Принцип действия счетчика гейгера и современные дозиметры. Большая энциклопедия нефти и газа


Действие счетчика Гейгера заключается в том, что при вхождении в трубку каждой частицы или кванта ионизирующего излучения происходит ионизация газа, наполняющего счетчик, и возникает электрический импульс. Этот импульс может восприниматься посредством громкоговорителя или при помощи реле; он может передаваться на механический счетчик. Если измеряемое радиоактивное вещество дает более 50 импульсов в секунду, то система механического счетчика с реле не в состоянии реагировать на них с такой скоростью; в таком случае необходимо вводить вспомогательное электронное устройство-пересчетную схему.  

Принцип действия счетчика Гейгера (рис. 6) следующий. В трубке /, заполненной разреженным газом, - сильное электрическое поле, возникшее под действием высокого напряжения постоянного тока. Если газ не ионизировать, ток в цепи отсутствует. Когда в трубку / попадают элементарные частицы, способные ионизировать газ, в электрическом поле появляются ионы. Таким образом, на основе точного подсчета частиц, пролетающих в трубке /, определяют период полураспада радиоактивных элементов.  

На чем основано действие счетчика Гейгера.  

Какая идея лежит в основе принципа действия счетчика Гейгера.  

Схема счетчика Гейгера.  

Радиоактивность можно также обнаруживать и измерять с помощью прибора, который называется счетчиком Гейгера. Действие счетчика Гейгера основано на ионизации вещества под действием излучения (разд. Ионы и электроны, образующиеся под действием ионизирующего излучения, создают условия для протекания электрического тока. Схема устройства счетчика Гейгера показана на рис. 20.7. Он состоит из металлической трубки, наполненной газом. Цилиндрическая трубка имеет окно из материала, проницаемого для альфа -, бета - и гамма-лучей. По оси трубки натянута проволочка. Проволочка присоединена к одному из полюсов источника постоянного тока, а металлический цилиндр присоединен к противоположному полюсу. Когда в трубку проникает излучение, в ней образуются ионы и в результате через трубку протекает электрический ток. Импульс тока, создаваемый проникшим в трубку излучением, усиливается, чтобы его можно было легко детектировать; подсчет отдельных импульсов позволяет получить количественную меру излучения.  

После того, как этот прибор был усовершенствован В. Действие счетчика Гейгера - Мюлле - р а основано на том, что пролетающие через газ заряженные частицы ионизируют встречающиеся на их пути атомы газа: отрицательно заряженная частица, отталкивая электроны, выбивает их из атомов, а положительно заряженная частица притягивает электроны и вырывает их из атомов.  

Страницы:      1

Неконтролируемое ионизирующее излучение в любых проявлениях опасно. Поэтому существует необходимость его регистрации, наблюдения и учета. Ионизационный метод регистрации ИИ - один из методов дозиметрии, позволяющий быть в курсе реальной радиационной обстановки.

Что такое ионизационный метод регистрации излучения?

В основе этого метода лежит регистрация эффектов ионизации. Электрическое поле не дает ионам рекомбинировать и направляет их движение к соответствующим электродам. Благодаря этому появляется возможность замерить величину заряда ионов, образующихся под действием ионизирующего излучения.

Детекторы и их особенности

В качестве детекторов при ионизационном методе используются:

  • ионизационные камеры;
  • счетчики Гейгера—Мюллера;
  • пропорциональные счетчики;
  • полупроводниковые детекторы;
  • и др.

Все детекторы за исключением полупроводниковых - это баллоны, наполненные газом, в которые вмонтированы два электрода с подведенным к ним напряжением постоянного тока. На электродах собираются ионы, образующиеся при прохождении ионизирующего излучения сквозь газовую среду. Отрицательные ионы движутся к аноду, а положительные к катоду, образуя ионизационный ток. По его значению можно оценить количество зарегистрированных частиц и определить интенсивность излучения.

Принцип работы счетчика Гейгера-Мюллера

В основе работы счетчика лежит ударная ионизация. Движущиеся в газе электроны (выбитые излучением при попадании на стенки счетчика) сталкиваются с его атомами, выбивая из них электроны, в результате чего создаются свободные электроны и положительные ионы. Существующее между катодом и анодом электрическое поле придает свободным электронам ускорение, достаточное для начала ударной ионизации. Вследствие этой реакции появляется большое количество ионов с резким возрастанием тока через счетчик и импульсом напряжения, который фиксируется регистрирующим устройством. Далее лавинный разряд гасится. Только после этого может быть зарегистрирована следующая частица.

Отличие ионизационной камеры и счетчика Гейгера-Мюллера.

В газовом счетчике (счетчик Гейгера) используется вторичная ионизация, создающая большое газовое усиление тока, которое возникает вследствие того, что скорость движущихся ионов, созданных ионизирующим веществом, настолько велика, что образуются новые ионы. Они, в свою очередь, также могут ионизировать газ, тем самым, развивая процесс. Таким образом, каждая частица образует ионов в 10 6 раз больше, чем это возможно в ионизационной камере, позволяя, таким образом, измерять ионизирующее излучение даже малой интенсивности.

Полупроводниковые детекторы

Основным элементом полупроводниковых детекторов является кристалл, а принцип работы отличается от ионизационной камеры только тем, что ионы создаются в толще кристалла, а не в газовом промежутке.

Примеры дозиметров на основе ионизационных методов регистрации

Современный прибор этого типа - клинический дозиметр 27012 с набором ионизационных камер, который на сегодняшний день является эталоном.

Среди индивидуальных дозиметров получили распространение КИД-1, КИД-2,ДК-02, ДП-24 и др., а также ИД-0,2, который является современным аналогом упомянутых выше.

Назначение счетчиков

Счетчик Гейгера - Мюллера это двухэлектродный прибор, предназначенный для определения интенсивности ионизирующего излучения или, иными словами, - для счета возникающих при ядерных реакциях ионизирующих частиц: ионов гелия (- частиц), электронов (- частиц), квантов рентгеновского излучения (- частиц) и нейтронов. Частицы распространяются с очень большой скоростью [до 2 . 10 7 м/с для ионов (энергия до 10 МэВ) и около скорости света для электронов (энергия 0,2 - 2 МэВ)], благодаря чему проникают внутрь счетчика. Роль счетчика заключается в формировании короткого (доли миллисекунды) импульса напряжения (единицы - десятки вольт) при попадании частицы в объём прибора.

В сравнении с другими детекторами (датчиками) ионизирующих излучений (ионизационной камерой, пропорциональным счетчиком) счетчик Гейгера-Мюллера отличается высокой пороговой чувствительностью - он позволяет контролировать естественный радиоактивный фон земли (1 частица на см 2 за 10 - 100 секунд). Верхний предел измерения сравнительно невысок - до 10 4 частиц на см 2 в секунду или до 10 Зиверт в час (Зв/ч). Особенностью счетчика является способность формировать одинаковые выходные импульсы напряжения вне зависимости от рода частиц, их энергии и числа ионизаций, произведенных частицей в объеме датчика.

Работа счетчика Гейгера основана на несамостоятельном импульсном газовом разряде между металлическими электродами, который инициируется одним или несколькими электронами, появляющимися в результате ионизации газа -, -, или -частицей. В счетчиках обычно используется цилиндрическая конструкция электродов, причем диаметр внутреннего цилиндра (анода) много меньше (2 и более порядков), чем наружного (катода), что имеет принципиальное значение. Характерный диаметр анода 0,1 мм.

Частицы поступают в счетчик через вакуумную оболочку и катод в «цилиндрическом» варианте конструкции (рис. 2,а ) или через специальное плоское тонкое окно в «торцевом» варианте конструкции (рис. 2,б) . Последний вариант используется для регистрации -частиц, обладающих низкой проникающей способностью (задерживаются, например, листом бумаги), но очень опасных в биологическом отношении при попадании источника частиц внутрь организма. Детекторы со слюдяными окнами используются также для счета -частиц сравнительно малой энергии («мягкое» бэта-излучение).

Рис. 2. Схематические конструкции цилиндрического (а ) и торцевого (б) счетчиков Гейгера. Обозначения: 1 - вакуумная оболочка (стекло); 2 - анод; 3 - катод; 4 - окно (слюда, целлофан)

В цилиндрическом варианте счетчика, предназначенного для регистрации -частиц высокой энергии или мягкого рентгеновского излучения, используют тонкостенную вакуумную оболочку, а катод выполняют из тонкой фольги или в виде тонкой пленки металла (медь, алюминий), напылённой на внутреннюю поверхность оболочки. В ряде конструкций тонкостенный металлический катод (с ребрами жесткости) является элементом вакуумной оболочки. Жесткое рентгеновское излучение (-частицы) обладает повышенной проникающей способностью. Поэтому его регистрируют детекторами с достаточно толстыми стенками вакуумной оболочки и массивным катодом. В счетчиках нейтронов катод покрывается тонким слоем кадмия или бора, в котором нейтронное излучение преобразуется в радиоактивное через ядерные реакции.

Объем прибора обычно заполнен аргоном или неоном с небольшой (до 1 %) примесью аргона при давлении, близком к атмосферному (10 -50 кПа). Для устранения нежелательных послеразрядных явлений в газовое наполнение вводится примесь паров брома или спирта (до 1 %).

Способность счетчика Гейгера регистрировать частицы независимо от их рода и энергии (генерировать один импульс напряжения независимо от количества образованных частицей электронов) определяется тем, что благодаря очень малому диаметру анода почти все приложенное к электродам напряжение сосредоточено в узком прианодном слое. За пределами слоя находится “область улавливания частиц”, в которой они ионизируют молекулы газа. Электроны, оторванные частицей от молекул, ускоряются к аноду, но газ ионизируют слабо из-за малой напряженности электрического поля. Ионизация резко усиливается после входа электронов в прианодный слой с большой напряженностью поля, где развиваются электронные лавины (одна или несколько) с очень высокой степенью размножения электронов (до 10 7). Однако возникающий за счет этого ток еще не достигает величины, соответствующей формированию сигнала датчика.

Дальнейший рост тока до рабочего значения обусловлен тем, что в лавинах одновременно с ионизацией генерируются ультрафиолетовые фотоны с энергией около 15 эВ, достаточной для ионизации молекул примеси в газовом наполнении (например, потенциал ионизации молекул брома равен 12,8 В). Электроны, появившиеся в результате фотоионизации молекул за пределами слоя, ускоряются к аноду, но лавины здесь не развиваются из-за малой напряженности поля и процесс слабо влияет на развитие разряда. В слое ситуация иная: образующиеся фотоэлектроны благодаря большой напряженности инициируют интенсивные лавины, в которых генерируются новые фотоны. Их количество превышает первоначальное и процесс в слое по схеме «фотоны - электронные лавины - фотоны» быстро (несколько микросекунд) нарастает (входит в «спусковой режим»). При этом разряд от места первых лавин, инициированных частицей, распространяется вдоль анода («поперечное зажигание»), анодный ток резко увеличивается и формируется передний фронт сигнала датчика.

Задний фронт сигнала (уменьшение тока) обусловлен двумя причинами: снижением потенциала анода за счет падения напряжения от тока на резисторе (на переднем фронте потенциал поддерживается межэлектродной емкостью) и снижением напряженности электрического поля в слое под действием пространственного заряда ионов после ухода электронов на анод (заряд повышает потенциалы точек, в результате чего перепад напряжения на слое уменьшается, а на области улавливания частиц увеличивается). Обе причины снижают интенсивность развития лавин и процесс по схеме «лавины - фотоны - лавины» затухает, а ток через датчик уменьшается. После окончания импульса тока потенциал анода увеличивается до исходного уровня (с некоторой задержкой из-за заряда межэлектродной емкости через анодный резистор), распределение потенциала в промежутке между электродами возвращается к первоначальной форме в результате ухода ионов на катод и счетчик восстанавливает способность регистрировать поступление новых частиц.

Выпускаются десятки типов детекторов ионизирующих излучений . При их обозначении используется несколько систем. Например, СТС-2, СТС-4 - счетчики торцевые самогасящиеся, или МС-4 - счетчик с медным катодом (В - с вольфрамовым, Г - с графитовым), или САТ-7 - счетчик -частиц торцевой, СБМ-10 - счетчик -частиц металлический, СНМ-42 - счетчик нейтронов металлический, СРМ-1 - счетчик для рентгеновского излучения и т. д.

Счетчик Гейгера - основной сенсор для измерения радиации. Он регистрирует гамма-, альфа-, бета-излучение и рентгеновские лучи. Обладает самой высокой чувствительностью в сравнении с другими способами регистрации радиации, например, ионизационными камерами. Это главная причина его повсеместного распространения. Другие сенсоры для измерения радиации используются очень редко. Почти все приборы дозиметрического контроля построены именно на счетчиках Гейгера. Они выпускаются массово, и есть приборы различных уровней: от дозиметров военной приемки до китайского ширпотреба. Сейчас приобрести какой-либо прибор для измерения радиации — не проблема.

Повсеместного распространения дозиметрических приборов еще совсем недавно не было. Так к 1986 году во время чернобыльской аварии оказалось, что у населения нет просто никаких приборов дозиметрической разведки, что кстати, дополнительно усугубило последствия катастрофы. При этом, несмотря на распространение радиолюбительства и кружков технического творчества, счетчики Гейгера не продавались в магазинах, поэтому изготовление самодельных дозиметров было невозможным.

Принцип работы счетчиков Гейгера

Это электровакуумный прибор с предельно простым принципом работы. Датчик радиоактивных излучений представляет собой металлическую или стеклянную камеру с металлизацией, заполненную разряженным инертным газом. По центру камеры располагают электрод. Внешние стенки камеры подключают к источнику высокого напряжения (обычно 400 вольт). Внутренний электрод - к чувствительному усилителю. Ионизирующие излучения (радиация) представляют собой поток частиц. Они буквально переносят электроны от высоковольтного катода в нити анода. На ней просто наводится напряжение, которое можно уже измерить, подключив к усилителю.

Высокая чувствительность счетчика Гейгера обусловлена лавинообразным эффектом. Энергия, которую регистрирует усилитель на выходе, — это не энергия источника ионизирующего излучения. Это энергия высоковольтного блока питания самого дозиметра. Проникшая частица только переносит электрон (энергетический заряд, который превращается в ток, регистрируемый измерителем). Между электродами введена газовая смесь, состоящая из благородных газов: аргона, неона. Она призвана гасить высоковольтные разряды. Если возникнет такой разряд, то это будет ложное срабатывание счетчика. Последующая измерительная схема игнорирует такие выбросы. Кроме того, высоковольтный блок питания тоже должен быть от них защищен.

Схема питания в счетчике Гейгера обеспечивает ток на выходе в нескольких микроампер при выходном напряжении 400 вольт. Точное значение напряжения питания устанавливается для каждой марки счетчика по его технической спецификации.

Возможности счетчиков Гейгера, чувствительность, регистрируемые излучения

С помощью счетчика Гейгера можно зарегистрировать и с высокой точностью измерить гамма- и бета-излучение. К сожалению, нельзя распознать вид излучения напрямую. Это делается косвенным методом с помощью установки преград между сенсором и обследуемым объектом или местностью. Гамма-лучи обладают высокой проницаемостью, и их фон не меняется. Если дозиметр засек бета-излучение, то установка разделительной преграды даже из тонкого листа металла почти полностью перекроет поток бета-частиц.

Распространенные в прошлом комплекты индивидуальных дозиметров ДП-22, ДП-24 не использовали счетчиков Гейгера. Вместо них там использовался сенсор ионизационная камера, поэтому чувствительность была очень низкой. Современные дозиметрические приборы на счетчиках Гейгера обладают в тысячи раз большей чувствительностью. С помощью них можно регистрировать естественные изменения солнечного радиационного фона.

Примечательная особенность счетчика Гейгера - чувствительность, в десятки и сотни раз превышающая необходимый уровень. Если в совершенно защищенной свинцовой камере включить счетчик, то он покажет огромный естественный радиационный фон. Эти показания не являются дефектом конструкции самого счетчика, что было проверено многочисленными лабораторными исследованиями. Такие данные - следствие естественного радиационного космического фона. Эксперимент только показывает, насколько чувствительным является счетчик Гейгера.

Специально для измерения этого параметра в технических характеристиках указывается значение «чувствительность счетчика имп мкр» (импульсов в микросекунду). Чем больше этих импульсов - тем больше чувствительность.

Измерение радиации счетчиком Гейгера, схема дозиметра

Схему дозиметра можно разделить на два функциональных модуля: высоковольтный блок питания и измерительная схема. Высоковольтный блок питания - аналоговая схема. Измерительный модуль на цифровых дозиметрах всегда цифровой. Это счетчик импульсов, который выводит соответствующее значение в виде цифр на шкалу прибора. Для измерения дозы радиации необходимо подсчитать импульсы за минуту, 10, 15 секунд или другие значения. Микроконтроллер пересчитывает число импульсов в конкретное значение на шкале дозиметра в стандартных единицах измерения радиации. Вот самые распространенные из них:

  • рентген (обычно используется микрорентген);
  • Зиверт (микрозиверт - мЗв);
  • Грей, рад,
  • плотность потока в микроваттах/м2.

Зиверт - наиболее популярная единица измерения радиации. К ней соотнесены все нормы, никаких дополнительных пересчетов проводить не требуется. Бэр - единица для определения влияния радиации на биологические объекты.

Сравнение газоразрядного счетчика Гейгера с полупроводниковым датчиком радиации

Счетчик Гейгера является газоразрядным прибором, а современная тенденция микроэлектроники - повсеместное от них избавление. Были разработаны десятки вариантов полупроводниковых сенсоров радиации. Регистрируемый ими уровень радиационного фона значительно выше, чем для счетчиков Гейгера. Чувствительность полупроводникового сенсора хуже, но у него другое преимущество - экономичность. Полупроводникам не требуется высоковольтного питания. Для портативных дозиметров с батарейным питанием они хорошо подходят. Еще одно их преимущество - регистрация альфа-частиц. Газовый объем счетчика существенно больше полупроводникового сенсора, но все равно его габариты приемлемы даже для портативной техники.

Измерение альфа-, бета- и гамма-излучения

Гамма-излучение измерять наиболее просто. Это электромагнитное излучение, представляющее собой поток фотонов (свет - тоже поток фотонов). В отличие от света у него гораздо более высокая частота и очень малая длина волны. Это позволяет ему проникать сквозь атомы. В гражданской обороне гамма-излучение — это проникающая радиация. Она проникает сквозь стены домов, автомобили, различные сооружения и задерживается только слоем земли или бетона в несколько метров. Регистрация гамма-квантов проводится с градуировкой дозиметра по естественному гамма-излучению солнца. Источников радиации не требуется. Совсем другое дело с бета- и альфа-излучением.

Если ионизирующиее излучение α (альфа-излучение) исходит от внешних объектов, то оно почти безопасно и представляет собой поток ядер атомов Гелия. Пробег и проницаемость этих частиц небольшая — нескольких микрометров (максимум миллиметров) — в зависимости от проницаемости среды. Ввиду этой особенности оно почти не регистрируется счетчиком Гейгера. В то же время регистрация альфа-излучения важна, так как эти частицы чрезвычайно опасны при проникновении внутрь организма с воздухом, пищей, водой. Для их декретирования счетчики Гейгера используются ограничено. Больше распространены специальные полупроводниковые сенсоры.

Бета-излучение отлично регистрируется счетчиком Гейгера, потому что бета-частица представляет собой электрон. Она может пролететь сотни метров в атмосфере, но хорошо поглощается металлическими поверхностями. В связи с этим счетчик Гейгера должен иметь окошко из слюды. Металлическая камера изготавливается с небольшой толщиной стенки. Состав внутреннего газа подбирается таким образом, чтобы обеспечить небольшой перепад давления. Детектор бета-излучения ставится на выносном зонде. В быту такие дозиметры мало распространены. Это в основном военная продукция.

Индивидуальный дозиметр с счетчиком Гейгера

Этот класс приборов обладает высокой чувствительностью в отличие от устаревших моделей с ионизационными камерами. Надежные модели предлагаются многими отечественными производителями: «Терра», «МКС-05», «ДКР», «Радэкс», «РКС». Это все автономные приборы с выводом данных на экран в стандартных единицах измерения. Есть режим показания накопленной дозы облучения, так и мгновенного уровня фона.

Перспективное направление - бытовой дозиметр-приставка к смартфону. Такие устройства выпускают зарубежные производители. У них богатые технические возможности, есть функция хранения показаний, калькуляции, пересчета и суммирования излучения за дни, недели, месяцы. Пока что из-за низких объемов производства стоимость этих приборов довольно высокая.

Самодельные дозиметры, зачем они нужны?

Счетчик Гейгера является специфическим элементом дозиметра, совершенно недоступным для самостоятельного изготовления. Кроме того, он встречается только в дозиметрах или продается отдельно в магазинах радиотоваров. Если этот датчик есть в наличии, все остальные компоненты дозиметра могут быть собраны самостоятельно из деталей разнообразной бытовой электроники: телевизоров, материнских плат и др. На радиолюбительских сайтах, форумах сейчас предлагается около десятка конструкций. Собирать стоит именно их, поскольку это самые отработанные варианты, имеющие подробные руководства по настройке и наладке.

Схема включения счетчика Гейгера всегда подразумевает наличие источника высокого напряжения. Типичное рабочее напряжение счетчика - 400 вольт. Его получают по схеме блокинг-генератора, и это самый сложный элемент схемы дозиметра. Выход счетчика можно подключить к усилителю низкой частоты и подсчитывать щелчки в динамике. Такой дозиметр собирается в экстренных случаях, когда времени на изготовление практически нет. Теоретически, выход счетчика Гейгера можно подключить к аудиовходу бытовой аппаратуры, например, компьютера.

Самодельные дозиметры, пригодные для точных измерений, все собираются на микроконтроллерах. Навыки программирования здесь не нужны, так как программа записывается готовой из бесплатного доступа. Сложности здесь типичные для домашнего электронного производства: получение печатной платы, пайка радиодеталей, изготовление корпуса. Все это решается в условиях небольшой мастерской. Самодельные дозиметры из счетчиков Гейгера делают в случаях, когда:

  • нет возможности приобрести готовый дозиметр;
  • нужен прибор со специальными характеристиками;
  • необходимо изучить сам процесс постройки и наладки дозиметра.

Самодельный дозиметр градуируется по естественному фону с помощью другого дозиметра. На этом процесс постройки заканчивается.

Если у вас возникли вопросы - оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них

Изобретенный еще в 1908 г. немецким физиком Гансом Вильгельмом Гейгером прибор, способный определить широко используется и в наши дни. Причиной тому является высокая чувствительность устройства, его возможность регистрировать самые различные излучения. Простота эксплуатации и дешевизна позволяют купить счетчик Гейгера любому человеку, решившему самостоятельно измерить уровень радиации в любое время и в любом месте. Что же это за прибор и как он работает?

Принцип действия счетчика Гейгера

По своей конструкции довольно прост. В герметизированный баллон с двумя электродами закачивается газовая смесь, состоящая из неона и аргона, которая легко ионизируется. На электроды подается (порядка 400В), которое само по себе никаких разрядных явлений не вызывает до того самого момента, пока в газовой среде прибора не начнется процесс ионизации. Появление пришедших извне частиц приводит к тому, что первичные электроны, ускоренные в соответствующем поле, начинают ионизировать иные молекулы газовой среды. В результате под воздействием электрического поля происходит лавинообразное создание новых электронов и ионов, которые резко увеличивают проводимость электронно-ионного облака. В газовой среде счетчика Гейгера происходит разряд. Количество импульсов, возникающих в течение определенного промежутка времени, прямо пропорционально количеству фиксируемых частиц. Таков в общих чертах принцип работы счетчика Гейгера.

Обратный процесс, в результате которого газовая среда возвращается в исходное состояние, происходит сам собой. Под воздействием галогенов (обычно используется бром или хлор) в данной среде происходит интенсивная рекомбинация зарядов. Процесс этот происходит значительно медленнее, а потому время, необходимое для восстановления чувствительности счетчика Гейгера, - очень важная паспортная характеристика прибора.

Несмотря на то что принцип действия счетчика Гейгера довольно прост, он способен реагировать на ионизирующие излучения самых различных видов. Это α-, β-, γ-, а также рентгеновское, нейтронное и Все зависит от конструкции прибора. Так, входное окно счетчика Гейгера, способного регистрировать α- и мягкое β-излучения, выполняется из слюды толщиной от 3 до 10 микрон. Для обнаружения его изготавливают из бериллия, а ультрафиолетового - из кварца.

Где применяется счетчик Гейгера

Принцип действия счетчика Гейгера положен в основу работы большинства современных дозиметров. Эти небольшие приборы, имеющие относительно невысокую стоимость, отличаются довольно высокой чувствительностью и способны выводить результаты в удобных для восприятия единицах измерения. Простота их использования позволяет эксплуатировать эти приборы даже тем, кто имеет весьма отдаленные понятия о дозиметрии.

По своим возможностям и точности измерений дозиметры бывают профессиональные и бытовые. При помощи них можно своевременно и эффективно определить имеющийся источник ионизированного излучения как на открытой местности, так и внутри помещений.

Эти приборы, использующие в своей работе принцип действия счетчика Гейгера, могут своевременно подать сигнал опасности как при помощи визуальных, так и звуковых или вибросигналов. Так, можно всегда проконтролировать продукты питания, одежду, обследовать мебель, технику, стройматериалы и т. д. на предмет отсутствия вредных для организма человека излучений.