Эксперимент по квантовой телепортации. Квантовая азбука: «Телепортация

Квантовая телепортация - это телепортирование не физических объектов, не энергии, а состояния. Но в данном случае состояния передаются таким образом, каким в классическом представлении это сделать невозможно. Как правило, для передачи информации о каком-то объекте требуется большое количество всесторонних измерений. Но они разрушают квантовое состояние, и у нас нет возможности повторно его измерить. Квантовая телепортация используется для того, чтобы передать, перенести некое состояние, обладая минимальной информацией о нем, не «заглядывая» в него, не измеряя и тем самым не нарушая.

Кубиты

Кубит - это и есть состояние, которое передается при квантовой телепортации. Квантовый бит находится в суперпозиции двух состояний. Классическое состояние находится, например, либо в состоянии 0, либо в состоянии 1. Квантовое находится в суперпозиции, и, что очень важно, пока мы его не измерим, оно не будет определено. Представим себе, что у нас был кубит на 30% - 0 и на 70% - 1. Если мы его измерим, мы можем получить как 0, так и 1. За одно измерение нельзя ничего сказать. Но если приготовить 100, 1000 таких одинаковых состояний и раз за разом их измерять, мы можем достаточно точно охарактеризовать это состояние и понять, что действительно там было 30% - 0 и 70% - 1.

Это пример получения информации классическим способом. Получив большое количество данных, адресат может воссоздать это состояние. Однако квантовая механика позволяет не готовить много состояний. Представим себе, что оно у нас есть только одно, уникальное, а второго такого нет. Тогда в классике передать его уже не получится. Физически, напрямую, это тоже не всегда возможно. А в квантовой механике мы можем использовать эффект запутанности.

Мы также используем явление квантовой нелокальности, то есть явление, которое невозможно в привычном для нас мире, для того чтобы здесь это состояние исчезло, а там появилось. Причем самое интересное, что применительно к тем же квантовым объектам существует теорема о неклонировании. То есть невозможно создать второе идентичное состояние. Надо уничтожить одно, чтобы появилось другое.

Квантовая запутанность

Что такое эффект запутанности? Это особым образом приготовленные два состояния, два квантовых объекта - кубита. Для простоты можно взять фотоны. Если эти фотоны разнести на большое расстояние, они будут коррелировать между собой. Что это значит? Представим себе, что у нас один фотон синий, а другой зеленый. Если мы их разнесли, посмотрели и у меня оказался синий, значит, у вас оказался зеленый, и наоборот. Или если взять коробку обуви, где есть правый и левый ботинок, незаметно их вытащить и в мешке отнести один ботинок вам, другой мне. Вот я открыл мешок, смотрю: у меня правый. Значит, у вас точно левый.

Квантовый случай отличается тем, что состояние, которое пришло ко мне до измерения, не синее и не зеленое - оно в суперпозиции синего и зеленого. После того как вы разделили ботинки, результат уже предопределен. Пока мешки несут, пока их еще не открыли, но уже точно понятно, что там будет. А пока квантовые объекты не измерены, еще ничего не решилось.

Если взять не цвет, а поляризацию, то есть направление колебаний электрического поля, можно выделить два варианта: вертикальная и горизонтальная поляризация и +45° - -45°. Если сложить вместе в равной пропорции горизонтальную и вертикальную, то получится +45°, если вычесть одну из другой, то -45°. Теперь представим, что точно так же один фотон попал ко мне, а другой к вам. Я посмотрел: он вертикальный. Значит, у вас горизонтальный. Теперь представим, что я увидел вертикальный, а вы посмотрели его в диагональном базисе, то есть посмотрели - он +45° или -45°, вы увидите с равной вероятностью тот ли иной исход. Но если я посмотрел в диагональном базисе и увидел +45°, то точно знаю, что у вас -45°.

Парадокс Эйнштейна - Подольского - Розена

Квантовая запутанность связана с фундаментальными свойствами квантовой механики и так называемым парадоксом Эйнштейна - Подольского - Розена. Эйнштейн так долго протестовал против квантовой механики, потому что считал, что природа не может со скоростью, большей скорости света, передавать информацию о состоянии. Мы же можем разнести фотоны очень далеко, например на световой год, а открывать одновременно. И мы все равно увидим эту корреляцию.

Но на самом деле теорию относительности это не нарушает, потому что информацию с помощью этого эффекта мы передать все равно не можем. Измеряется либо вертикальный, либо горизонтальный фотон. Но неизвестно заранее, какой именно он будет. Несмотря на то что нельзя передавать информацию быстрей скорости света, запутанность позволяет реализовать протокол квантовой телепортации. В чем он заключается? Рождается запутанная пара фотонов. Одна направляется к передатчику, другая - к приемнику. Передатчик производит совместное измерение целевого фотона, который он должен передать. И с вероятностью ¼ он получит результат OK. Он может сообщить об этом получателю, и получатель в этот момент узнает, что у него точно такое же состояние, как было у передатчика. А с вероятностью ¾ он получает другой результат - не то чтобы неуспешное измерение, а просто другой результат. Но в любом случае это полезная информация, которую можно передать получателю. Получатель в трех из четырех случаев должен произвести дополнительный поворот своего кубита, чтобы получить передаваемое состояние. То есть передается 2 бита информации, и при помощи них можно телепортировать сложное состояние, которое ими закодировать нельзя.

Квантовая криптография

Одна из главных сфер применения квантовой телепортации - это так называемая квантовая криптография. Идея этой технологии заключается в том, что одиночный фотон невозможно клонировать. Следовательно, мы можем передавать информацию в этом одиночном фотоне, и никто не сможет ее продублировать. Более того, при любой попытке кем-то узнать что-то об этой информации состояние фотона изменится или разрушится. Соответственно, любая попытка получить эту информацию посторонним будет замечена. Это можно использовать в криптографии, в защите информации. Правда, передается не полезная информация, а ключ, которым потом уже классически возможно абсолютно надежно передавать информацию.

У этой технологии есть один большой недостаток. Дело в том, что, как мы уже раньше говорили, создать копию фотона невозможно. Обычный сигнал в оптоволокне можно усилить. Для квантового случая усилить сигнал невозможно, так как усиление будет эквивалентно некоторому перехватчику. В реальной жизни, в реальных линиях передача ограничена расстоянием приблизительно до 100 километров. В 2016 году Российским квантовым центром была проведена демонстрация на линиях Газпромбанка, где показали квантовую криптографию на 30 километрах волокна в городских условиях.

В лаборатории мы способны показывать квантовую телепортацию на расстоянии до 327 километров. Но, к сожалению, большие расстояния непрактичны, потому что фотоны теряются в волокне и скорость получается очень низкая. Что делать? Можно поставить промежуточный сервер, который будет получать информацию, расшифровывать, потом снова зашифровывать и передавать дальше. Так делают, например, китайцы при строительстве своей сети квантовой криптографии. Такой же подход используют и американцы.

Квантовая телепортация в данном случае - это новый метод, который позволяет решить задачу квантовой криптографии и увеличить расстояние до тысяч километров. И в этом случае тот самый фотон, который передается, многократно телепортируется. Над этой задачей работает множество групп во всем мире.

Квантовая память

Представим себе цепочку телепортаций. В каждом из звеньев есть генератор запутанных пар, который должен их создавать и распределять. Это не всегда удачно происходит. Иногда нужно ждать, пока успешно произойдет очередная попытка распределения пар. И у кубита должно быть какое-то место, где он подождет телепортации. Это и есть квантовая память.

В квантовой криптографии это своего рода промежуточная станция. Называются такие станции квантовыми повторителями, и они сейчас являются одним из основных направлений для исследований и экспериментов. Это популярная тема, в начале 2010-х повторители были очень отдаленной перспективой, но сейчас задача выглядит реализуемой. Во многом потому, что техника постоянно развивается, в том числе за счет телекоммуникационных стандартов.

Ход эксперимента в лаборатории

Если вы придете в лабораторию квантовых коммуникаций, то вы увидите много электроники и волоконную оптику. Вся оптика стандартная, телекоммуникационная, лазеры в маленьких стандартных коробочках - чипах. Если вы зайдете в лабораторию Александра Львовского , где, в частности, делают телепортацию, то вы увидите оптический стол, который стабилизирован на пневмоопорах. То есть если этот стол, который весит тонну, потрогать пальцем, то он начнет плавать, покачиваться. Это сделано по причине того, что техника, которая реализует квантовые протоколы, очень чувствительна. Если вы поставите на жесткие ножки и будете ходить вокруг, то это все будет по колебаниям стола. То есть это открытая оптика, достаточно большие дорогие лазеры. В целом это достаточно громоздкое оборудование.

Исходное состояние готовится лазером. Для подготовки запутанных состояний используется нелинейный кристалл, который накачивается импульсным или непрерывным лазером. За счет нелинейных эффектов рождаются пары фотонов. Представим себе, что у нас есть фотон энергии два - ℏ(2ω), он преобразуется в два фотона энергии один - ℏω+ ℏω. Эти фотоны рождаются только вместе, не может сначала отделиться один фотон, потом другой. И они связаны (запутаны) и проявляют неклассические корреляции.

История и актуальные исследования

Итак, в случае квантовой телепортации наблюдается эффект, который в ежедневной жизни мы наблюдать не можем. Но зато был очень красивый, фантастический образ, который как нельзя кстати подходил для описания этого явления, поэтому и назвали так - квантовая телепортация. Как уже было сказано, нет момента времени, когда здесь кубит еще существует, а там он уже появился. То есть сначала здесь уничтожено, а только потом там появляется. Это и есть та самая телепортация.

Квантовая телепортация была предложена теоретически в 1993 году группой американских ученых под руководством Чарльза Беннета - тогда и появился этот термин. Первая экспериментальная реализация была проведена в 1997 году сразу двумя группами физиков в Инсбруке и Риме. Постепенно ученым удавалось передавать состояния на все большее расстояние - от одного метра до сотен километров и более.

Сейчас люди пытаются делать эксперименты, которые, возможно, в будущем станут основой для квантовых повторителей. Ожидается, что спустя 5–10 лет мы увидим реальные квантовые повторители. Развивается и направление передачи состояния между объектами разной природы, в том числе в мае 2016 года была проведена гибридная квантовая телепортация в Квантовом центре, в лаборатории Александра Львовского. Теория тоже не стоит на месте. В том же Квантовом центре под руководством Алексея Федорова разрабатывается протокол телепортации уже не в одну сторону, а двунаправленный, чтобы с помощью одной пары сразу одновременно навстречу друг другу телепортировать состояния.

В рамках нашей работы над квантовой криптографией создается квантовое устройство распределения и ключа, то есть мы генерируем ключ, который невозможно перехватить. А дальше уже пользователь может зашифровать этим ключом информацию, используя так называемый одноразовый блокнот. Новые преимущества квантовых технологий должны раскрыться в ближайшее десятилетие. Развивается создание квантовых сенсоров. Их суть в том, что за счет квантовых эффектов мы можем гораздо точнее измерять, например, магнитное поле, температуру. То есть берутся так называемые NV-центры в алмазах - это крошечные алмазы, в них есть азотные дефекты, которые ведут себя квантовые объекты. Они очень похожи на замороженный одиночный атом. Смотря на этот дефект, можно наблюдать изменения температуры, причем и внутри одиночной клетки. То есть измерить не просто температуру под мышкой, а температуру органеллы внутри клетки.


В Российском квантовом центре также есть проект спинового диода. Идея такова, что мы можем взять антенну и начать очень эффективно собирать энергию из фоновых радиоволн. Достаточно вспомнить, сколько Wi-Fi-источников сейчас в городах, чтобы понять, что энергии радиоволн вокруг очень много. Ее можно использовать для носимых датчиков (например, для датчика уровня сахара в крови). Для них нужна постоянная энергетическая подпитка: либо батарейка, либо такая система, которая собирает энергию, в том числе от мобильного телефона. То есть, с одной стороны, эти задачи можно решать с существующей элементной базой с определенным качеством, а с другой стороны, можно применить квантовые технологии и решить эту задачу еще лучше, еще более миниатюрно.

Квантовая механика очень сильно изменила человеческую жизнь. Полупроводники, атомная бомба, атомная энергетика - это все объекты, работающие благодаря ей. Весь мир сейчас бьется над тем, чтобы начать управлять квантовыми свойствами одиночных частиц, в том числе запутанных. Например, в телепортации участвуют три частицы: одна пара и целевая. Но каждая из них управляется отдельно. Индивидуальное управление элементарными частицами открывает новые горизонты для техники, в том числе квантовый компьютер.

Юрий Курочкин , кандидат физико-математических наук, глава лаборатории квантовых коммуникаций Российского квантового центра.

Теги:

Добавить метки

С точки зрения физики телепортировать танк из точки А в точку Б очень просто. Нужно взять танк в точке А, измерить все его элементы, сделать чертежи и отправить их в точку Б. Потом в точке Б по этим чертежам собрать такой же танк. Но с квантовыми объектами дело обстоит значительно сложнее.

Все в этом мире состоит из протонов, нейтронов и электронов, но все эти элементы по-разному собраны и по-разному движутся. Говоря научно, они находятся в разном квантовом состоянии. И даже если бы у нас была машина, которая могла бы манипулировать отдельными частицами: собирать из них атомы, из атомов молекулы, мы все равно не смогли бы телепортировать даже амебу. Дело в том, что у маленьких квантовых объектов нельзя одновременно измерить все их параметры: разобрать квантовый танк на части мы бы еще смогли, а вот измерить их уже нет.

Эту-то проблему и решает квантовая телепортация. Она позволяет перенести свойства одного объекта на другой объект-болванку: квантовое состояние одного атома на другой атом, скорость и координату одного электрона на другой электрон. Смысл в том, что не имея никакой возможности узнать, в каком состоянии находится исходный атом, мы можем сделать так, что другой атом будет находиться в таком же неведомом, но конкретном состоянии. Правда, при этом состояние первого атома необратимо изменится, и, получив копию, мы потеряем оригинал.

2

Итак, телепортация - это перенос состояния с оригинала на атом-болванку. Для этого физики берут специальные частицы-близнецы. Лучше всего на эту роль подходит пара красных фотонов, полученных в результате распада одного фиолетового. Эти фотоны-близнецы обладают уникальным квантовым свойством: как бы далеко они ни были разнесены, они не перестают чувствовать друг друга. Как только изменяется состояние одного из фотонов - немедленно изменяется состояние другого.

Так вот, для телепортации квантового состояния из точки А в точку Б берутся эти два фотона. Один отправляется в точку А, другой - в точку Б. Фотон в точке А взаимодействует с атомом, состояние которого нужно передать в точку Б. Фотон здесь выступает в роли курьера DHL - он приехал к атому, забрал у него пакет документов, таким образом навсегда лишив его этих документов, но собрав нужную информацию, после чего садится в грузовик и увозит документы. В точке Б пакет получает другой фотон и везет его новому владельцу.

В точке Б производятся специальные преобразования со вторым фотоном, а затем происходит взаимодействие этого фотона со вторым атомом-болванкой, на который переносится нужное квантовое состояние. В результате атом-болванка становится атомом из точки А. Все, квантовая телепортация состоялась.

Физика еще очень далека от телепортации человека, зато уже близка спецслужбам и службам безопасности. Телепортацию квантовых состояний можно использовать, чтобы передать особо секретную информацию. Информация кодируется квантовым состоянием фотона, после чего состояние телепортируется от одного шпиона к другому. Если же вражеский шпион попытается перехватить информацию, ему придется произвести измерение состояния фотона, что его необратимо испортит и приведет к ошибкам. Эти ошибки сразу заметят наши шпионы и догадаются, что враг их подслушивает. Все это называется квантовой криптографией.

На расстояние около 1200 километров — между землёй и космосом! Исследователи также планируют провести подобные опыты по квантовой телепортации между Землёй и Луной.

Телепортация… Слово из научно-фантастических книг, из историй о космических приключениях, где герои за секунды преодолевают гигантские расстояния с помощью телепорта. Квантовая телепортация не имеет ничего общего с реальным перемещением объектов. В таком случае, что это такое и почему так называется? О квантовой телепортации АиФ.ru рассказал руководитель лаборатории физики Политехнического музея Юрий Михайловский :

— Нужно понимать, что при квантовой телепортации не происходит перемещения объекта из одного места в пространстве в другое — как при телепортации в обычном понимании этого слова. При помощи квантовой телепортации телепортируется, то есть мгновенно перемещается, не сам объект, а состояние этого объекта! Грубо говоря, у нас есть некий предмет, имеющий определённое состояние, и мы с помощью квантовой телепортации можем перенести это состояние в другое место, чтобы там появился объект с такими же свойствами. (В Китае состояние частиц между двумя пунктами на Земле будут передавать с помощью космического спутника, который ради этого эксперимента собираются вывести на орбиту — прим. ред.) Но про объект — условно. Поясню: сейчас мы не умеем передавать состояние сложных объектов. Речь идёт о том, чтобы передать состояние отдельных атомов или фотонов, ничего больше.

Для того чтобы осуществить квантовую телепортацию, нужно создать квантовую запутанную пару. Для простоты будем говорить про одно состояние, состояние спина частицы. Он может находиться в двух состояниях: спин вверх и спин вниз. Эти состояния мы и будем пытаться передать. Итак, мы пытаемся создать так называемую квантовую запутанную пару (обычно это пара световых фотонов). Она устроена таким образом, что у них суммарный спин равен нулю. То есть у одного фотона спин вверх, у другого — вниз, когда мы создаём эту пару, их сумма — ноль. При этом не только мы не знаем, куда фотоны смотрят, но и сами фотоны не знают, в какую сторону направлены их спины. Они находятся в так называемом смешанном состоянии, неопределённом. Может быть, спин вверх, может, вниз, никто не знает, пока не будет проведён акт измерения.

Но у нас есть гарантия, что если мы измерим один спин, и он смотрит вверх, то спин другого фотона смотрит вниз. Теперь возьмём два запутанных фотона и разнесём их на большое расстояние, километр, например. И тут мы берём один из фотонов и измеряем его состояние. Определяем, что у него спин вверх, и в этот момент на расстоянии одного километра спин другого смешанного фотона превращается в состояние со спином вниз. Актом измерения одного фотона мы изменили состояние другого фотона.

Обычно эти два запутанных фотона называют Ансилой и Бобом.

Этот эффект квантовой запутанности используется для телепортации. У нас есть спин, который мы хотели бы телепортировать, его обычно называют Алисой. Так вот, производят измерение суммарного спина Алисы и Ансилы, и в этот момент Боб получает состояние Алисы, или сопряжённое к нему (противоположное). О том, какое именно, мы узнаём из результата измерения. После этого нам необходимо эту информацию передать уже по обычному каналу связи. Надо ли переворачивать Боба или нет.

Если мы, например, передаём состояния 10 спинов, то для завершения телепортации необходимо передать сообщение вида: «Поменять на противоположные состояния 1, 3, 5, 6 и 8».

Как-то так и осуществляется квантовая телепортация.


Квантовая телепортация – одно из наиболее интересных и парадоксальных проявлений квантовой природы материи, вызывающее в последние годы огромный интерес специалистов и широкой публики. Термин телепортация взят из научной фантастики, однако в настоящее время широко используется в научной литературе. Квантовая телепортация означает мгновенный перенос квантового состояния из одной точки пространства в другую, удаленную на большое расстояние.

ЭПР-парадокс

В период активного развития квантовой теории, в 1935 году, в знаменитой работе Альберта Эйнштейна, Бориса Подольского и Натана Розена «Может ли квантово-механическое описание реальности быть полным?» был сформулирован так называемый ЭПР-парадокс (парадокс Эйнштейна-Подольского-Розена).

В основе парадоксе лежит вопрос о том, может ли Вселенная быть разложена на отдельно существующие «элементы реальности» так, что каждый из этих элементов имеет своё математическое описание.

Авторы показали, что из квантовой теории следует: если есть две частицы A и B с общим прошлым (разлетевшиеся после столкновения или образовавшиеся при распаде некоторой частицы), то состояние частицы B зависит от состояния частицы A и эта зависимость должна проявляться мгновенно и на любом расстоянии. Такие частицы называют ЭПР-парой и говорят, что они находятся в «запутанном» состоянии.

В 1980 году Алан Аспект экспериментально показал, что в квантовом мире ЭПР-парадокс действительно имеет место. Специальные измерения состояния ЭПР-частиц A и B показали, что ЭПР-пара не просто связана общим прошлым, но частица B каким-то образом мгновенно «узнает» о том, как была измерена частица A (какую ее характеристику измеряли) и какой получился результат.

В 1993 году Чарльз Беннет и его коллеги придумали, как можно использовать замечательные свойства ЭПР-пар: они изобрели способ переноса квантового состояния объекта на другой квантовый объект с помощью ЭПР-пары и назвали этот способ квантовой телепортацией. А в 1997 году группа экспериментаторов под руководством Антона Цайлингера впервые осуществила квантовую телепортацию состояния фотона.

Экспериментальное подтверждение квантовой телепортации

Явление квантовой телепортации - передачи квантовой информации (например, направления спина частицы или поляризации фотона) на расстояние от одного носителя другому - уже наблюдалось на практике в случае двух фотонов, фотонов и группы атомов, а также двух атомов, посредником между которыми служил третий. Однако ни один из предложенных способов не годился для практического использования.

Наиболее реалистичной и легко реализуемой на этом фоне выглядит схема, предложенная специалистами из Университета Мэриленда (США) в 2008 году. Под руководством Кристофера Монро ученым удалось осуществить перемещение квантовой информации между двумя заряженными частицами (ионами иттербия), расположенными в метре друг от друга, причем показатель надежности доставки превысил 90 процентов. Каждый из них поместили в вакуум и удерживали на месте с помощью электрического поля. Затем с помощью сверхбыстрого лазерного импульса их заставили одновременно испустить фотоны, благодаря взаимодействию которых частицы вступили в состояние так называемой квантовой запутанности, и «атом В приобрел свойства атома А, несмотря на то, что они находились в разных камерах на расстоянии метра друг от друга».

«На основе нашей системы можно сконструировать крупномасштабный "квантовый повторитель", который будет использоваться для передачи информации на большие расстояния», - подытожил полученные результаты Кристофер Монро.

Наземная оптическая станция
Европейского космического агентства
на о. Тенерифе – место приема сигнала


В 2012 году ученые-физики из Венского университета и Австрийской академии наук успешно осуществили квантовую телепортацию на рекордное расстояние в 143 км - между двумя островами Канарского архипелага - Ла Пальма и Тенерифе. Предыдущий рекорд был поставлен за несколько месяцев до этого китайскими учеными, осуществившими телепортацию квантового состояния на 97 км. Специалисты уверены, что данные эксперименты позволят создать в будущем сеть спутниковой квантовой связи.

Эксперимент, проведенный международной командой ученых под руководством австрийского физика Антона Цайлингера, закладывает фундамент для всемирной информационной сети, в которой квантово-механические эффекты используются для того, чтобы сделать обмен сообщениями более безопасным, и обеспечить намного более эффективное выполнение некоторых типов вычислений. В этом «квантовом интернете» квантовая телепортация станет ключевым протоколом связи между квантовыми компьютерами.

В этом эксперименте квантовые состояния - но не материя или энергия – передаются на расстояние, которое, в принципе, может быть сколь угодно большим. Процесс может работать даже в том случае, если местоположение получателя неизвестно. Квантовая телепортация может использоваться как для передачи сообщений, так и для выполнения операций квантовыми компьютерами. Для реализации подобных задач необходимо обеспечить надежный способ передачи фотонов на большие дистанции, при котором их хрупкое квантовое состояние будет оставаться неизменным.

Перспективы применения квантовой телепортации

В различных странах обсуждаются программы по применению эффекта квантовой телепортации для создания квантовых оптических компьютеров, где носителями информации будут фотоны. Первые электронные компьютеры потребляли десятки киловатт энергии. Скорость работы квантовых компьютеров и объемы информации будут на десятки порядков превосходить таковые у существующих компьютеров. В будущем сети квантовой телепортации получат такое же распространение, как современные телекоммуникационные сети. Кстати, квантовые вирусы будут гораздо опаснее нынешних сетевых, так как после своей телепортации они смогут существовать вне компьютера. Квантовые компьютеры будут реализовывать «холодные» вычисления, работая практически без затрат энергии. Ведь трение, ведущее к бесполезному расходованию энергии, – понятие макроскопическое. В квантовом мире главный вредитель – шум, исходящий из некоррелированного взаимодействия объектов друг с другом.

К настоящему времени квантовая информатика обрела все признаки точной науки, включая систему определений, постулатов и строгих теорем. К числу последних относится, в частности, теорема о невозможности клонирования кубита*, строго доказанная с применением теории унитарного оператора квантовой эволюции. То есть невозможно, получив полную информацию о квантовом объекте A (изначально его состояние неизвестно), создать второй, точно такой же, объект, не разрушив первый. Дело в том, что создание двух кубитов – абсолютных копий друг друга – приводит к противоречию, которое можно было бы назвать парадоксом квантовых близнецов. Однако и без того ясно, что создание двух электронов в одном и том же квантовом состоянии невозможно в силу ограничения, накладываемого принципом Паули. Парадокс близнецов не возникает, если при клонировании снабжать копии отличительными признаками: пространственно-временными, фазовыми и др. Тогда генерацию лазерного излучения можно понимать как процесс клонирования фотона-затравки, попавшего в среду с оптическим усилением. Если же к квантовому копированию подходить строго, то рождение клона должно сопровождаться уничтожением оригинала. А это и есть телепортация.

______________________

* Кубит - «квантовый бит», единица квантовой информации, в которой хранится не дискретное состояние «0» или «1», а их суперпозиция - наложение состояний, которые с классической точки зрения не могут быть реализованы одновременно.

О квантовой природе человека

Человек – это не только то, что мы видим, а несравненно большее – то, что слышим, чувствуем, ощущаем. Все тело человека пронизано квантовой энергией, составляющей интеллектуальную сеть, коллективный разум не только мозга, но и остальных пятидесяти триллионов клеток организма, мгновенно реагирующая на малейшие проявления мыслей и эмоций, дающая возможность постоянным изменениям тонких вибраций.

Физика говорит, что основная ткань природы находится на квантовом уровне, гораздо глубже уровня атомов и молекул, это фундамент строительства. Квант – основная единица материи или энергии, в десятки миллионов раз меньше самого маленького атома. На этом уровне материя и энергия становятся равнозначными. Все кванты состоят из невидимых колебаний флуктуаций света – призраков энергии, – готовых принять физическую форму.

Человеческое тело – это вначале интенсивные, но невидимые колебания, называемые квантовыми флуктуациями, а уж потом объединенные в импульсы энергии и частицы материи. Квантовое тело является фундаментальной основой всего, из чего мы состоим: мыслей, эмоций, протеинов, клеток, органов, – в общем, всех видимых и невидимых компонентов.

На квантовом уровне тело посылает всевозможные виды невидимых сигналов, ожидая, что мы их примем. Все процессы и органы в нашем теле имеют свой квантовый эквивалент. Наше сознание способно обнаружить тонкие вибрации благодаря невероятной чувствительности своей нервной системы, которая принимает, передает и затем усиливает их таким образом, что наши органы чувств начинают воспринимать эти сигналы. И мы относим все это к интуиции.

Мы все склонны рассматривать свои тела как застывшие скульптуры – жесткие, неподвижные материальные объекты – в это время как на самом деле они более похожи на реки, постоянно меняющие рисунок нашего интеллекта. Каждый год 98 % атомов вашего организма заменяются новыми. Этот поток изменений контролируется на квантовом уровне системой тело – сознание.

На квантовом уровне ни одна часть тела не живет в отрыве от остальных. Когда человек счастлив, химические вещества, выделяемые мозгом, «путешествуют» по всему телу, сообщая каждой клеточке об ощущении счастья. Дурное настроение также передается химическим путем каждой клеточке, ослабляя деятельность иммунной системы. Все что мы думаем и делаем, возникает сначала в глубинах квантового тела, а затем всплывает на поверхность жизни.

Человек может научить свое сознание управлять собой на этом тонком уровне; по существу, то, что он называет мыслями и эмоциями, является лишь выражением этих квантовых флуктуаций. Мысль человеческая – это своего рода акт квантовой телепортации, посылка квантового пакета от одного объекта другому объекту, находящемуся на произвольном расстоянии. Такая передача информации возможна за счет эффекта «запутывания», где два объекта «знают» о существовании друг друга. Мысль, как только получает ориентир, отправляется в путь к объекту исследования и может определить его любой параметр и состояние, и уже в голове на экране флюидного зрения мгновенно отображает показатели работы исследуемого, а мозг оценивает и распознает, вынося свои суждения.

«Телепортация» мысли в окружающее пространство

В своей книге «Квантовая магия» С.И. Доронин проводит интересную аналогию между исследованиями в области квантовой телепортации и особенностями человеческой психики, имеющей квантовую природу. В частности, он отмечает:

«... при построении квантового коммутатора предполагается наличие определенного числа (N) пользователей и центрального коммутатора, с которым все они соединены квантовым каналом связи. Принципиальную схему работы такого коммутатора можно объяснить следующим образом. Пусть у каждого пользователя есть (в простейшем случае) одна максимально запутанная пара. Они отдают одну частицу из своей пары на центральный коммутатор, в котором происходит их объединение. В этом случае все оставшиеся у пользователей частицы оказываются квантово-запутанными. Все N частиц, которые по-прежнему у них остаются, становятся квантово-коррелированными, то есть все пользователи объединены квантовыми корреляциями, они как бы «включены» в единую квантовую сеть и могут «телепатически» общаться друг с другом.

Квантовый коммутатор, описанный выше, можно считать простейшей физической моделью, иллюстрирующий работу эгрегоров (эзотерический термин) и демонов (в религиозной традиции). Когда мы отдаем «в общее пользование» свои мысли и эмоции, то тем самым оказываемся «включенными» в различные «квантовые коммутаторы» в соответствии с направленностью своих мыслей и чувств. Чтобы эгрегор (демон) «заработал» в качестве квантового коммутатора и начал свое существование как объективный элемент реальности («энергетический сгусток» в квантовом ореоле Земли), достаточно того, чтобы «психические выделения» у нескольких человек были одинаковы (или близки). В целом, чтобы между различными системами было взаимодействие, они должны иметь одинаковые состояния. Тогда переходы между этими состояниями и, как следствие, генерация и поглощение энергии будут приводить к взаимодействию и корреляциям. Одинаковые энергии будут способны к взаимодействию. Причем чем меньше разность энергии между уровнями, чем слабее классические взаимодействия, тем больше в этом случае относительная величина квантовых корреляций. Например, мы все имеем примерно одинаковые наборы базисных эмоциональных и ментальных состояний, поэтому однонаправленные мысли и эмоции (то есть переход нескольких людей в определенное ментальное или эмоциональное состояние) автоматически ведут к генерации близких энергетических потоков и к взаимодействию на этих уровнях. Другими словами – к образованию новых или подпитке уже существующих «квантовых коммутаторов» – эгрегоров (демонов). Эмоции при этом содержат больше энергии, но меньше квантовой информации, мысли – наоборот, меньше энергии, но больше квантовой информации (мера запутанности выше).

Индивидуальное сознание должно уметь целенаправленно оперировать в том пространстве состояний, до которого оно добралось (изменять вектор состояния на достигнутом уровне). Умение изменять весь вектор состояния на каком-то уровне реальности дает возможность менять ее на всех более низких (плотных) уровнях. Практически это означает, что сознание умеет нужным образом перераспределять энергию, управляя энергетическими потоками. Замечу, что изменение состояния – это и есть изменение энергии, поскольку в квантовой механике она является функцией состояния».

По материалам Интернет-изданий

Возможность телепортации является одной из наиболее горячо обсуждаемых паранормальных и паранаучных проблем. Тем более, что она опирается сразу и на фантастические мистические представления, и на определённые научные достижения. Однако различные сообщения о том, что телепортация вот-вот будет достигнута на практике, являются лишь недобросовестным использованием информации о квантовой телепортации. Квантовая телепортация – это реальное физическое явление, вот только к телепортации из теорий мистиков и произведений фантастов она имеет лишь косвенное отношение.

Без Эйнштейна не обошлось

Практика телепортации предполагает передачу материи из одной точки пространства в другую без наличия непрерывной траектории движения. То есть невозможно проследить непрерывающуюся последовательность нахождения вещества в определённой точке в каждый последующий момент времени. Тем самым материя на время как бы исчезает, чтобы затем появиться уже в совсем другом месте. Ничего подобного в случае с квантовой телепортацией, конечно, не происходит. Она связана с особенными свойствами квантов и была впервые сформулирована на теоретическом уровне в 1930-е годы знаменитым Альбертом Эйнштейном.

Он предположил, что между двумя частицами может существовать канал связи из так называемых спутанных квантов, по которому возможна передача свойств от одной элементарной частицы к другой. Физически элементарные частицы при этом между собой не соприкасаются, то есть не контактируют. Свойство одной частицы отправляется через квант, при этом в точке отправления это свойство разрушается и исчезает, частица-отправитель этого свойства лишается. В свою очередь, на другой частице это свойство появляется, будучи «переправленным» через спутанные кванты. Ни энергия, ни сама материя при этом между частицами не «перепрыгивают», а скорость передачи свойств не превышает скорость света в вакууме. Таким образом, никакие физические законы не нарушаются и о реальной телепортации говорить нельзя. Характерно, что Эйнштейн не верил в практическую осуществимость даже этой своей теоретической модели, считая квантовую телепортацию следствием противоречивости самой квантовой теории.

Реализация на практике

Квантовая телепортация, известная также как ЭПР-эффект (названный так по фамилиям соавторов теоретической работы по данной теме – Эйнштейна, Подольского, Розена), считалась сугубо умозрительной на протяжении почти полувека. Но в 1980 году существования данного эффекта было подтверждено экспериментально. Была осуществлена так называемая телепортация фотонов, то есть передача свойств с одного фотона на другой. Первоначально учёные не могли найти объяснения такому явлению, которое противоречило законам физики. Однако затем вспомнили о сформулированном Эйнштейном и его коллегами принципе квантовой телепортации – и всё встало на свои места.

Причём особенность квантовой телепортации заключалась в возможности передачи свойств между элементарными частицами на значительные расстояния. Но одновременно выявились и различные сложности. Так, очень быстро выяснилось, что квантовая телепортация имеет характерные для любого канала связи ограничения – скорость передачи информации не может превышать максимальной скорости, доступной для данного конкретного канала. В лучшем случае она будет приближаться к скорости света в вакууме. К тому же квантовая телепортация не имела ничего общего с «классической» телепортацией, знакомой по фантастическим романам. Подобная передача энергии и материи из одной точки в другую по-прежнему не представляется возможной. Так что энтузиастам, жаждущим осуществления телепортации человека, придётся подождать. Очень может быть, что подождать бесконечно долго: даже при обнаружении способа телепортации материи сложно представить возможность телепортирования разумных существ и воссоздания на новом месте полноценного механизма сознания.

Эксперименты двигают науку

Квантовая телепортация получила широкое освещение в прессе в связи с последними достижениями в этом направлении японских учёных. В ходе различных экспериментов ими были достигнуты впечатляющие результаты. В первом случае опыт оказался весьма эффектным: исследователи смогли «телепортировать» квант света. По сути, это телепортация фотона – свет «разложили» по отдельным частицам-фотонам и с помощью канала связи спутанных квантов перенесли их в другую точку пространства, где снова собрали в световой пучок. Во втором случае была достигнута первая квантовая телепортация не между двумя, а между тремя фотонами. С точки зрения практических научных технологий это настоящий прорыв, открывающий реальные перспективы создания квантовых компьютеров. Эти компьютеры будут на порядки производительнее в скорости обработки данных, а также в их суммарном объёме.

Но японские эксперименты с квантовой телепортацией отнюдь не единственные, работа в этом направлении ведётся уже несколько десятилетий, но особенно активно в последние годы. Так, в 2004 году были осуществлены успешные опыты квантовой телепортации уже не между фотонами, а между атомами – в первом случае свойствами обменивались ионы атома кальция, во втором – ионы атома бериллия. В 2006 году квантовая телепортация была проведена между двумя разноприродными объектами, между атомами цезия, с одной стороны, и квантами лазерного излучения, с другой. С 2010 по 2012 годы учёные последовательно ставили впечатляющие рекорды расстояния квантовой телепортации: сначала в Китае свойства между фотонами были переданы на 16 километров, затем в Поднебесной достижение было увеличено до 97 километров, а после в Австрии исследователи добились телепортации на 143 километра.

Александр Бабицкий