые появляются у бактерий в процессе приспособления к изменившимся условиям питания.

Характерная особенность ферментов заключается в том, что на вещества определенного состава или групп действует свой фермент. Так, имеются ферменты для переработки сложных углеродистых соединений (сахаров), белков, жиров и т. д.

Рост и размножение бактерий. Процесс роста бактериальной клетки выражается в увеличении ее размеров. Этот процесс протекает очень быстро - в течение нескольких минут.

После того как бактерии достигают взрослого состояния, начинается процесс размножения путем простого поперечного деления. В благоприятных условиях (достаточное питание, благоприятная температура) бактериальная клетка делится каждые 50-30 мин. Подсчитано, что если бы размножение бактерий происходило беспрепятственно, то в течение 5 суток из одной клетки образовалась бы такая живая масса, которая заполнить все моря и океаны. Но такое размножение требует как указывалось выше, ряда благоприятных условий, которые во внешней среде не имеют места.

Химический состав бактерий. Бактериальная клетка содержит большое количество воды - 75-85% массы клетки. Oстальные 15% приходятся на сухой остаток, в состав которого входят белок, углеводы, жиры, соли и другие вещества.

Бактериальные белки представляют собой сложные белки, состоящие из различных химических соединений. Эти химические вещества необходимы для жизнедеятельности бактериальной клетки.

Кроме белков в состав сухого остатка бактерий входят углеводы (12-28%), нуклеиновые кислоты.

Количество жиров, входящих в состав сухого остатка, может быть различным. У некоторых форм бактерий содержание жира доходит до "/з сухого остатка. В основном жиры входят в состав оболочки, обусловливая ряд ее свойств.

Необходимой составной частью бактериальной клетки являются минеральные соли, составляющие около "/зоо всей масс клетки. В состав бактериальных клеток входят также азот, кислород, водород, углерод, фосфор, калий, натрий, магний, кальций, кремний, сера, хлор, железо.

В зависимости от условий внешней среды химический состав бактерий может изменяться как количественно, так и качественно.

Питание бактерий. Питание бактерий - весьма сложный процесс, который происходит за счет непрерывного проникновения определенных питательных веществ через полупроницаемую оболочку и выделения из клетки продуктов обмена.

Так как оболочка бактерий непроницаема для белков и других сложных соединений, необходимых для питания клетки, эти вещества усваиваются после расщепления ферментами.

Большое значение для нормального питания бактерий имеет правильное соотношение концентраций солей внутри клеток и в окружающей среде. Наиболее благоприятные условия питания создаются при концентрации солей в окружающей среде, равной 0,5% раствора хлористого натрия.

При попадании в 2-10%-ный раствор хлористого натрия происходит сморщивание бактериальной клетки - обезвоживание, которое делает ее неспособной к размножению. На этом основан способ консервирования продуктов при помощи соления.

Для питания бактериям необходимы кислород, водород, углерод и азот. Источниками снабжения этими веществами может быть вода, воздух и др.

Помимо перечисленных обычных питательных веществ для роста бактерий необходимы особые химические соединения.

Установлено, что некоторые виды стрептококков совершенно не растут при отсутствии витамина В.

Пигментообразование. Некоторые виды бактерий и грибков обладают способностью образовывать различные красящие вещества- пигменты. Большей частью этой способностью обладают бактерии, находящиеся в почве, воздухе и воде. Особенно отчетливо это качество микробов обнаруживается в лабораторных условиях. При размножении на плотных питательных средах бактерии образуют колонии, которые благодаря различным пигментам имеют окраску: красную, белую, фиолетовую, золотистую и др.

Установлено, что наилучшими условиями для образования пигмента являются достаточный доступ кислорода, света и комнатная температура.

Считают, что пигменты у микробов выполняют защитную функцию против губительного действия солнечного света; кроме того, они играют определенную роль в процессах дыхания.

Свечение. В природе существуют микробы, в том числе и бактерии, которые в процессе своей жизнедеятельности образуют вещества, способные при соединении с кислородом воздуха светиться. Явления свечения гнилушек, поверхности моря и др. объясняются развитием подобных микробов. Такие светящиеся микробы не болезнетворны для человека.

Образование запахов. Свойство микробов образовывать запахи (ароматообразование) объясняется наличием особых летучих веществ, которые по своей химической природе близки к эфирам (эфироподобные вещества). Различные ароматообразующие бактерии используются в пищевой промышленности для изготовления сыра, масла, вина и других продуктов.

Из бактерий, являющихся болезнетворными для человека и издающих запах при выращивании в лабораторных условиях, можно назвать туберкулезную палочку, запах которой приближается к запаху меда, и т. д.

Микробные яды. Попадая в организм человека, и размножаясь там, микробы вырабатывают вещества, отрицательно действующие на нервную систему, сердце, внутренние органы. Эти вредные вещества получили название токсинов. Микробные токсины - наиболее сильнодействующие яды из всех известных. Даже незначительное их количество может оказать ядовитое действие на организм. Поражения, наблюдаемые при многих инфекционных заболеваниях, связаны с действием микробных токсинов. Токсины имеются почти у всех болезнетворных микробов. Токсины бывают двух видов: экзотоксины и эндотоксины.

Экзотоксинами называются яды, которые легко выходят из микробной клетки в окружающую среду.

Экзотоксины характеризуются относительно малой устойчивостью, легко разрушаются под влиянием нагревания, действия света и различных химических веществ. Характерным свойством экзотоксинов является их действие в крайне малых дозах.

Микробные экзотоксины - это одни из наиболее сильных. Так, например, 0,00001 мл столбнячного токсина вызывает бель белой мыши, а токсин микроба ботулизма действует в меньшей дозе.

Эндотоксины прочно связаны с телом микробной клетки, освобождаются только после разрушения тела микроба. В отличие от экзотоксинов эндотоксины вызывают в организме следующие признаки отравления: головную боль, слабость, одышку т. д. Эндотоксины более устойчивы, чем экзотоксины, некоторые выдерживают даже кипячение. Токсичность для организмов у них значительно меньше, чем у экзотоксинов.

Эндотоксины имеются у всех болезнетворных микробов; экзотоксины вырабатываются только некоторыми из них - дифтерийной палочкой, стафилококком, бактерией ботулизма.

Изменчивость микробов. В естественных условиях на микробы постоянно воздействуют многие факторы, обусловливающие процесс изменчивости. К этим факторам помимо питания, температуры относится явление микробного антагонизма, влияние внутренней среды организма человека и животного.

Благодаря тесному контакту с окружающей средой и интенсивному размножению микроорганизмы быстро приспосабливаются к новым условиям, и соответственно с этим изменяются их первоначальные свойства. Например, в горячей воде гейзеров обитают бактерии, которые оформились как вид под влиянием окружающих условий. Некоторые болезнетворные микробы при взаимодействии с лекарственными веществами могут приобрести к ним устойчивость. Таким образом, огромное значение для жизнедеятельности организма имеют условия cyществования, изменяя которые (питание, температуру, влажность и др.), можно вызвать соответствующие изменения природы микроорганизма.

Изменчивость свойственна всем видам микроорганизмов. Одной из причин изменчивости микробов является бактериофаг.

Бактериофаги - это живые организмы, которые размножаются только тогда, когда проникают извне внутрь микробной клетки. Вне организма микробов бактериофаги не размножаются, а находятся в состоянии покоя. Действие бактериофага на микробную клетку заключается в следующем: окружив микробную клетку, бактериофаги постепенно проникают внутрь и размножаются. Быстрота размножения бактериофага зависит от многих условий: характера микроба, условий его существования и др. Через 1-3ч внутри микробной клетки образуется множество новых бактериофагов, оболочка этой клетки разрывается, и вся масса бактериофагов выпадает из нее.

При взаимодействии бактериофага с микробом, последний всегда гибнет. Если активность бактериофага недостаточна, отдельные микробные клетки выживают и дают начало росту новых микробных клеток, уже устойчивых к данному бактериофагу.

Под влиянием бактериофага микробы изменяют свои свойства: лишаются болезнетворной способности, теряют капсулу и др.

Для каждого вида болезнетворного микроба существует свой бактериофаг, например, дизентерийный, брюшнотифозный, стафилококковый.

Под действием света, кислорода воздуха, тепла, бактериофаг теряет активность в течение 1-2 месяцев. Ультрафиолетовые лучи разрушают бактериофаги за 15 мин. Быстрое уничтожение бактериофагов происходит в кислой среде.

Бактериофаги находятся повсюду, где есть бактерии. Различные бактериофаги можно обнаружить в сточных водах, речной воде, в выделениях человека и животного и других объектах.

Введение

питание дыхание микроорганизм бактерия

Как известно, микроорганизмы черпают энергию, необходимую для поддержания их жизнедеятельности, за счет различного рода процессов окисления органических (а иногда и неорганических) веществ. При этом окисление происходит путем отщепления от субстратов водорода (или электронов). Водород переносится по цепи ферментов и в конечном итоге соединяется с кислородом, образуя воду. Анаэробный же способ извлечения энергии характеризуется тем, что свободный кислород в нем не принимает участия, а органические субстраты окисляются только за счет отщепления водорода. Освобождающийся водород либо присоединяется к продуктам распада того же самого органического вещества, либо выделяется в газообразном состоянии.

Типы дыхания микроорганизмов

Дыхание микробов представляет собой биологическое окисление различных органических соединений и некоторых минеральных веществ. В итоге окислительно-восстановительных процессов и брожения образуется тепловая энергия, часть которой используется микробной клеткой, а остальное количество выделяется в окружающую среду.

В настоящее время окисление определяют как процесс отнятия водорода (дегидрирование), а восстановление - его присоединения. Эти же термины применяют к реакциям, связанным с переносом протонов и электронов или только электронов. При окислении вещества происходит потеря электронов, а при восстановлении - их при-соединение. Считают, что перенос водорода и перенос электронов - эквивалентные процессы.

Способность соединений или элементов отдавать или принимать электроны обусловливается окислительно-восстановительным потенциалом. По предложению М. Кларка, его обозначают гН2 (отрицательный логарифм парциального давления газообразного водорода). Это степень насыщения среды кислородом или водородом. Диапазон J Н2 колеблется от 0 до 42,6. При П12<.,28 среда характеризуется восстановительными свойствами, при НТ2,.>28 окислительными, при iil2, равным 28, среда нейтральная.

Аэробы живут при более высоком окислительно-восстановительном потенциале (ili2 14-35), анаэробы- при более низком (гН2 0-12). Попы Н1 (про тоны), каковыми они в сущности и являются, переносятся против электрохимическою градиента, то есть из среды с меньшей концентрацией в среду, где их много. Процесс переноса протонов связан с потреблением энергии. Проникновение ионов водорода через мембрану происходит не по законам осмоса, а активно, с помощью насоса, который называется водородной помпой. Таким образом, биологические преобразования в цитоплазме микробной клетки связаны с движением протонов и электронов, но это не простое электрическое движение, а сложный биохимический процесс, который осуществляется при помощи ферментов. Последние катализируют реакции, ускоряют разрыв ковалентных связей и тем самым снижают энергию активации.

Электроэнергия, вырабатываемая микробами, может быть использована даже в некоторых приборах. В настоящее время сконструированы передатчики, работающие на биологической электроэнергии, ее вырабатывают микроорганизмы, питающиеся сахаром, растворенным в морской воде. (Аэробное дыхание микроорганизмов - это процесс, при котором последним акцептором водорода (протонов и электронов) является молекулярный кислород. В результате окисления, главным образом сложных органических соединений, образуется энергия, которая выделяется в среду или накапливается в макроэргических фосфатных связях АТФ. Различают полное и неполное окисление?!

Полное окисление. Основной источник энергии у микроорганизмов- углеводы. При их расщеплении, которое происходит разными путями, получается важный промежуточный продукт - пировиноградная кислота (пируват). Полное окисление пировиноградной кислоты происходит в цикле трикарбоновых кислот (цикл Кребса) и дыхательной цепи (рис. 17). В результате расщепления глюкозы в аэробных условиях процесс окисления идет до конца - до образования углерода диоксида и воды с освобождением большого количества энергии: С6Н12Об + 602 -* 6С02 4- 6Н20 + 2874,3 кДж.

Она соответствует запасу потенциальной энергии гексозы, то есть тому ее количеству, которое было аккумулировано в молекуле сахара при фотосинтезе его из углерода диоксида и воды в зеленых растениях. Передача электронов водорода на кислород осуществляется через дыхательную цепь, или цепь переноса электронов. Дыхательная цепь - это система дыхательных фермен¬тов, которые находятся в мембранах. Мембраны, как известно, контактируют с цитоплазмой клетки, в результате чего происходит их взаимодействие.

Неполное окисление. Не все аэробы доводят реакции окисления до конца. При избытке углеводов в среде образуются продукты неполного окисления, в которых заключена энергия. Конечными продуктами неполного аэробного окисления сахара могут быть органические кислоты: лимонная, яблочная, щавелевая, янтарная и другие, они образуются плесневыми грибами.

Анаэробы - организмы, получающие энергию при отсутствии доступа кислорода путем субстратногофосфорилирования, конечные продукты неполного окисления субстрата при этом могут быть окислены с получением большего количества энергии в виде АТФ в присутствии конечного акцептора протонов организмами, осуществляющими окислительное фосфорилирование.

На схеме 1 показан транспорт электронов при дыхании и различных типах анаэробного способа получения энергии. Водород и электроны отщепляются от субстратов с помощью пиридиннуклеотидных ферментов (ПН). Далее они у аэробов проходят по цепи ферментов с возрастающими потенциалами-флавопротеидные (ФП - цитохромные ферменты (Цит.) - и с помощью цитохромоксидазы (Цит. оке.) переносятся на кислород. Поток электронов направлен от системы с более низким (более отрицательным потенциалом) к системе с более высоким (более положительным) потенциалом, от - 0,8 - 0,4 в (потенциал субстрата) до +0,8 в (потенциал кислорода).


Таким образом, при дыхании конечным акцептором водорода является кислород. У анаэробов в качестве акцепторов водорода выступают либо органические субстраты (брожение), либо неорганические вещества, такие, как нитраты или сульфаты («анаэробное дыхание»). Из схемы видно, что наиболее просто и примитивно транспорт электронов осуществляется у большинства анаэробов из-за отсутствия у них ферментов цепи переноса электронов, способных передавать электроны по цепочке вплоть до молекулярного кислорода.

Молекулярный кислород отрицательно действует на рост и активность облигатных анаэробов. В присутствии свободного кислорода клетки анаэробов теряют подвижность. Благодаря этой реакции анаэробы были впервые обнаружены Пастером. Однажды он рассматривал под микроскопом каплю бродящей жидкости (при маслянокислом брожении), помещенную между двумя тонкими плоскими стеклышками, и заметил, что клетки, находящиеся по краям препарата (куда кислород воздуха свободно проникал), становились внезапно неподвижными, а палочки, находящиеся в центре препарата (куда воздух не проникал), продолжали очень активно двигаться.

Отсюда Пастер сделал вывод, что кислород воздуха ядовит для некоторых микробов, и разделил последние на две группы - аэробов и анаэробов. Противники Пастера (например, Трекюль) возражали против утверждения о существовании бактерий, для которых кислород воздуха может быть смертельным, и приводили в пример споры анаэробов, способные длительное время сохраняться на воздухе. На это Пастер отвечал, что споры не являются настоящими живыми существами, так как они не питаются и не размножаются. Последующее развитие науки подтвердило положения Пастера. Так, было показано, что спорам бактерий свойствен крайне выраженный анабиоз и обмен веществ у них находится на таком низком уровне, что его даже не удается измерить с необходимой точностью. В связи с этим споры не чувствительны ко многим повреждающим факторам, а споры анаэробов могут, кроме того (в отличие от вегетативных клеток), легко сохраняться на воздухе.

Вопрос, почему кислород является токсичным для апаэробов, еще недостаточно выяснен. Одни исследователи считают, что токсическое действие кислорода связано с образованием в культурах анаэробных микроорганизмов ядовитых концентраций перекиси водорода, образующейся в результате окисления субстрата кислородом воздуха. Причиной накопления перекиси водорода является отсутствие у анаэробов фермента каталазы (разлагающего перекись). Имеются сообщения, что некоторые штаммы клостридиев могут расти и в аэробных условиях, если к среде добавлена каталаза. Но, с другой стороны, очень важным фактором, определяющим развитие анаэробов, являются окислительно-восстановительные условия среды. Они выражаются через окислительно-восстановительный потенциал (ОВП), измеряемый в вольтах (напряжение на электроде, погруженном в испытуемую среду). Окислительно-восстановительные условия можно выразить также через показатель rН2, характеризующий соотношение между Н2 и О2. rН2 в пределах от 0 до 40 характеризует все степени восстановленности или окисленности среды в зависимости от насыщения ее кислородом либо водородом. Подробные исследования условий развития апаэробов показали, что облигатные анаэробы не могут развиваться при rН2 (или ОВП) выше определенного предела. rН2 в среде можно измерить либо электрометрическим способом (с помощью потенциометров), либо с помощью красителей, которые восстанавливаются и обесцвечиваются (или изменяют цвет) при определенных значениях rН2. Так, например, краситель янусгрюн в аэробных условиях при rН2 = 20 и выше имеет в растворе зелепый цвет, при rН2 в пределах 12-14 - розовый цвет, а при еще более низких значениях rН2 он обесцвечивается.

Анаэробы - обширная группа организмов, как микро-, так и макроуровня:

Факультативные анаэробы

Капнеистические анаэробы и микроаэрофилы

Аэротолерантные анаэробы

Умеренно-строгие анаэробы

Облигатные анаэробы

Если организм способен переключаться с одного метаболического пути на другой (например, с анаэробного дыхания на аэробное и обратно), то его условно относят к факультативным анаэробам

До 1991 года в микробиологии выделяли класс капнеистических анаэробов, требовавших пониженной концентрации кислорода и повышенной концентрации углекислоты (Бруцеллы бычьего типа - B. abortus)

Умеренно-строгий анаэробныйорганизм выживает в среде с молекулярным O2, однако не размножается. Микроаэрофилы способны выживать и размножаться в среде с низким парциальным давлением O2.

Если организм не способен «переключиться» с анаэробного типа дыхания на аэробный, но не гибнет в присутствии молекулярного кислорода, то он относится к группе аэротолерантных анаэробов. Например, молочнокислые и многие маслянокислые бактерии

Облигатные анаэробы в присутствии молекулярного кислорода O2 гибнут - например, представители (рода бактерий и архей: Bacteroides, Fusobacterium,Butyrivibrio, Methanobacterium). Такие анаэробы постоянно живут в лишенной кислорода среде. К облигатным анаэробам относятся некоторые бактерии, дрожжи, жгутиковые и инфузории.

При этом характерным только для анаэробов является гликолиз, который в зависимости от конечных продуктов реакции разделяют на несколько типовброжению:

молочнокислое брожение - род Lactobacillus,Streptococcus,Bifidobacterium, а также некоторые ткани многоклеточных животных и человека. спиртовое брожение - сахаромицеты, кандида(организмы царства грибов)

муравьинокислое - семейство энтеробактерий

маслянокислое - некоторые виды клостридий

пропионовокислое - пропионобактерии(например, Propionibacterium acnes)

брожение с выделением молекулярного водорода -некоторые виды клостридий, ферментация Stickland

метановое брожение - например, Methanobacterium

Типы питания у микроорганизмов

Автотрофы (хемолитотрофы, фотолитотрофы) получают углерод из углерода диоксида (С02) воздуха и создают органическое вещество при помощи энергии, освободившейся в процессе окисления некоторых минеральных соединений (хемосинтез) или энергии солнца (фотосинтез). Явление хемосинтеза у хемолитотрофов впервые (1887) установлено русским микробиологом С. Н. Виноградским при изучении бесцветных серобактерий, нитрифицирующих и других микроорганизмов. Энергия, образуемая в процессе окислительных реакций, используется затем бактериями для усвоения углерода и создания органического вещества.

Фотолитотрофы (сине-зеленые водоросли, пурпурные серобактерии и другие микробы) обладают фотосинтезирующей способностью, так как содержат в своем составе пигменты (красящие вещества). Пигменты фотолитотрофов по своему составу близки к хлорофиллу зеленых растений. Фотобактерии, как и растения, создают органическое вещество, используя углерод из углерода диоксида и энергии солнца. Автотрофы могут развиваться в чисто минеральных средах, они не способны усваивать более сложные соединения углерода и поэтому не являются патогенными для животных.


Источники энергии

Наиболее доступные источники углерода для бактерий - углеводы и аминокислоты, что учитывают при изготовлении питательных сред.

Аутотрофия. Пищевые потребности аутотрофных [от греч. auto, сам, + trophe, питание бактерий ограничены; для их роста достаточно внесения в среду неорганических соединений, содержащих азот и другие минеральные элементы. Лутотрофные бактерии в качестве источника углерода утилизируют двуокись углерода или карбонаты. Такие бактерии способны синтезировать вce необходимые соединения из простых веществ. К ним относят фото- и хемотрофные (хемосинтезирующие) бактерии, использующие соответственно в качестве источника энергии электромагнитное излучение (свет), либо энергию окислительно-восстановительных реакций с участием субстратов, которые служат для них источником питания. Среди аутотрофов не обнаружено видов, имеющих медицинское значение.

Азот необходим бактериям для синтеза аминокислот (белков), пуриновых и пирим иди новых нуклеотидов, а также некоторых витаминов. Поскольку азот во всех живых организмах содержится в восстановленной форме, все минеральные формы азота с большей, чем у аммиака, степенью окисленности должны быть восстановлены.

Ряд микроорганизмов способен утилизировать азот только из органических соединений (аминогетеротрофы). Некоторые из микроорганизмов усваивают азот в виде неорганических форм (аминоаутотрофы). Однако многие микроорганизмы способны использовать как органический, так и минеральный азот.

Использование неорганического азота

В природе атомы минерального азота существуют в различной степени окисленности: от N5+ (N205, азотный ангидрид) до N3- (NH3, аммиак). Степень усвояемости минеральных соединений азота бактериями определяется лёгкостью их превращения в аммиак, так как он является самым простым предшественником высокомолекулярных азоторганических соединений. В этой группе бактерий возможны два разнонаправленных процесса: ассимиляция (связывания минеральных форм азота в органический материал) и диссимиляция (выделения газообразных форм азота).

Ассимиляционные процессы. Связывание минеральных форм азота происходит в ходе азотфиксации, ассимиляции аммиака и ассимиляционной нитратредукции.

Азотфиксация. Азотфиксирующие бактерии (например, Rhizobiut, Azotobacter, Clostridium, Klebsiella и др.) способны утилизировать азот из атмосферного воздуха, восстанавливая его до аммония с помощью специального фермента (нитрогеназа) в процессе, называемом азотфиксация.

Ассимиляция аммиака. Большинство бактерий усваивает аммоний в ходе ассимиляции аммиака. Бактерии, растущие на средах с аммонием, могут непосредственно включать его в органические соединения. Следует помнить, что после потребления неорганических аммонийных солей в среде накапливаются анионы (SO4, Сl, H3PO4 и др.), снижающие рН среды, что замедляет рост культур. Аммонийные соли органических кислот менее подкисляют среду и более благоприятны для роста бактерий.

Ассимиляционная нитратредукция. Подавляющее большинство бактерий и грибов, как и растения, усваивают нитрат в процессе ассимиляционной нитратредукции. На первом этапе нитраты восстанавливаются до нитритов, цикл этих превращений катализирует специфический фермент - ассимиляционная нитратредуктаза В. Второй этап представляет комплекс восстановительных реакций, катализируемых нитритредуктазой, что приводит к образованию аммиака, который используется для синтеза аминокислот и других азотсодержащих компонентов клетки.

Механизм поступления питательных веществ

Экзо-ферменты, локализованные на внешней стороне клеточной мембраны. У бактерий Э. могут выделяться во внешнюю среду или находиться между клеточной стенкой и клеточной мембраной.

Классификация ферментов.

В настоящее время известно более 2000 ферментов, поэтому возникла необходимость в научно обоснованной их классификации. По классификации, разработанной специальной комиссией Международного биохимического союза (1961), все/ферменты объединены в шесть классов: окендоредуктазы, трансферазы, гидролазы, лиазы, изомеразы, лигазы, или синтетазы.

Оксидоредуктазы - окислительно-восстановительные ферменты. Они ускоряют процессы восстановления и окисления различных веществ, играют большую роль и процессах дыхания микробов. Эта группа миогочисленна, она включает более 200 ферментов. Вот некоторые из них.

Дегидрогеназы - ферменты, которые ведут процесс биологического окисления путем отнятия водорода от субстрата донора и переноса его на кислород или другой акцептор. Различают аэробные и анаэробные дегидрогеназы. Аэробные дегидрогеназы переносят водород как непосредственно на молекулярный кислород, так и па другие системы, они получили название оксидаз. Анаэробные дегидрогеназы вступают во взаи-модействие с субстратом, отнимают у него водород и передают акцептору, но не кислороду воздуха. Цитохромоксидазы - ферменты, переносящие, электроны. Цитохромоксндаза активирует молекулярный кислород и с его помощью окисляет восстановленный цитохром, актив ной группой которого является гемин. Каталаза содержится в клетках аэробных микробов и относится к группе геминовых ферментов, содержащих в своей молекуле трехвалентное железо, способное терять электроны (окисляться). При действии каталазы на перекись водорода происходит ее восстановление, образуются вода и молекулярный кислород. Пероксидаза содержится в некоторых микробах, она активирует кислород перекиси водорода и ускоряет окисление различных органических соединении.

Гидролизы - ферменты, ускоряющие реакции гидролиза, то есть процесса расщепления сложных веществ па более простые с присоединением молекулы, воды. Они имеются у многих микроорганизмов. Гидролазы объединяют более 200 ферментов. В эту группу входят: эсте разы, расщепляющие сложные эфиры, образованные органическими кислотами и спиртами; фосфатазы, гидролизующие сложные эфиры, образованные спиртами и фосфорной кислотой; глюкозидазы, расщепляющие глюкозидные связи в углеродах и их производных; пептидазы; ускоряющие гидролиз пептидных связей в белках; амидазы, ускоряющие гидролиз амидов, аминокислот и других соединений.

Лиазы - ферменты, отщепляющие от субстратов негидролитическим путем ту или иную группу (реакция между углеродом и кислородом, азотом, серой, галоидом). Этот класс объединяет около 90 ферментов. Наиболее важное значение из них имеют карбоксилаза, альдегидлиаза (альдолаза) и др.

Изомеразы - ферменты, ускоряющие перемещение внутри молекул водорода, фосфора и двойных связей, что имеет важное значение в обмене веществ. К этой группе относятся фосфогексоизомераза, триозофосфотизомераза и др.

Лигазы или синтетазы - ферменты, ускоряющие синтез сложных соединений из более простых за счет распада пирофосфорных связей (в АТФ или других богатых энергией пирофосфатов). Лигазы играют большую роль в синтезе белков, нуклеиновых кислот, жирных кислот и других соединений. В этот класс входит около 100 ферментов. Представители этой группы - аспарагинсинтетаза, глютамипсинтетаза и др.

Страница 16 из 91

Жизнь микробов, как и всех живых существ, связана с беспрерывным расходованием энергии, и, следовательно, для поддержания физиологического равновесия необходимо постоянное возобновление ее запасов. Последнее осуществляется микроорганизмами при помощи процесса дыхания.
В отличие от животных и высших растений процесс дыхания у микробов, несмотря на их микроскопическую величину, отличается своей сложностью и многообразием, в основе которого лежит действие различных ферментов. По типу дыхания микроорганизмы делятся на три группы:

  1. облигатные аэробы, развивающиеся только при свободном доступе кислорода. Процесс дыхания у них осуществляется при участии молекулярного кислорода воздуха (например, холерный вибрион).
  2. облигатные анаэробы, способные жить только в отсутствие кислорода воздуха (например, столбнячная палочка).
  3. факультативные анаэробы, к которым относится огромное большинство патогенных микроорганизмов- они могут существовать как в отсутствие кислорода воздуха, так и при незначительном доступе его.

Работами Пастера впервые было установлено, что ряд микроорганизмов может развиваться в бескислородной среде, получая необходимую энергию при расщеплении сложных органических веществ питательного субстрата. Процессы глубокого расщепления безазотистых органических соединений, в основе которого лежит обычно анаэробное дыхание, называется брожением. Процесс аэробного и анаэробного дыхания осуществляется биологическими катализаторами (ферментами), которые способны при дыхании активировать течение окислительных реакций. При аэробном и анаэробном дыхании в первой фазе процесса отмечается активация водорода ферментами из группы дегидрогеназ, которые отнимают водород от субстрата (питательной среды) и переносят его от одной органической молекулы к другой- от одного акцептора к другому (от лат. acceptor- воспринимающий). А так как в структуре атома водорода на орбите имеется один электрон, то процесс отнятия водорода от субстрата является окислительным. В последней фазе при аэробном дыхании аэробные дегидрогеназы передают отнятый от субстрата водород непосредственно кислороду воздуха, который является конечным акцептором. При этом может образоваться перекись водорода, которая играет роль окислителя органических соединений. Фермент каталаза, имеющийся у всех аэробных организмов, разлагает перекись водорода на воду и кислород, а фермент пероксидаза активирует кислород перекиси.
Анаэробные дегидразы не могут отдавать водород кислороду воздуха, а передают его другим акцепторам (ферментам, другим веществам, появляющимся в процессе брожения).
Как при аэробном, так и при анаэробном дыхании наблюдается, окисление одних веществ и восстановление других.
Сущность окисления состоит в потере электронов окисляющимся веществом, а при восстановлении происходит присоединение электронов восстанавливающимся веществом.
Таким образом, акты дыхания у микроорганизмов представляют собой ряд последовательных окислительно-восстановительных процессов, которые приводят к освобождению необходимой для их жизнедеятельности энергии.
Наиболее доступными продуктами для окисления аэробными микробами являются сахара, спирты и органические кислоты. Сложные азотистые соединения используются для дыхания в последнюю очередь. Анаэробные микробы в качестве окисляемого субстрата используют органические соединения и минеральные вещества.

Анаэробное дыхание является менее экономичным, чем аэробное, что видно из следующего примера. В процессе аэробного расщепления одной молекулы виноградного сахара освобождается 674 калории тепла. (СбН120б+602=6С02+6Н20+674 калории), а при анаэробном разложении той же молекулы - лишь 27 калорий (C6Hi206=2C2H50H+2C02+27 калорий).
Примечание. Тип дыхания микроорганизмов находит свое отражение в характере их роста на искусственных питательных средах. Так, например, туберкулезная палочка, являясь облигатным аэробом, в пробирке или колбе с питательным бульоном растет только поверхностно, в виде пленки, оставляя среду прозрачной, анаэробные бациллы - только придонио, а бактерии кишечно-тифозной группы (факультативные анаэробы) растут одинаково во всех слоях бульона, давая диффузный рост.
Методы культивирования анаэробов. Для культивирования анаэробов, помимо соответствующих питательных сред, необходимо создать бескислородные условия среды. Методов культивирования анаэробных микробов существует много. По принципам, положенным в основу этих методов, их можно разделить на химические, физические и биологические.
Химические методы. Есть два метода выращивания анаэробов. Первый метод заключается в том, что засеянные анаэробами пробирки или чашки помещают в замкнутое пространство (например, эксикатор) и ставят какой-нибудь поглотитель кислорода - гипосульфит натрия и щелочной раствор пирогаллола. На 1 г пирогаллола берут 10 мл 10% раствора NaOH- это количество вещества способно связать кислород в объеме около 200 мл воздуха.
Самые простые способы осуществления анаэробиоза с помощью этой смеси следующие:

  1. Ватную пробку пробирки с посевом данной культуры подрезают, опускают несколько вглубь и смачивают раствором (0,5- 1 мл). Доступ воздуха прекращается путем закупоривания резиновой пробкой или резиновым колпачком.

Видео: Бактерии 1959

  1. Удаление воздуха из питательных сред перед засевом кипячением в водяной бане в течение 15 минут и последующим быстрым охлаждением до 45-50°. Для того чтобы не дать возможности воздуху вновь проникнуть в среду, пробирки запаивают, либо поверхность среды заливают стерильным парафиновым маслом.
  2. Получение изолированных колоний в глубоких слоях среды по способу Виньяля. Техника посева по методу Виньяля следующая: в 3-4 пробирки с расплавленной агаровой средой делают посев испытуемого материала с постепенным его разведением. Не застывший еще после засева агар из каждой пробирки набирают в пастеровские пипетки, которые затем запаивают только с оттянутого конца (при запайке во избежание разбрызгивания материала нельзя держать противоположный конец зажатым). Трубки быстро охлаждают и переносят в термостат. Через 2-3 дня при удачном разведении исходного материала можно наблюдать отдельные колонии.

Для выделения колонии у намеченного на трубке места делают надрез напильником, после чего трубка легко надламывается. На этом месте содержимое выливают в стерильную чашку Гейденрейха - Петри, колонию берут петлей или втягивают в тонкую оттянутую пипетку и переносят в бульон или уколом в столбик сахарного агара.

  1. Удаление воздуха (а следовательно, и кислорода) из среды механическим путем. Для этого пользуются особыми приборами - анаэростатами (рис. 41). Анаэростат в простейшей форме представляет собой прямоугольную или цилиндрическую металлическую коробку, закрывающуюся крышкой на резиновой прокладке. Цилиндр снабжен металлическим краном, присоединяющимся к насосу. Пробирки и чашки с посевами помещают внутрь, воздух выкачивают насосом. Для культивирования строгих анаэробов достаточно снизить давление до 1 мм.

Биологические методы. Из биологических методов чаще всего применяется заражение животных и метод Фортнера.
При заражении животных используемый материал вводят животному в смеси со специфической сывороткой. Этот метод может быть использован в двух направлениях:

  1. Для выделения микробов из смеси. Если микроб соответствует сыворотке, он погибает. Другие же микробы, не соответствующие данной сыворотке, выделяются из животного.
  2. Для определения токсинов. При наличии в исследуемом материале токсина животное, получившее его в смеси с антитоксической сывороткой, выживает. Контрольное животное погибает. Такая постановка диагноза широко применяется при биологической пробе на токсин.

Метод Фортнера. Этот метод приближает лабораторную технику к природным условиям развития анаэробных микроорганизмов. Фортнер применил метод симбиоза аэробных микробов, способных энергично поглощать кислород воздуха (Bact. prodigiosum), с анаэробами, засеянных на кровяной агар в чашке Гейденрейха - Петри. Чашка разделена на две части вырезанной полоской агара, чтобы при сплошном росте избежать смешивания культур. На одну половину чашки засевают исследуемый на анаэробы материал, на другую - заведомо известный облигатный аэроб (Bact. prodigiosum Сас. subtilis и др.).
Для изоляции внутреннего пространства чашки от внешней атмосферы края ее заливают воском или заклеивают пластилином. Методом Фортнера можно получить хороший поверхностный рост анаэробов.
Питательные среды для выращивания анаэробов. Бульон Китта - Тароцци. В пробирку с мясо-пептонным бульоном, прибавляют кусочки сваренной и промытой кипятком на сите печени (3-5 г на пробирку) или мясной фарш, заливают вазелиновым маслом и стерилизуют при 115° в течение 30 минут.
Кровяной агар с глюкозой (Цейсслера). Слабощелочной агар, содержащий 2-3% агар-агара и 2% глюкозы, разливают в большие пробирки (25 см длины и 2,5 см в поперечнике), приблизительно по 60 мл в каждую, стерилизуют 30 минут при 110° и в таком виде сохраняют. Перед употреблением агар растапливают в водяной бане, охлаждают до 45°, в каждую пробирку добавляют 12-15 мл стерильной дефибринированной крови, перемешивают и разливают в 3-4 чашки Гейденрейха-Петри. Готовые чашки выдерживают перед посевом 2 суток при комнатной температуре.
Агар для трубок Вейона. К мартеновскому бульону добавляют 2% агара и 0,5% глюкозы. Устанавливают pH 7,4, разливают в узкие пробирки (диаметр 0,3-0,5 см, длина 20 см). Столбик агара должен быть не выше 2/3 длины пробирки и стерилизуют дробно 3 дня по 40 минут в текучепаровом аппарате.


Страница 16 из 91

Жизнь микробов, как и всех живых существ, связана с беспрерывным расходованием энергии, и, следовательно, для поддержания физиологического равновесия необходимо постоянное возобновление ее запасов. Последнее осуществляется микроорганизмами при помощи процесса дыхания.
В отличие от животных и высших растений процесс дыхания у микробов, несмотря на их микроскопическую величину, отличается своей сложностью и многообразием, в основе которого лежит действие различных ферментов. По типу дыхания микроорганизмы делятся на три группы:

  1. облигатные аэробы, развивающиеся только при свободном доступе кислорода. Процесс дыхания у них осуществляется при участии молекулярного кислорода воздуха (например, холерный вибрион).
  2. облигатные анаэробы, способные жить только в отсутствие кислорода воздуха (например, столбнячная палочка).
  3. факультативные анаэробы, к которым относится огромное большинство патогенных микроорганизмов; они могут существовать как в отсутствие кислорода воздуха, так и при незначительном доступе его.

Работами Пастера впервые было установлено, что ряд микроорганизмов может развиваться в бескислородной среде, получая необходимую энергию при расщеплении сложных органических веществ питательного субстрата. Процессы глубокого расщепления безазотистых органических соединений, в основе которого лежит обычно анаэробное дыхание, называется брожением. Процесс аэробного и анаэробного дыхания осуществляется биологическими катализаторами (ферментами), которые способны при дыхании активировать течение окислительных реакций. При аэробном и анаэробном дыхании в первой фазе процесса отмечается активация водорода ферментами из группы дегидрогеназ, которые отнимают водород от субстрата (питательной среды) и переносят его от одной органической молекулы к другой- от одного акцептора к другому (от лат. acceptor- воспринимающий). А так как в структуре атома водорода на орбите имеется один электрон, то процесс отнятия водорода от субстрата является окислительным. В последней фазе при аэробном дыхании аэробные дегидрогеназы передают отнятый от субстрата водород непосредственно кислороду воздуха, который является конечным акцептором. При этом может образоваться перекись водорода, которая играет роль окислителя органических соединений. Фермент каталаза, имеющийся у всех аэробных организмов, разлагает перекись водорода на воду и кислород, а фермент пероксидаза активирует кислород перекиси.
Анаэробные дегидразы не могут отдавать водород кислороду воздуха, а передают его другим акцепторам (ферментам, другим веществам, появляющимся в процессе брожения).
Как при аэробном, так и при анаэробном дыхании наблюдается, окисление одних веществ и восстановление других.
Сущность окисления состоит в потере электронов окисляющимся веществом, а при восстановлении происходит присоединение электронов восстанавливающимся веществом.
Таким образом, акты дыхания у микроорганизмов представляют собой ряд последовательных окислительно-восстановительных процессов, которые приводят к освобождению необходимой для их жизнедеятельности энергии.
Наиболее доступными продуктами для окисления аэробными микробами являются сахара, спирты и органические кислоты. Сложные азотистые соединения используются для дыхания в последнюю очередь. Анаэробные микробы в качестве окисляемого субстрата используют органические соединения и минеральные вещества.

Анаэробное дыхание является менее экономичным, чем аэробное, что видно из следующего примера. В процессе аэробного расщепления одной молекулы виноградного сахара освобождается 674 калории тепла. (СбН120б+602=6С02+6Н20+674 калории), а при анаэробном разложении той же молекулы - лишь 27 калорий (C6Hi206=2C2H50H+2C02+27 калорий).
Примечание. Тип дыхания микроорганизмов находит свое отражение в характере их роста на искусственных питательных средах. Так, например, туберкулезная палочка, являясь облигатным аэробом, в пробирке или колбе с питательным бульоном растет только поверхностно, в виде пленки, оставляя среду прозрачной, анаэробные бациллы - только придонио, а бактерии кишечно-тифозной группы (факультативные анаэробы) растут одинаково во всех слоях бульона, давая диффузный рост.
Методы культивирования анаэробов. Для культивирования анаэробов, помимо соответствующих питательных сред, необходимо создать бескислородные условия среды. Методов культивирования анаэробных микробов существует много. По принципам, положенным в основу этих методов, их можно разделить на химические, физические и биологические.
Химические методы. Есть два метода выращивания анаэробов. Первый метод заключается в том, что засеянные анаэробами пробирки или чашки помещают в замкнутое пространство (например, эксикатор) и ставят какой-нибудь поглотитель кислорода - гипосульфит натрия и щелочной раствор пирогаллола. На 1 г пирогаллола берут 10 мл 10% раствора NaOH; это количество вещества способно связать кислород в объеме около 200 мл воздуха.
Самые простые способы осуществления анаэробиоза с помощью этой смеси следующие:

  1. Ватную пробку пробирки с посевом данной культуры подрезают, опускают несколько вглубь и смачивают раствором (0,5- 1 мл). Доступ воздуха прекращается путем закупоривания резиновой пробкой или резиновым колпачком.
  1. Удаление воздуха из питательных сред перед засевом кипячением в водяной бане в течение 15 минут и последующим быстрым охлаждением до 45-50°. Для того чтобы не дать возможности воздуху вновь проникнуть в среду, пробирки запаивают, либо поверхность среды заливают стерильным парафиновым маслом.
  2. Получение изолированных колоний в глубоких слоях среды по способу Виньяля. Техника посева по методу Виньяля следующая: в 3-4 пробирки с расплавленной агаровой средой делают посев испытуемого материала с постепенным его разведением. Не застывший еще после засева агар из каждой пробирки набирают в пастеровские пипетки, которые затем запаивают только с оттянутого конца (при запайке во избежание разбрызгивания материала нельзя держать противоположный конец зажатым). Трубки быстро охлаждают и переносят в термостат. Через 2-3 дня при удачном разведении исходного материала можно наблюдать отдельные колонии.

Для выделения колонии у намеченного на трубке места делают надрез напильником, после чего трубка легко надламывается. На этом месте содержимое выливают в стерильную чашку Гейденрейха - Петри, колонию берут петлей или втягивают в тонкую оттянутую пипетку и переносят в бульон или уколом в столбик сахарного агара.

  1. Удаление воздуха (а следовательно, и кислорода) из среды механическим путем. Для этого пользуются особыми приборами - анаэростатами (рис. 41). Анаэростат в простейшей форме представляет собой прямоугольную или цилиндрическую металлическую коробку, закрывающуюся крышкой на резиновой прокладке. Цилиндр снабжен металлическим краном, присоединяющимся к насосу. Пробирки и чашки с посевами помещают внутрь, воздух выкачивают насосом. Для культивирования строгих анаэробов достаточно снизить давление до 1 мм.

Биологические методы. Из биологических методов чаще всего применяется заражение животных и метод Фортнера.
При заражении животных используемый материал вводят животному в смеси со специфической сывороткой. Этот метод может быть использован в двух направлениях:

  1. Для выделения микробов из смеси. Если микроб соответствует сыворотке, он погибает. Другие же микробы, не соответствующие данной сыворотке, выделяются из животного.
  2. Для определения токсинов. При наличии в исследуемом материале токсина животное, получившее его в смеси с антитоксической сывороткой, выживает. Контрольное животное погибает. Такая постановка диагноза широко применяется при биологической пробе на токсин.

Метод Фортнера. Этот метод приближает лабораторную технику к природным условиям развития анаэробных микроорганизмов. Фортнер применил метод симбиоза аэробных микробов, способных энергично поглощать кислород воздуха (Bact. prodigiosum), с анаэробами, засеянных на кровяной агар в чашке Гейденрейха - Петри. Чашка разделена на две части вырезанной полоской агара, чтобы при сплошном росте избежать смешивания культур. На одну половину чашки засевают исследуемый на анаэробы материал, на другую - заведомо известный облигатный аэроб (Bact. prodigiosum Сас. subtilis и др.).
Для изоляции внутреннего пространства чашки от внешней атмосферы края ее заливают воском или заклеивают пластилином. Методом Фортнера можно получить хороший поверхностный рост анаэробов.
Питательные среды для выращивания анаэробов. Бульон Китта - Тароцци. В пробирку с мясо-пептонным бульоном, прибавляют кусочки сваренной и промытой кипятком на сите печени (3-5 г на пробирку) или мясной фарш, заливают вазелиновым маслом и стерилизуют при 115° в течение 30 минут.
Кровяной агар с глюкозой (Цейсслера). Слабощелочной агар, содержащий 2-3% агар-агара и 2% глюкозы, разливают в большие пробирки (25 см длины и 2,5 см в поперечнике), приблизительно по 60 мл в каждую, стерилизуют 30 минут при 110° и в таком виде сохраняют. Перед употреблением агар растапливают в водяной бане, охлаждают до 45°, в каждую пробирку добавляют 12-15 мл стерильной дефибринированной крови, перемешивают и разливают в 3-4 чашки Гейденрейха-Петри. Готовые чашки выдерживают перед посевом 2 суток при комнатной температуре.
Агар для трубок Вейона. К мартеновскому бульону добавляют 2% агара и 0,5% глюкозы. Устанавливают pH 7,4, разливают в узкие пробирки (диаметр 0,3-0,5 см, длина 20 см). Столбик агара должен быть не выше 2/3 длины пробирки и стерилизуют дробно 3 дня по 40 минут в текучепаровом аппарате.