Как повысить КПД электродвигателя: выбираем оптимальное решение. Электродвигатель или ДВС? Плюсы и минусы двух технологий В чем преимущество электродвигателя по сравнению с

    Введение______________________________________________________________3

    Принцип работы электродвигателей_______________________________________5

    Классификация электодаигателей_________________________________________5

    Преимущества и недостатки______________________________________________8

    Электродвигатели в гибридных автомобилях_______________________________9

    Гибрид на примере Porsche Panamera______________________________________12

    Топливная экономия и экологичность_____________________________________14

    Вывод________________________________________________________________15

ВВЕДЕНИЕ

Современный электродвигатель

Электрический двигатель – механизм или специальная машина, предназначенная для преобразования электрической энергии в механическую, при котором так же выделяется тепло.

Предыстория

Якоби Борис Семенович

Тесная взаимосвязь между магнитными и электрическими явлениями открыла перед учеными новые возможности. История электрического транспорта и всего электромашиностроения в целом начинается с закона электромагнитной индукции, открытого М. Фарадеем в 1831 году, и правила Э. Ленца, согласно которому индукционный ток всегда направлен таким образом, чтобы противодействовать причине, его вызывающей. Труды Фарадея и Ленца легли в основу создания первого электродвигателя Бориса Якоби.

Установка Фарадея состояла из подвешенного провода, который окунался в ртуть. Магнит устанавливался посередине колбы с ртутью. При замыкании цепи, провод начинал вращение вокруг магнита, демонстрируя то, что вокруг провода, эл. током, образовывалось электрическое поле.

Данный двигатель считается самым простым видом из всего класса электродвигателей. Впоследствии он получил продолжение в виде Колеса Барлова, но новое устройство носило лишь демонстрационный характер, поскольку вырабатываемые им мощности были слишком малы.

Ученые и изобретатели работали над двигателем с целью использования его в производственных нуждах. Все они стремились к тому, чтобы сердечник двигателя двигался в магнитном поле вращательно-поступательно, на манер поршня в цилиндре паровой машины. Русский изобретатель Б.С. Якоби сделал все проще. Принцип работы его двигателя заключался в попеременном притяжении и отталкивании электромагнитов. Часть электромагнитов были запитаны от гальванической батареи, и направление течения тока в них не менялась, а другая часть подключалась к батарее через коммутатор, благодаря которому изменялось направление течения тока через каждый оборот. Полярность электромагнитов менялась, и каждый из подвижных электромагнитов то притягивался, то отталкивался от соответствующего ему неподвижного электромагнита. Вал приходил в движение.

Изначально мощность двигателя была небольшой и составляла всего 15 Вт. После доработок Якоби удалось довести мощность до 550 Вт. 13 сентября 1838 года, лодка, оборудованная этим двигателем, плыла с 12 пассажирами по Неве, против течения, развивая при этом скорость в 3 км/ч. Двигатель был запитан от большой батареи, состоящей из 320 гальванических элементов.

Современные электродвигатели основаны на одном и том же законе, что и электромеханический преобразователь Якоби, но сильно от него отличаются. Электромоторы стали мощнее, компактнее, их КПД значительно вырос. КПД современного тягового электродвигателя может составлять 85-95 %. Для сравнения, максимальный КПД ДВС без вспомогательных систем едва ли дотягивает до 45 %.

Электродвигатель Tesla Roadster

Принцип действия

Для большинства экологичных машин, таких как серийные электромобили, гибриды и автомобили на топливных элементах, главная движущая сила - это электрический двигатель. В основу работы современного электродвигателя положен принцип электромагнитной индукции - явления, связанного с возникновением электродвижущей силы в замкнутом контуре при изменении магнитного потока – образование индукционного тока.

Двигатель состоит из ротора (подвижной части – магнита или катушки) и статора (неподвижной части – катушки). Чаще всего конструкция двигателя представляет собой две катушки. Статор обложен обмоткой, по которой течет ток. Ток порождает магнитное поле, воздействующее на другую катушку. В ней, по причине ЭМИ, образуется ток, порождающий магнитное поле, действующее на первую катушку. И все повторяется по замкнутому циклу. Взаимодействие полей ротора и статора создает вращающий момент, приводящий в движение ротор двигателя, происходит трансформация электрической энергии в механическую, кот. используют в различных приборах, механизмах и автомобилях.

Как отмечают многие эксперты, электрический автомобиль сегодня является не просто альтернативой, а уже составляет прямую конкуренцию для привычного двигателя внутреннего сгорания.

Конечно, о массовом вытеснении речь пока не идет, однако специалисты полагают, что это всего лишь вопрос времени. Дело в том, что на фоне глобального экологического и топливного кризиса у электромобилей появились все шансы отодвинуть поршневые моторы на задний план.

Более того, если судить по количеству проектов и объемам вложенных в разработку электрокаров средств, тогда невольно напрашивается вывод о том, что и сами автопроизводители прочат электромобилям большое будущее.

В этой статье мы рассмотрим устройство и общий принцип работы ТС на электротяге, их особенности, преимущества и недостатки. Также мы попробуем разобраться, какой вариант предпочтительнее, электромобиль или гибрид, что лучше выбрать в том или ином случае и т.д.

Читайте в этой статье

Электромобили: особенности электрических авто

Начнем с того, что до недавнего времени марки Toyota и других фактически являлись одним из наиболее предпочтительных, востребованных и распространенных вариантов по всему миру. За примерами не нужно далеко ходить, так как достаточно вспомнить премиальную модель Lexus RX450h F Sport или более скромный и доступный Toyota Prius и т.д.

При этом даже сегодня сложившаяся ситуация не сильно поменялась, хотя за последнее время на рынке появилось большое количество конкурентов, которые способны предложить потребителю различные версии так называемых «зеленых» авто.

Дело в том, что при всех своих плюсах автомобили с гибридными двигателями все же представляют собой неразрывный симбиоз электромотора и ДВС. Это значит, что речь больше идет об экономии топлива, при этом «нулевых» выбросов в атмосферу и полного отказа от нефтепродуктов при использовании таких машин добиться все равно не получается.

Поршневой двигатель, который нельзя исключить из общей схемы гибрида, продолжает нуждаться в горючем, его система смазки требует моторного масла и т.д. По этой причине гибридная силовая установка может скорее считаться очередным витком эволюции ДВС, но никак не полноценным альтернативным вариантом.

С учетом вышесказанного становится понятно, что на сегодняшний день отказ от ДВС способен предложить только полностью электрический автомобиль. Кстати, идея далеко не новая, так как первые машины с электромотором появились даже раньше транспортных средств с двигателем внутреннего сгорания.

Однако на начальном этапе создатели электрических авто столкнулись с массой проблем (малый запас хода, большой вес, сложность зарядки батарей и т.д.), в результате чего такой вариант не выдержал конкуренции, а моторы на бензине и солярке быстро и надолго вытеснили электрокары.

Все изменилось относительно недавно, в частности благодаря развитию современных технологий и созданию необходимых устройств для накопления и хранения электроэнергии. Простыми словами, речь идет об энергоемких батареях для электромобилей, а также о решениях для их быстрой подзарядки.

В результате электрокар совсем недавно стал общедоступным серийным продуктом. Такие автомобили в наши дни производятся японскими, европейскими, американскими, а также китайскими производителями. Отдельно стоит выделить популярный электрокар Nissan Leaf, хорошо известные модели Tesla Model S и Roadster, а также Toyota RAV4EV, BMW Active C и т.д.

Схема устройства электрической машины

Начнем с того, что конструкция предполагает намного меньше подвижных деталей по сравнению с ДВС. Другими словами, электромобиль устроен проще, а простота всегда означает повышенную надежность.

Основными конструктивными элементами являются:

  • аккумулятор
  • электромотор;
  • упрощенная трансмиссия;
  • специальное зарядное устройство на борту;
  • инвертор и преобразователь постоянного тока;
  • развитая система электронного управления;

Батарея в электромобилях нужна для питания электродвигателя. Указанная тяговая аккумуляторная батарея сегодня литий-ионная и состоит из модулей (банок), которые последовательно соединяются между собой. Что касается емкости, на разных моделях доступны различные варианты. Как правило, батарея подбирается к автомобилю исходя из мощности электромотора.

Тяговый электродвигатель создает крутящий момент на колесах автомобиля и является трехфазным синхронным или асинхронным двигателем переменного тока (асинхронные), выдавая, в среднем, от 20 до 150 кВт и более. Отметим, что у электромотора намного выше двигателя внутреннего сгорания, особенно бензинового. Другими словами, потери полезной энергии в ДВС могут доходить до 70%, тогда как у электродвигателя теряется только 10%.

Как уже было сказано, электрический автомобиль приводится в движение от электромоторов, которых при этом может быть несколько. Питание электромотора обычно реализовано от аккумуляторной батареи, при этом также возможно использование солнечных батарей и т.п. Однако на практике серийные электрокары зачастую оснащаются только аккумуляторной батареей.

Такая батарея нуждается в зарядке, которая может происходить как от внешнего источника, так и во время движения электрического авто. Во втором случае речь идет о рекуперации энергии торможения.

Итак, основными преимуществами электродвигателя можно считать доступный максимум крутящего момента на любой скорости, такой двигатель может крутить колеса назад и вперед без необходимости устанавливать дополнительные решения. Также выделяют отсутствие необходимости охлаждать такой мотор, электродвигатель способен выполнять функции генератора и т.д.

Как правило, в электрокарах сегодня установлены сразу несколько электродвигателей (на каждое колесо). В результате тяга значительно улучшается сравнительно со схемой, которая предполагает оснащение одним электромотором.

Также встречаются решения, когда электродвигатель фактически установлен в колесе. С одной стороны, трансмиссия в этом случае максимально упрощается, однако увеличивается количество неподрессоренных масс и страдает общая управляемость машины.

Кстати, трансмиссия электрокаров сама по себе изначально простая и зачастую представляет одноступенчатый зубчатый редуктор. Что касается зарядного устройства, решение располагается на самом авто и дает возможность заряжать батарею, причем от обычной электророзетки. Также существует отдельный «выход» для быстрой зарядки батареи на специальных станциях.

Инвертор служит для того, чтобы реализовать преобразование постоянного тока от батареи в трехфазное напряжение переменного тока. Именно такой ток нужен для питания электромотора.

Еще отметим, что в конструкцию электромобилей включено и подобие хорошо знакомой автомобилистам на 12 Вольт. За зарядку такого дополнительного аккумулятора в этом случае отвечает преобразователь постоянного тока, а сама батарея нужна для питания различных бортовых устройств и систем (электроусилитель руля, габариты и свет фар, климатическая установка, подогрев стекол и сидений, аудиосистема с акустикой и т.д.).

Электронная система, которая играет роль в электромобиле, имеет целый набор функций. Система отвечает за активную безопасность, контролирует работу электромоторов, следит за состоянием тяговой батареи и уровнем заряда, определяет расход энергии и задействует режимы энергосбережения при езде и т.д.

Если говорить об устройстве, имеется блок управления (аналогично ) и большое количество датчиков, а также различные исполнительные устройства. Датчики фиксируют скорость автомобиля, степень нагрузки на электромоторы, а также положение педали газа тормоза и ряд других параметров.

Сигналы от датчиков поступают в контроллер, после чего блок стремится создать наилучшие условия применительно к тому или иному режиму во время движения электрокара. Также на панели приборов водитель может наблюдать информацию о скорости движения, потреблении заряда, остаточном заряде, сколько километров еще можно проехать и т.д.

Виды электромобилей и практическая эксплуатация: плюсы и минусы электрокаров

Мировые автопроизводители в этой области сегодня идут двумя путями:

  • создаются абсолютно новые модели электрических авто;
  • происходит трансформация уже имеющихся в линейке производителя автомобилей в электрокар;

Еще электромобили можно условно разделить на несколько типов. Как и в случае с ДВС, машины давно принято делить на городские малолитражки, спорткары и т.п. С электромобилями ситуация похожая.

  1. Существуют электрические авто, которые позиционируются в качестве решений исключительно для города. Максимальная скорость у таких ТС относительно низкая (чуть более 100 км/ч), а также сравнительно небольшой запас хода (70-80 км.) в режимах средних и высоких нагрузок.
  2. Также следует выделить «универсальный» вариант. Такие электрические авто способны разгоняться до 140-160 км/ч, автономность также увеличена. Это позволяет совершать поездки по трассе.
  3. Что касается спортивных версий, такие электромобили имеют «максималку» около 200 км/ч и выше. Разгонная динамика также весьма впечатляет. Например, сегодня электрокары фирмы Тесла способны набрать «сотню» меньше чем за 3 сек., а максимальная скорость самого быстрого электромобиля в мире, который был построен на базе Chevrolet Corvette американской компанией Genovation, во время испытаний в 2017 году перевалила за 300 км/ч.

Казалось бы, такие машины вплотную приблизились по ряду важнейших показателей к автомобилям с ДВС. На первый взгляд, у электромобилей появилась достаточная автономность и приемлемая динамика разгона. Также можно выделить простоту эксплуатации, низкие расходы на содержание и обслуживание, что обязательно должно склонить разумных потребителей к выбору именно электрического авто. Однако на практике все выглядит несколько иначе.

Сразу отметим, именно особенности эксплуатации и ряд других факторов до сих пор не позволяют электрокарам стать массовым решением. Прежде всего, стоимость такого транспорта продолжает оставаться достаточно высокой на фоне конкурентов с бензиновым или дизельным ДВС.

Более того, экономичность современных дизельных моторов позволяет этим агрегатам серьезно конкурировать не только с бензиновыми авто, но и с электромобилями. Еще следует отдельно выделить то, что от бытовой розетки аккумулятор электрокара заряжается долго, а станции для быстрой подзарядки встречаются не часто по причине слабого развития инфраструктуры. Особенно это актуально для стран СНГ.

Что касается автономности, те данные, которые заявлены производителем, часто не совсем соответствуют действительности. Первое, на практике, особенно в холодное время года, батарея разряжается быстрее.

Второе, если водитель практикует динамичную езду, тогда полного заряда батареи может хватать не на 70-80 км. по городу, а всего лишь на 40-50. Для подтверждения этой информации достаточно ознакомиться с реальными отзывами владельцев Nissan Leaf, так как эта бюджетная версия электромобиля по цене является одной из самых доступных и сегодня наиболее распространена.

Простыми словами, пробег электромобиля без подзарядки не постоянен, а зависит от многочисленных факторов, начиная от состояния и емкости батареи и заканчивая стилем вождения. Если к этому добавить использование кондиционера, габаритов, подогревов и других решений, тогда на одном заряде даже при идеальных дорожных условиях пробег неизбежно сократится на 20-30% и более.

Если же при этом стиль вождения активный (постоянно превышает среднюю скорость 60 км./ч), тогда вполне можно рассчитывать и на все 50%. Получается, если производитель обещает 140-160 км на одном заряде, то данный показатель предполагает езду со скоростью не более 70 км/ч, и то при условии полностью исправной батареи (без потери емкости аккумулятора).

Однако если разгонять электрокар, например, до 130 км/ч по трассе, тогда пробег без подзарядки составит всего 70 км. Как видно, если для города это еще приемлемо, то использовать электромобиль для загородных поездок весьма затруднительно.

Теперь несколько слов о батарее. Аккумулятор, который сегодня повсеместно используется, литий-ионный. Для его производства необходимы большие затраты, что сильно влияет и на общую стоимость электрических авто. При этом срок службы таких батарей ограничен средней отметкой около 5 лет.

Это значит, что хотя базовые расходы на содержание электрического автомобиля в несколько раз ниже аналогов с ДВС, более высокая начальная стоимость и необходимость замены дорогостоящей батареи (в среднем, через 5 лет) ставят экономические преимущества и целесообразность покупки такого авто под большое сомнение. Еще к этому стоит добавить и постоянный рост цен на электроэнергию, то также отражается на стоимости владения электромобилем.

Что в итоге

С учетом вышесказанного становится понятно, что активное внедрение инновационных технологий позволило значительно увеличить автономность современного электромобиля. Однако применение таких технологий сильно влияет на конечную стоимость транспортного средства, не позволяя сделать его массовым решением.

Что касается более доступных по цене версий, аккумуляторы, время зарядки от бытовой сети около 7-8 часов, а также небольшой запас хода продолжают оставаться слабыми местами таких электромобилей.

Еще следует отметить то, что далеко не во всех странах наблюдается активное развитие инфраструктуры в виде создания специальных станций для быстрой зарядки или замены батарей. Также обстоят дела и со специализированными сервисами по ремонту и обслуживанию электромобилей. Если в Европе и США этому вопросу уделяется большое внимание, на территории СНГ, к сожалению, все еще нельзя говорить о создании приемлемых условиях для нормальной эксплуатации электрокаров.

Вполне возможно, что в скором времени ситуация изменится, однако сегодня электромобиль на отечественных дорогах продолжает оставаться большой редкостью. Обычно такую машину можно встретить в крупных городах. При этом обеспеченные владельцы зачастую приобретают электрические автомобили скорее для развлечения, нежели в практических целях.

Другими словами, для подавляющего большинства водителей не стоит рассматривать электромобиль в качестве основного и постоянного транспортного средства, особенно если говорить о странах на территории СНГ.

Читайте также

Конструктивные особенности двигателей GDI с непосредственным впрыском от моторов с распределенным впрыском топлива. Режимы работы, неисправности GDI.

  • Моторы линейки TSI. Конструктивные особенности, преимущества и недостатки. Модификации с одним и двумя нагнетателями. Рекомендации по эксплуатации.
  • В данной статье рассматриваются ключевые преимущества и недостатки электромобилей по сравнению с автомобилями c ДВС. Рассмотрены аспекты надежности и долговечности, стоимость обслуживания, скорость, безопасность, запас хода и наличие необходимой инфраструктуры.

    Надежность и долговечность

    Электромобили значительно надежнее, чем их бензиновые, дизельные и газовые собратья. В них меньше подвижных и изнашиваемых частей, так как двигатель и коробка передач устроены гораздо проще.

    В популярном американском электрокаре Chevrolet Bolt всего 35 подвижных частей, которые подвержены износу. В бензиновом автомобиле того же класса Volkswagen Golf таких частей 167.

    Кроме того, ДВС из-за своей неэффективности выделяют большое количество тепла во время работы, что ускоряет износ компонентов силового агрегата.

    Единственная часть электромобиля, которая может вызывать опасения в плане надежности, это аккумуляторная батарея. Со временем она деградирует, то есть теряет часть своей изначальной энергетической емкости. Однако статистические данные позволяют судить о том, что при надлежащем уходе очень маловероятно, что батарея потеряет более 20% емкости до пробега 250000 км.

    На сегодняшний день лишь у 0,003% электромобилей наблюдаются проблемы с батареей, которые требуют её замены до окончания расчетного срока службы транспортного средства (8-10 лет).

    Стоимость обслуживания и эксплуатации

    Следствием высокой надежности электромобилей являются низкие затраты их владельцев на ремонт и обслуживание.

    По данным Американской ассоциации автомобилистов, при 240000 км пробега электромобиль в среднем требует на $2100 рублей меньше расходов на ремонт и замену изношенных частей, чем обычный автомобиль того же класса.

    В дополнение к этому, у электрических транспортных средств существенно меньше расходных материалов и жидкостей, требующих регулярной замены. Их тормозные колодки изнашиваются медленнее благодаря технологии рекуперативного торможения.

    Наконец, автомобили с электрическим двигателем позволяют крупно сэкономить на топливных расходах. Полная зарядка электричеством даже в пиковые часы будет обходиться владельцу машины дешевле, чем заправка бака обычного автомобиля самым дешевым топливом - сжатым природным газом.

    К 100 тыс. км пробега топливная экономия от использования электричества вместо бензина составит около 300 тыс. рублей (при зарядке в ночное время).

    Стоимость покупки

    Одним из главных на сегодняшний день недостатков электромобилей является их высокая стоимость, которая обусловлена дороговизной аккумуляторных батарей. При отсутствии государственных субсидий и налоговых льгот покупка электромобиля пока не может быть экономически обоснована, даже с учетом экономии при эксплуатации.

    Динамика цен на аккумуляторные ячейки позволяет прогнозировать паритет стоимости электромобилей и автомобилей с ДВС не раньше, чем к началу 2020-х годов.

    Запас хода

    На данный момент, электромобили всё еще отстают от бензиновых и дизельных автомобилей по запасу хода. Лишь немногие модели способны проехать на одном заряде более 500 км. Более того, в условиях низких температур эффективность батарей падает, на обогрев салона требуется дополнительная энергия, поэтому запас хода может уменьшиться на 20%.

    Исследование, проведенное в Массачусетском Технологическом Институте, показало, что запас хода современных бюджетных электромобилей достаточен, чтобы покрыть ежедневные нужды 87% американцев без дополнительной подзарядки в течение дня.

    С развитием аккумуляторных технологий отставание от бензиновых и дизельных автомобилей удастся сократить, а строительство скоростных зарядных станций вдоль автомагистралей позволит использовать электромобили для дальних поездок (см. п.7).

    Скорость и безопасность

    Электродвигатели не требуют коробки передач и способны мгновенно передавать максимальный крутящий момент на колеса, благодаря чему электромобили очень динамичны и позволяют безопасно проводить обгоны.

    Электрический седан Tesla Model S P100D является одним из самых быстрых серийных автомобилей на планете с разгоном 0-100 км/ч за 2,5 секунды.

    Электрическая силовая установка является более эффективной (КПД>90%), чем ДВС и позволяет моментально изменять усилие на каждом из ведущих колес. Это даёт электромобилям высокую курсовую устойчивость и снижает риск заноса.

    Низкое расположение аккумуляторной батареи понижает центр тяжести и повышает жесткость кузова, что положительно сказывается на управляемости.

    Отсутствие массивного двигателя в передней части электромобиля создает своего рода «буферную зону», смягчающую последствия фронтального столкновения. А наличие батареи под полом защищает пассажиров от боковых ударов.

    Технологичность

    В электрический транспорт проще интегрировать технологии автономного вождения (автопилот).

    Недавно американская компания Waymo (подразделение Google, входящее в холдинг Alphabet), объявила о закупке 20 тысяч электромобилей Jaguar I-Pace для организации собственного сервиса беспилотного такси в США.

    Еще одной технологией, доступной только для электромобилей является Vehicle-to-Grid (V2G), которая позволяет сделать их частью энергетической системы. Электрические авто при этом помогают сбалансировать нагрузку на энергосеть и вдобавок дают возможность своим владельцам немного подзаработать на разнице ночных и дневных тарифов.

    Удобство зарядки/заправки

    Одним из факторов, сдерживающих распространение электромобилей, является медленная скорость зарядки и недостаточное количество зарядных станций.

    Количество публично доступных зарядных станций увеличивается, их уже около 500 тысяч, а отношение к количеству электромобилей на дорогах на данный момент составляет 1:6. Тем не менее, мощность большинства публичных зарядных станций не превышает 50кВт. Это значит, что для полной зарядки электромобиля требуется больше часа, в то время как на заправку топливного бака обычного автомобиля уходит не более 10 минут.

    Ситуация усугубляется большим количеством стандартов зарядных разъемов, это приводит к несовместимости некоторых моделей электромобилей с зарядными станциями определенного типа. Но, благодаря международному сотрудничеству автопроизводителей, в 2011 году удалось разработать универсальный зарядный стандарт ССS. Он позволяет сочетать зарядку с использованием постоянного и переменного тока, а его последние модификации имеют максимальную мощность в 350 кВт, которая позволяет зарядить электромобиль за 15 минут. На данный момент строительство зарядных станций данного типа активно ведется в ЕС, США, Японии и Китае, однако пока ни один электромобиль не поддерживает зарядку такой мощности.

    Экологичность и низкий уровень шума

    Производство электромобилей наносит больший экологический вред, чем производство автомобилей с ДВС. Причина - энергоемкость и ресурсоемкость производства батарей, содержащих редкоземельные металлы.

    На этап производства приходится около половины всех выбросов парниковых газов за весь жизненный цикл электромобилей.

    Тем не менее, большинство научных исследований сходятся на том, что электромобили полностью компенсируют большее экологическое воздействие на производственном этапе меньшими выбросами в процессе эксплуатации. Скорость, с которой они «выходят в плюс» напрямую зависит от уровня развития ВИЭ и других низкоуглеродных источников энергии.

    В Норвегии, которая более 95% электроэнергии получает от электростанций - это 25000км пробега, для Москвы (ТЭС на природном газе) - примерно 70000км.

    Не стоит забывать, что в месте эксплуатации электромобилей выбросы отсутствуют. Это позволяет вынести загрязнения за пределы городов в районы расположения электростанций, где относительно низкая плотность населения.

    Также для электромобилей, в сравнении с традиционными автомобилями, характерно низкое шумовое загрязнение.

    Обобщая всё вышесказанное, можно сделать вывод, что на текущей стадии развития технологий, электрические авто уже обладают рядом бесспорных преимуществ по сравнению с бензиновыми и дизельными автомобилями, а в будущем они будут только усиливаться.

    Просмотры: 1 852

    Tagged

    Состоит из вращающихся нагнетательных элементов, помещенных на статически закрепленную станину. Подобные устройства широко востребованы в технических областях, где требуется повышение диапазона регулировки скоростей, поддержание стабильного вращения привода.

    Конструкция

    Конструктивно электродвигатель постоянного тока состоит из ротора (якоря), индуктора, коллектора и щеток. Давайте рассмотрим, что представляет собой каждый элемент системы:

    1. Ротор состоит из множества катушек, что покрыты проводящей ток обмоткой. Некоторые электродвигатели постоянного тока 12 вольт содержат до 10 и более катушек.
    2. Индуктор - неподвижная часть агрегата. Состоит из магнитных полюсов и станины.
    3. Коллектор - функциональный элемент двигателя в виде цилиндра, размещенного на валу. Содержит изоляцию в виде медных пластин, а также выступы, которые находятся в скользящем контакте с щетками двигателя.
    4. Щетки - неподвижно закрепленные контакты. Предназначены для подводки электрического тока к ротору. Чаще всего электродвигатель постоянного тока оснащается графитовыми и медно-графитовыми щетками. Вращение вала приводит к замыканию и размыканию контактов между щетками и ротором, что вызывает искрение.

    Работа электродвигателя постоянного тока

    Механизмы данной категории содержат специальную обмотку возбуждения на индукторной части, куда поступает постоянный ток, что в последующем преобразуется в магнитное поле.

    Обмотка ротора поддается воздействию потока электроэнергии. Со стороны магнитного поля на данный конструктивный элемент оказывает влияние сила Ампера. В результате образуется крутящий момент, что проворачивает роторную часть на 90 о. Продолжается вращение рабочих валов двигателя за счет образования эффекта коммутации на щеточно-коллекторном узле.

    При поступлении электрического тока на ротор, который находится под воздействием магнитного поля индуктора, электродвигатели постоянного тока (12 вольт) создают момент силы, что приводит к выработке энергии в процессе вращения валов. Механическая энергия передается от ротора к прочим элементам системы посредством ременной передачи.

    Типы

    В настоящее время выделяют несколько категорий электродвигателей постоянного тока:

    • С независимым возбуждением - питание обмотки происходит от независимого источника энергии.
    • С последовательным возбуждением - обмотка якоря включена последовательно с обмоткой возбуждения.
    • С параллельным возбуждением - обмотка ротора включена в электрическую цепь параллельно источнику питания.
    • Со смешанным возбуждением - двигатель содержит несколько обмоток: последовательную и параллельную.

    Управление электродвигателем постоянного тока

    Пуск двигателя осуществляется за счет работы специальных реостатов, которые создают активное сопротивление, включаемое в цепь ротора. Для обеспечения плавного запуска механизма реостат обладает ступенчатой структурой.

    Для старта реостата задействуется все его сопротивление. По мере роста скорости вращения возникает противодействие, что накладывает ограничение на рост силы пусковых токов. Постепенно ступень за ступенью увеличивается подводимое к ротору напряжение.

    Электродвигатель постоянного тока позволяет регулировать скорость вращения рабочих валов, что осуществляется следующим образом:

    1. Показатель скорости ниже номинальной корректируется изменением напряжения на роторе агрегата. При этом крутящий момент остается стабильным.
    2. Темп работы выше номинального регулируется током, который возникает на обмотке возбуждения. Значение крутящего момента снижается при поддержании постоянной мощности.
    3. Управление роторным элементом осуществляется при помощи специализированных тиристорных преобразователей, которые представляют собой приводы постоянного тока.

    Преимущества и недостатки

    Сравнивая электродвигатели постоянного тока с агрегатами, функционирующими на переменном токе, стоит отметить их повышенную производительность и увеличенный коэффициент полезного действия.

    Оборудование данной категории отлично справляется с отрицательным воздействием факторов окружающей среды. Способствует этому наличие полностью закрытого корпуса. Конструкция электродвигателей постоянного тока предусматривает наличие уплотнений, что исключают проникновение влаги в систему.

    Защита в виде надежных изоляционных материалов дает возможность задействовать максимальный ресурс агрегатов. Допускается применение подобного оборудования при температурных условиях в пределах от -50 до +50 о С и относительной влажности воздуха порядка 98 %. Запуск механизма возможен после периода длительного простоя.

    Среди недостатков электрических двигателей постоянного тока на первое место выходит достаточно быстрый износ щеточных узлов, что требует соответствующих расходов на обслуживание. Сюда же относится крайне ограниченный срок службы коллектора.