Использование композитных материалов в оборонной промышленности и аэрокосмической индустрии. Композитные материалы: что это такое, свойства, производство и применение

В истории развития техники может быть выделено два важных направления:

  • развитие инструментов, конструкций, механизмов и машин,
  • развитие материалов.

Какое из них главнее сказать сложно, т.к. они довольно тесно взаимосвязаны, но без развития материалов технический прогресс невозможен в принципе. Не случайно, историки подразделяют ранние цивилизационные эпохи на каменный век, бронзовый век и век железный.

Нынешний 21 век уже можно отнести к веку композиционных материалов (композитов).

Понятие композиционных материалов сформировалось в середине прошлого, 20 века. Однако, композиты вовсе не новое явление, а только новый термин, сформулированный материаловедами для лучшего понимания генезиса современных конструкционных материалов.

Композиционные материалы известны на протяжении столетий. Например, в Вавилоне использовали тростник для армирования глины при постройке жилищ, а древние египтяне добавляли рубленную солому в глиняные кирпичи. В Древней Греции железными прутьями укрепляли мраморные колонны при постройке дворцов и храмов. В 1555-1560 при постройке храма Василия Блаженного в Москве русские зодчие Барма и Постник использовали армированные железными полосами каменные плиты. Прямыми предшественниками современных композиционнных материалов можно назвать железобетон и булатные стали.

Существуют природные аналоги композиционных материалов - древесина, кости, панцири и т.д. Многие виды природных минералов фактически представляют собой композиты. Они не только прочны, но обладают также превосходными декоративными свойствами.

Композиционные материалы - многокомпонентные материалы, состоящие из пластичной основы - матрицы, и наполнителей, играющих укрепляющую и некоторые другие роли. Между фазами (компонентами) композита имеется граница раздела фаз.

Сочетание разнородных веществ приводит к созданию нового материала, свойства которого существенно отличаются от свойств каждого из его составляющих. Т.е. признаком композиционного материала является заметное взаимное влияние составных элементов композита, т.е. их новое качество, эффект.

Варьируя состав матрицы и наполнителя, их соотношение, применяя специальные дополнительные реагенты и т.д., получают широкий спектр материалов с требуемым набором свойств.

Большое значение расположение элементов композитного материала, как в направлениях действующих нагрузок, так и по отношению друг к другу, т.е. упорядоченность. Высокопрочные композиты, как правило, имеют высокоупорядоченную структуру.

Простой пример. Горсть древесных опилок, брошенная в ведро цементного раствора никак не повлияет на его свойства. Если опилками заменить половину раствора - то существенно изменится плотность материала, его теплофизические константы, себестоимость производства и др. показатели. Но, горсть полипропиленовых волокон сделает бетон ударопрочным и износостойким, а полведра фибры обеспечат ему упругость, совсем не свойственную минеральным материалам.

В настоящее время в область композиционных материалов (композитов), принято включать разнообразные искусственные материалы, разрабатываемые и внедряемые в различных отраслях техники и промышленности, отвечающие общим принципам создания композитных материалов

Почему интерес к композиционным материалам проявляется именно сейчас? Потому, что традиционные материалы уже не всегда или не вполне отвечают потребностям современной инженерной практики.

Матрицами в композиционных материалах являются металлы, полимеры, цементы и керамика. В качестве наполнителей используются самые разнообразные искусственные и природные вещества в различных формах (крупноразмерные, листовые, волокнистые, дисперсные, мелкодисперсные, микродисперсные, наночастицы).

Известны также многокомпонентные композиционные материалы, в т.ч.:

  • полиматричные, когда в одном композиционном материале сочетают несколько матриц,
  • гибридные, включающие несколько разных наполнителей, каждый из которых имеет свою роль.

Наполнитель, как правило, определяет прочность, жесткость и деформируемость композита, а матрица обеспечивает его монолитность, передачу напряжений и стойкость к различным внешним воздействиям.

Особое место занимают декоративные композиционные материалы, имеющие выраженные декоративне свойства.

Разрабатываются композитные материалы со специальными свойствами, например радиопрозрачные материалы и радиопоглощающие материалы, материалы для тепловой защиты орбитальных космических аппаратов, материалы с малым коэффициентом линейного термического расширения и высоким удельным модулем упругости и другие.

Композиционные материалы используются во всех областях науки, техники, промышленности, в т.ч. в жилищном, промышленном и специальном строительство, общем и специальном машиностроении, металлургии, химической промышленности, энергетике, электронике, бытовой технике, производстве одежды и обуви, медицине, спорте, искусствах и т.д.

Структура композиционных материалов.

По механической структуре композиты делятся на несколько основных классов: волокнистые, слоистые, дисперсноупрочненные, упрочненные частицами и нанокомпозиты.

Волокнистые композиты армируются волокнами или нитевидными кристаллами. Даже небольшое содержание наполнителя в композитах такого типа приводит к существенному улучшению механических свойств материала. Широко варьировать свойства материала позволяет также изменение ориентации размера и концентрации волокон.

В слоистых композиционных материалах матрица и наполнитель расположены слоями, как, например, в триплексах, фанере, клееных деревянных конструкциях и слоистых пластиках.

Микроструктура остальных классов композиционных материалов характеризуется тем, что матрицу наполняют частицами армирующего вещества, а различаются они размерами частиц. В композитах, упрочненных частицами, их размер больше 1 мкм, а содержание составляет 20-25% (по объему), тогда как дисперсноупрочненные композиты включают в себя от 1 до 15% (по объему) частиц размером от 0,01 до 0,1 мкм. Размеры частиц, входящих в состав нанокомпозитов еще меньше и составляют 10-100 нм.

Некоторые распространеные композиты

Бетоны - самые распространенные композиционные материалы. В настоящее время производится большая номенклатура бетонов, отличающихся по составам и свойствам. Современные бетоны производятся как на традиционных цементных матрицах, так и на полимерных (эпоксидных, полиэфирных, фенолоформальдегидных, акриловых и т.д.). Современные высокоэффективные бетоны по прочности приближаются к металлам. Популярными становятся декоративные бетоны.

Органопластики - композиты, в которых наполнителями служат органические синтетические, реже - природные и искусственные волокна в виде жгутов, нитей, тканей, бумаги и т.д. В термореактивных органопластиках матрицей служат, как правило, эпоксидные, полиэфирные и фенольные смолы, а также полиимиды. Органопластики обладают низкой плотностью, они легче стекло- и углепластиков, обладают относительно высокой прочностью при растяжении; высоким сопротивлением удару и динамическим нагрузкам, но, в то же время, низкой прочностью при сжатии и изгибе. К наиболее распространенным органопластикам относятся древесные композиционные материалы. По объемам производства органопластики превосходят стали, аллюминий и пластмассы.

В зарубежной литературе в последнее время становятся популярными новые термины - биополимеры, биопластики и соответственно - биокомпозиты.

Древесные композиционные материалы. К наиболее распространенным древесным композитам относятся арболиты, ксилолиты, цементностружечные плиты, клееные деревянные конструкции, фанеры и гнутоклееные детали, древесные пластики, древесностружечные и древесноволокнистые плиты и балки, древесные прессмассы и пресспорошки, термопластичные древесно-полимерные композиты.

Стеклопластики - полимерные композиционные материалы, армированные стеклянными волокнами, которые формуют из расплавленного неорганического стекла. В качестве матрицы чаще всего применяют как термореактивные синтетические смолы (фенольные, эпоксидные, полиэфирные и т.д.), так и термопластичные полимеры (полиамиды, полиэтилен, полистирол и т.д.). Стеклопластики обладают высокой прочностью, низкой теплопроводностью, высокими электроизоляционными свойствами, кроме того, они прозрачны для радиоволн. Слоистый материал, в котором в качестве наполнителя применяется ткань, плетенная из стеклянных волокон, называется стеклотекстолитом.

Углепластики - наполнителем в этих полимерных композитах служат углеродные волокна. Углеродные волокна получают из синтетических и природных волокон на основе целлюлозы, сополимеров акрилонитрила, нефтяных и каменноугольных пеков и т.д. Матрицами в угепластиках могут быть как термореактивные, так и термопластичные полимеры. Основными преимуществами углепластиков по сравнению со стеклопластиками является их низкая плотность и более высокий модуль упругости, углепластики - очень легкие и, в то же время, прочные материалы.

На основе углеродных волокон и углеродной матрицы создают композиционные углеграфитовые материалы - наиболее термостойкие композиционные материалы (углеуглепластики), способные долго выдерживать в инертных или восстановительных средах температуры до 3000° С.

Боропластики - композиционные материалы, содержащие в качестве наполнителя борные волокна, внедренные в термореактивную полимерную матрицу, при этом волокна могут быть как в виде мононитей, так и в виде жгутов, оплетенных вспомогательной стеклянной нитью или лент, в которых борные нити переплетены с другими нитями. Применение боропластиков ограничивается высокой стоимостью производства борных волокон, поэтому они используются главным образом в авиационной и космической технике в деталях, подвергающихся длительным нагрузкам в условиях агрессивной среды.

Пресспорошки (прессмассы). Известно более 10000 марок наполненных полимеров. Наполнители используются как для снижения стоимости материала, так и для придания ему специальных свойств. Впервые наполненный полимер начал производить др. Бакеланд (Leo H. Baekeland, США), открывший в начале 20 в. способ синтеза фенолформфльдегидной (бакелитовой) смолы. Сама по себе эта смола - вещество хрупкое, обладающее невысокой прочностью. Бакеланд обнаружил, что добавка волокон, в частности, древесной муки к смоле до ее затвердевания, увеличивает ее прочность. Созданный им материал - бакелит - приобрел большую популярность. Технология его приготовления проста: смесь частично отвержденного полимера и наполнителя - пресс-порошок - под давлением необратимо затвердевает в форме. Первое серийное изделие произведено по данной технологии в 1916, это - ручка переключателя скоростей автомобиля «Роллс-Ройс». Наполненные термореактивные полимеры широко используются в самых разных областях техники. Для наполнения термореактивных и термопластичных полимеров применяются разнообразные наполнители - древесная мука, каолин, мел, тальк, слюда, сажа, стекловолокно, базальтовое волокно и др,

Текстолиты - слоистые пластики, армированные тканями из различных волокон. Технология получения текстолитов была разработана в 1920-х г.г. на основе фенолформальдегидной смолы. Полотна ткани пропитывают смолой, затем прессуют при повышенной температуре, получая текстолитовые пластины или фасонные изделия. Связующими в текстолитах является широкий круг термореактивных и термопластичных полимеров, а иногда и неорганические связующие на основе силикатов и фосфатов. В качестве наполнителя используются ткани из самых разнообразных волокон - хлопковых, синтетических, стеклянных, углеродных, асбестовых, базальтовых и т.д. Соответственно разнообразны свойства и применение текстолитов.

Композиционные материалы с металлической матрицей. При создании композитов на основе металлов в качестве матрицы применяют алюминий, магний, никель, медь и т.д. Наполнителем служат высокопрочные волокна, тугоплавкие частицы различной дисперсности, нитевидными монокристаллы оксида алюминия, оксида бериллия, карбидов бора и кремния, нитридов алюминия и кремния и т.д. длиной 0,3-15 мм и диаметром 1-30 мкм.

Основными преимуществами композиционных материалов с металлической матрицей по сравнению с обычным (неусиленным) металлом являются: повышенная прочность, повышенная жесткость, повышенное сопротивление износу, повышенное сопротивление ползучести.

Композиционные материалы на основе керамики. Армирование керамических материалов волокнами, а также металлическими и керамическими дисперсными частицами позволяет получать высокопрочные композиты, однако, ассортимент волокон, пригодных для армирования керамики, ограничен свойствами исходного материала. Часто используют металлические волокна. Сопротивление растяжению растет незначительно, но зато повышается сопротивление тепловым ударам - материал меньше растрескивается при нагревании, но возможны случаи, когда прочность материала падает. Это зависит от соотношения коэффициентов термического расширения матрицы и наполнителя.

Армирование керамики дисперсными металлическими частицами приводит к новым материалам (керметам) с повышенной стойкостью, устойчивостью относительно тепловых ударов, с повышенной теплопроводностью. Из высокотемпературных керметов делают детали для газовых турбин, арматуру электропечей, детали для ракетной и реактивной техники. Твердые износостойкие керметы используют для изготовления режущих инструментов и деталей. Кроме того, керметы применяют в специальных областях техники - это тепловыделяющие элементы атомных реакторов на основе оксида урана, фрикционные материалы для тормозных устройств и т.д.

Введение. 2

1. Общие сведения о композиционных материалах.. 3

2. Состав и строение композита.. 5

3. Оценка матрицы и упрочнителя в формировании свойств композита.. 10

3.1. Композиционные материалы с металлической матрицей 10

3.2. Композиционные материалы с неметаллической матрицей 10

4. Строительные материалы – композиты.. 12

4.1. Полимеры в строительстве. 12

4.2. Композиты и бетон.. 16

4.3. Алюминиевые композитные панели.. 19

Заключение. 23

Список использованной литературы.. 24

Введение

В начале XXI века задаются вопросом о будущих строительных материалах. Бурное развитие науки и техники затрудняет прогнозирование: еще четыре десятилетия назад не было широкого применения полимерных строительных материалов, а о современных «истинных» композитах было известно только узкому кругу специалистов. Тем не менее, можно предположить, что основными строительными материалами также будут металл, бетон и железобетон, керамика, стекло, древесина, полимеры. Строительные материалы будут создаваться на той же сырьевой основе, но с применением новых рецептур компонентов и технологических приемов, что даст более высокое эксплуатационное качество и соответственно долговечность и надежность. Будет максимальное использование отходов различных производств, отработавших изделий, местного и домашнего мусора. Строительные материалы будут выбираться по экологическим критериям, а их производство будет основываться на безотходных технологиях.

Уже сейчас имеется обилие фирменных названий отделочных, изоляционных и других материалов, которые в принципе отличаются только составом и технологией. Этот поток новых материалов будет увеличиваться, а их эксплуатационные свойства совершенствоваться с учетом суровых климатических условий и экономии энергетических ресурсов России.

1. Общие сведения о композиционных материалах

Композицио́нный материа́л - неоднородный сплошной материал, состоящий из двух или более компонентов, среди которых можно выделить армирующие элементы, обеспечивающие необходимые механические характеристики материала, и матрицу (или связующее), обеспечивающую совместную работу армирующих элементов.

Механическое поведение композита определяется соотношением свойств армирующих элементов и матрицы, а также прочностью связи между ними. Эффективность и работоспособность материала зависят от правильного выбора исходных компонентов и технологии их совмещения, призванной обеспечить прочную связь между компонентами при сохранении их первоначальных характеристик.

В результате совмещения армирующих элементов и матрицы образуется комплекс свойств композита, не только отражающий исходные характеристики его компонентов, но и включающий свойства, которыми изолированные компоненты не обладают. В частности, наличие границ раздела между армирующими элементами и матрицей существенно повышает трещиностойкость материала, и в композитах, в отличие от металлов, повышение статической прочности приводит не к снижению, а, как правило, к повышению характеристик вязкости разрушения.

высокая удельная прочность

высокая жёсткость (модуль упругости 130…140 ГПа)

высокая износостойкость

высокая усталостная прочность

из КМ возможно изготовить размеростабильные конструкции

Причём, разные классы композитов могут обладать одним или несколькими преимуществами. Некоторых преимуществ невозможно добиться одновременно.

Недостатки композиционных материалов

Большинство классов композитов (но не все) обладают недостатками:

высокая стоимость

анизотропия свойств

повышенная наукоёмкость производства, необходимость специального дорогостоящего оборудования и сырья, а следовательно развитого промышленного производства и научной базы страны

2. Состав и строение композита

Композиты - многокомпонентные материалы, состоящие из полимерной, металлической., углеродной, керамической или др. основы (матрицы), армированной наполнителями из волокон, нитевидных кристаллов, тонкодиспeрсных частиц и др. Путем подбора состава и свойств наполнителя и матрицы (связующего), их соотношения, ориентации наполнителя можно получить материалы с требуемым сочетанием эксплуатационных и технологических свойств. Использование в одном материале нескольких матриц (полиматричные композиционные материалы) или наполнителей различной природы (гибридные композиционные материалы) значительно расширяет возможности регулирования свойств композиционных материалов. Армирующие наполнители воспринимают основную долю нагрузки композиционных материалов.

По структуре наполнителя композиционные материалы подразделяют на волокнистые (армированы волокнами и нитевидными кристаллами), слоистые (армированы пленками, пластинками, слоистыми наполнителями), дисперсноармированные, или дисперсно-упрочненные (с наполнителем в виде тонкодисперсных частиц). Матрица в композиционных материалах обеспечивает монолитность материала, передачу и распределение напряжения в наполнителе, определяет тепло-, влаго-, огне - и хим. стойкость.

По природе матричного материала различают полимерные, металлические, углеродные, керамические и др. композиты.

Наибольшее применение в строительстве и технике получили композиционные материалы, армированные высокопрочными и высокомодульными непрерывными волокнами. К ним относят: полимерные композиционные материалы на основе термореактивных (эпоксидных, полиэфирных, феноло-формальд., полиамидных и др.) и термопластичных связующих, армированных стеклянными (стеклопластики), углеродными (углепластики), орг. (органопластики), борными (боропластики) и др. волокнами; металлич. композиционные материалы на основе сплавов Al, Mg, Cu, Ti, Ni, Сг, армированных борными, углеродными или карбидкремниевыми волокнами, а также стальной, молибденовой или вольфрамовой проволокой;

Композиционные материалы на основе углерода, армированного углеродными волокнами (углерод-углеродные материалы); композиционные материалы на основе керамики, армированной углеродными, карбидокремниевыми и др. жаростойкими волокнами и SiC. При использовании углеродных, стеклянных, арамидных и борных волокон, содержащихся в материале в кол-ве 50-70%, созданы композиции (см. табл) с уд. прочностью и модулем упругости в 2-5 раз большими, чем у обычных конструкционных материалов и сплавов. Кроме того, волокнистые композиционные материалы превосходят металлы и сплавы по усталостной прочности, термостойкости, виброустойчивости, шумопоглощению, ударной вязкости и др. свойствам. Так, армирование сплавов Аl волокнами бора значительно улучшает их механические характеристики и позволяет повысить т-ру эксплуатации сплава с 250-300 до 450-500 °С. Армирование проволокой (из W и Мо) и волокнами тугоплавких соединений используют при создании жаропрочных композиционных материалов на основе Ni, Cr, Co, Ti и их сплавов. Так, жаропрочные сплавы Ni, армированные волокнами, могут работать при 1300-1350 °С. При изготовлении металлических волокнистых композиционных материалов нанесение металлической матрицы на наполнитель осуществляют в основном из расплава материала матрицы, электрохимическим осаждением или напылением. Формование изделий проводят гл. обр. методом пропитки каркаса из армирующих волокон расплавом металла под давлением до 10 МПа или соединением фольги (матричного материала) с армирующими волокнами с применением прокатки, прессования, экструзии при нагр. до т-ры плавления материала матрицы.

Один из общих технологических методов изготовления полимерных и металлич. волокнистых и слоистых композиционные материалы - выращивание кристаллов наполнителя в матрице непосредственно в процессе изготовления деталей. Такой метод применяют, напр., при создании эвтектич. жаропрочных сплавов на основе Ni и Со. Легирование расплавов карбидными и интерметаллич. соед., образующими при охлаждении в контролируемых условиях волокнистые или пластинчатые кристаллы, приводит к упрочнению сплавов и позволяет повысить т-ру их эксплуатации на 60-80 oС. композиционные материалы на основе углерода сочетают низкую плотность с высокой теплопроводностью, хим. стойкостью, постоянством размеров при резких перепадах т-р, а также с возрастанием прочности и модуля упругости при нагреве до 2000 °С в инертной среде. О методах получения углерод-углеродных композиционные материалы см. Углепластики. Высокопрочные композиционные материалы на основе керамики получают при армировании волокнистыми наполнителями, а также металлич. и керамич. дисперсными частицами. Армирование непрерывными волокнами SiC позволяет получать композиционные материалы, характеризующиеся повыш. вязкостью, прочностью на изгиб и высокой стойкостью к окислению при высоких т-рах. Однако армирование керамики волокнами не всегда приводит к значит. повышению ее прочностных св-в из-за отсутствия эластичного состояния материала при высоком значении его модуля упругости. Армирование дисперсными металлич. частицами позволяет создать керамико-металлич. материалы (керметы), обладающие повыш. прочностью, теплопроводностью, стойкостью к тепловым ударам. При изготовлении керамич. композиционные материалы обычно применяют горячее прессование, прессование с послед. спеканием, шликерное литье (см. также Керамика). Армирование материалов дисперсными металлич. частицами приводит к резкому повышению прочности вследствие создания барьеров на пути движения дислокаций. Такое армирование гл. обр. применяют при создании жаропрочных хромоникелевых сплавов. Материалы получают введением тонкодисперсных частиц в расплавленный металл с послед. обычной переработкой слитков в изделия. Введение, напр., ТhO2 или ZrO2 в сплав позволяет получать дисперсноупрочненные жаропрочные сплавы, длительно работающие под нагрузкой при 1100-1200 °С (предел работоспособности обычных жаропрочных сплавов в тех же условиях - 1000-1050 °С). Перспективное направление создания высокопрочных композиционные материалы-армирование материалов нитевидными кристаллами ("усами"), к-рые вследствие малого диаметра практически лишены дефектов, имеющихся в более крупных кристаллах, и обладают высокой прочностью. наиб. практич. интерес представляют кристаллы Аl2О3, BeO, SiC, B4C, Si3N4, AlN и графита диаметром 1-30 мкм и длиной 0,3-15 мм. Используют такие наполнители в виде ориентированной пряжи или изотропных слоистых материалов наподобие бумаги, картона, войлока. композиционные материалы на основе эпоксидной матрицы и нитевидных кристаллов ThO2 (30% по массе) имеют раст 0,6 ГПа, модуль упругости 70 ГПа. Введение в композицию нитевидных кристаллов может придавать ей необычные сочетания электрич. и магн. св-в. Выбор и назначение композиционные материалы во многом определяются условиями нагружения и т-рой эксплуатации детали или конструкции, технол. возможностями. наиб. доступны и освоены полимерные композиционные материалы Большая номенклатура матриц в виде термореактивных и термопластич. полимеров обеспечивает широкий выбор композиционные материалы для работы в диапазоне от отрицат. т-р до 100-200°С - для органопластиков, до 300-400 °С - для стекло-, угле - и боропластиков. Полимерные композиционные материалы с полиэфирной и эпоксидной матрицей работают до 120-200°, с феноло-формальдегидной - до 200-300 °С, полиимидной и кремнийорг. - до 250-400°С. Металлич. композиционные материалы на основе Аl, Mg и их сплавов, армированные волокнами из В, С, SiC, применяют до 400-500°С; композиционные материалы на основе сплавов Ni и Со работают при т-ре до 1100-1200 °С, на основе тугоплавких металлов и соед. - до 1500-1700°С, на оснбве углерода и керамики - до 1700-2000 °С. Использование композитов в качестве конструкц., теплозащитных, антифрикц., радио - и электротехн. и др. материалов позволяет снизить массу конструкции, повысить ресурсы и мощности машин и агрегатов, создать принципиально новые узлы, детали и конструкции. Все виды композиционные материалы применяют в хим., текстильной, горнорудной, металлургич. пром-сти, машиностроении, на транспорте, для изготовления спортивного снаряжения и др.

Во время такого метода используются заранее подготовленные наполнители. Благодаря такому методу гарантируется высокая однородность продукции на прочность, и контролируются показатели. Однако качество получаемого изделия зависит в высокой степени от мастерства и опыта рабочих.

Производство изделий из стеклопластика ручным формованием разделено на несколько этапов. Первый этап называется подготовительным, в процессе которого отчищается поверхность матрицы ожидаемого изделия, затем обезжиривается и в конце наносится слой разделительного воска. В конце первого этапа матрица покрывается защитно-декоративным слоем - гелькоутом. Благодаря такому слою формируется наружная поверхность будущего изделия, задается цвет и обеспечивается защита от действия вредных факторов, таких как вода, ультрафиолет и химические реагенты. В основном используют негативные матрицы для производства готового изделия. После того, как высохнет специальный слой гелькоут, можно перейти к последующему этапу, который называется формовка. В процессе этого этапа в матрицу закладывается изначально раскроенный стекломатериал, также можно использовать другой тип наполнителя. Далее идет процесс формирования «скелета» ожидаемого изделия. Затем смола с катализатором, предварительно смешанная, наносится на подготовленный стекломатериал. Смолу необходимо равномерно распределить благодаря кисточкам и мягким валикам по матрице. Последний этап можно назвать прикаткой. Его используют, чтобы удалить из еще не отверделого ламината пузырьки воздуха. Если их не удалить, то это скажется на качестве готового изделия, поэтому ламинат необходимо прикатать жёстким валиком. Когда готовое изделие застыло, его достают из формы и придают механообработке, включающую в себя высверливание отверстий, обрезку излишков стеклопластика по краям и др.

Преимущества такого метода:

  • существует реальная возможность получить продукт сложной формы и немалого размера с минимальными вложениями;
  • конструкция изделия поддается легкому изменению, поскольку в изделие вводятся закладные детали и арматура, а цена оснастки и требуемого оборудования достаточно низкая;
  • чтобы изготовить матрицу используется любой материал, который способен сохранить свои пропорции и форму.

Недостатки такого метода:

  • существенные затраты ручного труда;
  • производительность достаточно низкая;
  • качество изделия будет зависеть от квалификации формовщика;
  • этот метод подойдет для выпуска мелкосерийной продукции.

2. Напыление.

Для мелкого и среднесерийного производства подойдет именно такой метод. Метод напыления имеет множество достоинств по сравнению с контактным формованием, даже несмотря на то, что предстоят определенные затраты на покупку оборудования для этого метода.

Специальная установка позволяет нанести защитное покрытие и пластик. Благодаря чему не понадобится предварительный раскрой материала и приготовление связующего вещества, вследствие чего резко сокращается часть ручного труда. Специальные установки автоматически производят жёсткий отсчет доз смолы и отвердителя, также они осуществляют рубку ровинга на части необходимых размеров (0,8 - 5 см). После процесса рубки части нити должны попасть в струю связующего и пропитаться во время переноса на матрицу. За счет ручного труда осуществляется уплотнительный процесс для стеклопластика в матрице с помощью прикаточного валика.

Ряд преимуществ при производстве стеклопластика методом напыления:

  • происходит экономия времени и полезных площадей за счет того, что не надо раскраивать материал и подготавливать связующее вещество;
  • можно уменьшить количество производственных площадей за счет снижения числа специально подготовленных мест для формовки;
  • скорость формования изделия увеличивается;
  • контроль над качеством продукции упрощается;
  • фонд заработной платы существенно экономится;
  • за счет того, что ровинг - относительно недорогой материал, то существенно понижается стоимость полученного изделия.

Когда связующее вещество готовится небольшим количеством, то при ручном формовании на инструментах и стенках тары остается до 5% связующего вещества, что довольно неэкономично. Известно, что от мастерства и опыта оператора установки будет зависеть качество полученного продукта. Этот метод использует ту же оснастку, что и во время ручной формовки.

3. Пултрузия.


Технология пултрузии основывается на производстве непрерывным способом профильных изделий из волокнистых пластиков одноосно-ориентированных. Профильное изделие с неизменным поперечным сечением из подходящего материала как раз и можно получить методом пултрузии.

Благодаря специальной пултрузионной машине происходит изготовление профиля из стеклопластика. Такая машина состоит из секции для подачи армирующих материалов, фильера, из секции для пропитки, тянущего агрегата, блока управления нагревательными элементами и из секции для обрезки. Паковку ориентированного волокна лучше укреплять в сухом состоянии и пропитывать полимерной композицией, прокачиваемой через сухую паковку. Благодаря такой технологии в материал не попадет воздух. Излишки смолы стекут обратно в поддон и поступят на рециркуляцию. Ровинг, который используется, как армирующий материал сматывается с бобин в сухом состоянии и собирается в пучок специальным способом. Затем материал поступает в устройство пропитки - это специальная ванна со смолой, где полностью смачивается полиэфирным, эпоксидным или другим связующим. Затем уже пропитанный материал отправляется в нагретую фильеру, задачей которой является сформировать конфигурацию профиля. Затем композиции затвердевает при указанном температурном режиме. В итоге получился профиль из стеклопластика, конфигурация которого повторяет форму фильеры.

Доказано, что изделия, полученные путем пултрузации, по свойствам превосходят детали, выполненные классическими методами формования. Увеличение стоимости такого метода обуславливается рядом преимуществ, которые характерны для этого процесса. К преимуществам можно отнести строгость контроля натяжения и направленность волокна, уменьшение количества пор и удержание неизменного содержания волокна в композите. Очевидно, что даже свойство межслоевого сдвига однозначно улучшается. На данный момент разработано несколько вариантов главного процесса пултрузии, которые интересуют многих и много значат для промышленности. Их преимуществами являются хорошие электрические, физические, химические и тепловые свойства, высокая производительность и отличный допуск по размерам. Для изготовления постоянных пластинчатых и листовых полуфабрикатов как раз и предназначен один из таких методов пултрузии.

Однако каждый метод имеет свои недостатки. Для этого метода характерен такой недостаток, как скорость процесса, которая будет зависеть от температуры и скорости затвердевания связующего. Обычно она невелика для низкотеплостойких полиэфирных смол. Ещё одним недостатком является то, что тяжело предоставить постоянное сечение изделия по длине, за исключением изделий с не особо сложной формой сечения - квадратной, круглой, двутавровой и других. Чтобы получить изделие необходимо использовать только нити или жгуты. Однако за последнее время эти недостатки метода получения профильных изделий помаленьку устранились и применение этого процесса заметно расширилось. Композиция, которая основывается на поливиниловых эфирах и эпоксидных смолах используются в качестве полимерных матриц. Применение таких полимерных матриц на основе полисульфона, полиэфирсульфона и пластифицированного полиимида дает возможность достигнуть скорости формования стержней диаметром около пяти мм со скоростью порядка сто два м/мин.

Чтобы получить сложные армированные профильные изделия, необходимо воспользоваться методом протяжки слоистых материалов, которые состоят из волокнистых матов или тканей. На текущий момент разработаны методы получения трубчатых изделий, которые сочетают в себе намотку спирального слоя и протяжку. Лопасти ветряных двигателей, которые имеют сложный профиль поперечного сечения, можно привести в качестве примера использования материалов, имеющие сложную схему армирования. Уже разработана оснастка для формования полуфабрикатов для листовых автомобильных рессор, которые имеют криволинейную поверхность и непостоянное поперечное сечение.

4. Намотка.

Одним из самых многообещающих методов формования изделий из стеклопластика выступает метод намотки волокном, за счет того, что он создает требуемую структуру наполнителя в фабрикатах в зависимости от их формы и особенностей эксплуатации. Благодаря использованию жгутов, лент, нитей в качестве наполнителей позволяет обеспечить максимальную прочность изделий. Тем более, что такие наполнители являются наиболее дешевыми.

Процесс намотки волокном можно назвать относительно несложным методом, в котором на вращающуюся оправку наматывается армирующий материал в виде постоянного ровинга (жгута) или нити (пряжи). Специальные механизмы следят за углом намотки и нахождением армирующего материала. Эти устройства передвигаются со скоростью, совпадающей с вращением оправки. Материал обертывается вокруг оправки в виде полос, соприкасающихся друг с другом, либо по какому-то специальному рисунку до полного перекрытия оправочной поверхности. Идущие друг за другом слои, могут наноситься под одним углом или под разными углами намотки, пока не наберется требуемая толщина. Угол намотки меняется от очень малого, который имеет название продольного, до большого - окружного. Такое расположение подразумевает 90 0 относительно оси оправки, захватывая все углы спирали этого интервала.

Термореактивная смола служит связующим веществом для армирующего материала. В процессе мокрой намотки смола наносится непосредственно во время самой намотки. Процесс сухой намотки основан на применении ровинга, который предварительно пропитывается смолой в В-стадии. Затвердение осуществляется при увеличенной температуре без лишнего давления. Завершающая стадия процесса основывается на взятии изделия с оправки. По необходимости можно провести отделочные операции: обработку механическим путем или шлифовальный способ. Основной процесс намотки характеризуется множеством вариантов, которые различаются лишь характером намотки, а также особенностями конструкции, сочетанием материалов и разновидностью оборудования. Конструкцию необходимо намотать как на поверхности вращения. Однако существует возможность отформовать изделия и другого вида, например, сжатием еще незатвердевшей намотанной детали внутри закрытой формы.

Конструкция получается похожа на гладкий цилиндр, трубу или тюбинг, диаметр которых получается от нескольких сантиметров до нескольких десятков сантиметров. Намотка позволяет формовать изделия конической, сферической и геодезической формы. Чтобы получить сосуды высокого давления и резервуары для хранения, в намотку необходимо ввести торцевую заглушку. Есть возможность сформовать изделия, которые будут работать в нестандартных условиях нагружения, например, наружное или внутреннее давление, нагрузки на сжатие или крутящий момент. Термопластичные трубы и сосуды из металла высокого давления укрепляются при намотке наружными бандажами. Полученным изделиям характерна высокая степень точности. Однако существует и другая сторона процесса намотки, для такого процесса характерны меньшие скорости производства. Плюсом является то, что для намотки сгодится абсолютно любой постоянно армирующий материал.

Для процесса намотки можно использовать машины разных типов: от различных токарных станков и машин на основе цепного привода до более сложных компьютеризованных агрегатов, характеризующимися тремя или четырьмя осями движения. Применяются также машины, которые непрерывно производят трубы. Для удобства намотки больших резервуаров должно быть спроектировано портативное оборудование на месте установки.

Основные достоинства метода намотки:

  • доходный с точки зрения экономики метод укладки материала за счет быстроты процесса;
  • возможность регулировки соотношения смола/стекло;
  • малый собственный вес, но при этом высокая прочность;
  • данный метод не расположен к коррозии и гниению;
  • относительно недорогие материалы;
  • хорошая структура ламинатов, за счет того, что профили обладают направленными волокнами, и хорошее содержание стекломатериалов.

5. Прессование.

Процесс прессования состоит в непосредственном придании нужной формы изделию под воздействием высокого давления, которое образуется в пресс-форме при температуре быстрого затвердения материала. Благодаря внешнему давлению в материале, который прессуется, происходит его уплотнение и частичная деструктуризация прежней структуры. Трение между соприкасающимися частичками материала, которое образуется во время уплотнения, вызывает появление тепловой энергии, которая однозначно приведет к плавлению связующего вещества. После того, как материал перейдет в вязкопластичное состояние, он растекается в пресс-форме под действием давления, образуя целостную и уплотненную структуру. Процесс затвердевания основан на протекании реакции сшивки макромолекул благодаря поликонденсации между свободными группами связующего вещества. Для реакции необходимо тепло, в процессе которого происходит выделение низкомолекулярных, летучих веществ таких как, метанол, вода, формальдегид, аммиак и др.

Параметры для технологии прямого прессования:

  • температура заблаговременного подогрева;
  • давление прессования;
  • температура прессования;
  • временная выдержка под давлением;
  • параметры подпрессовок;

Давление направленно действует на материал, находящийся в полости формы, при прямом прессовании, поэтому детали формы могут преждевременно износиться. В зависимости от типоразмеров изделия цикл прессования может составлять от 4 до 7 мин. Прямое прессование пластиков для армирования имеет две разновидности, которые зависят от того, как пропитывается волокнистый наполнитель:

  • Прессуются сухие, предварительно пропитанные холсты и ткани;
  • Прессуются с пропиткой именно в форме.

Большей популярностью пользуется первый способ. Для выполнения изделий относительно простой формы применяется прямое прессование. Благодаря высоким требованиям, предъявляемых к качеству наружной поверхности детали, были созданы автоматические установки для дозировки компонентов при приготовлении заготовок из препрегов. Спроектированы специальные автоматические манипуляторы, которые загружают пакеты заготовок в многогнездные формы пресса. Поколение новых прессов высокой точности оснащены современными системами контроля, благодаря которым можно получить детали с высококачественной поверхностью, а их стоимость примерно одинакова со стальными деталями.

6. Технология SMC.


Серьёзным препятствием для распространения композиционных материалов является плохое приспосабливание традиционных технологий их выпуска к потребностям современного крупносерийного производства, к тому же полностью автоматизированного. На сегодняшний день композитные детали все-таки остаются «штучным товаром». Дорогой труд опытного персонала вносит высокий вклад в долю стоимости этих материалов. Несмотря на это, за последние годы мы достигли значительного прогресса в подготовке автоматических методов производства композитов. SMC-технология стала одной из самых востребованных разработок.

Конечные изделия по такой технологии подлежат двухстадийному процессу. Первая стадия технологии характеризуется тем, что производится препрег на автоматической конвейерной установке, а уже на второй стадии происходит переработка препрега в стальных пресс-формах в готовые детали. Опишем эти этапы подробнее. Ненасыщенная полиэфирная смола используется в качестве основы для связующего материала. К ее достоинствам относится низкая цена и короткое время отверждения. Армирующим компонентом выступает рубленое стекловолокно, которое хаотично распределяется в объёме листа. Долгое хранение в течение нескольких месяцев при комнатной температуре обеспечено системой отверждения смолы. Химические загустители увеличивают вязкость связующего после того как стекловолокно было пропитано на несколько порядков, благодаря чему улучшается технологичность препрега, а также увеличивается срок его хранения. Минеральные наполнители, которые вводятся в связующее в большом количестве, повышают огнестойкость готовых изделий и, а качество их поверхности заметно улучшается.

Получившийся препрег, подлежит переработке в автоматическом процессе благодаря прессованию в обогреваемых стальных пресс-формах. Эти формы по конструкции похожи на литьевые формы для термопластов. Благодаря рецептуре связующего препрег твердеет при температуре 150 С и давлении 50-80 бар со скоростью ~30 сек/мм толщины. Очень низкая усадка при затвердении является важной особенностью технологии SMC. Благодаря высокому содержанию минерального наполнителя и специальных термопластичных добавок усадка получается величиной до 0,05%. У полученных изделий ударная вязкость составляет 50-100 кДж/м 2 , а разрушительная прочность на изгиб - 120-180 МПа. Экономически целесообразно использовать SMC технологию при получении высококачественных композитных изделий большими партиями от нескольких тысяч до сотен тысяч в месяц. На европейском рынке похожих материалов выпускается сотни тысяч в год. Электроэнергетическая, автомобильная и железнодорожная промышленности являются крупнейшими потребителями этих материалов.

7. Метод RTM (Resin Transfer Moulding).

Метод RTM основывается на пропитке и формовании композитов под давлением, в процессе которого связующее вещество переходит в закрытую матрицу, в которой уже содержится наполнители или преформы. Различные ткани разнообразного переплетения могут выступать как армирующий материал, например, мультиаксиальный или эмульсионный материал, и порошковые стекломаты. Связующим веществом выступает смола, которая гелеобразуется 50-120 мин, имеющая низкую динамическую вязкость. ГОСТ 28593-90 определяет вязкость и время гелеобразования смолы.

Такой метод отлично подойдет для стандартных объёмов 500 -10000 изделий в год. Конструкция матрицы состоит из композиционных или стальных форм, которые повторяют с двух сторон внешние обводы детали. Конструкции обладают высокотемпературными характеристиками, которые удерживаются точным совмещением закрытых стальных рам, которые поддерживаются в местах зажимов.

Этот метод идеален для производства матриц 0,2м 2 до 100м 2 . Конструкция матрицы состоит из композиционных или стальных форм. Контур матрица состоит из более легкой и гибкой конструкции. Половинки матрицы соединяются между собой под воздействием вакуума.

Преимущества технологии RTM:

  • автоматизированное производство, благодаря чему уменьшается случайный характер вмешательства человека;
  • происходит сокращение и контроль количества используемого сырья;
  • снижено влияние материла на экологию;
  • улучшены условия труда;
  • создаются относительно прочные изделия, за счет лучшей пропитки;
  • относительно дешевое оборудование.

Я посвятил истории композитных материалов. Я продолжаю занимать свой досуг этой теме и сегодня хочу рассказать немного о терминах и технологиях прототипирования с использованием полимерных композитов. Если вам нечем заняться длинными зимними вечерами, то вы всегда можете смастерить из углепластиковой ткани сноуборд, корпус для мотоцикла или чехол на смартфон. Конечно, процесс может в итоге выйти дороже, нежели покупка готового продукта, но интересно что-то мастерить своими руками.

Под катом - обзор методов изготовления изделий из композитных материалов. Буду вам благодарен, если в комментариях вы меня дополните, чтобы в результате получился более полный пост.


Композиционный материал создается минимум из двух компонентов с четкой границей между ними. Есть слоистые композитные материалы - например, фанера. Во всех же других композитах можно разделить компоненты на матрицу, или связующее, и армирующие элементы - наполнители. Композиты обычно разделают по виду армирующего наполнителя или по материалу матрицы. Подробнее об использовании композитов вы можете прочитать в посте , а эта публикация посвящена методам изготовления продуктов из композитов.

Ручное формование

В случае с изготовлением изделий единичными экземплярами наиболее распространенным методом является ручное формование. На подготовленную матрицу наносится гелькоут – материал для получения хорошей отделки на внешней части армированного материала, позволяющий также подобрать цвет для изделия. Затем в матрицу укладывается наполнитель – например, стеклоткань – и пропитывается связующим. Удаляем пузырьки воздуха, ждем, пока все остынет, и дорабатываем напильником – обрезаем, высверливаем и так далее.

Этот метод широко используется для создания деталей корпуса автомобилей, мотоциклов и мопедов. То есть для тюнинга в тех случаях, когда он не ограничивается наклейкой пленки «под карбон».

Напыление

Напыление не требует раскроя стекломатериала, но взамен нужно использование специального оборудования. Данный метод часто используется для работы с крупными объектами, такими как корпусы лодок, автотранспорт и так далее. Точно так же, как и в случае с ручным формованием, сначала анносится гелькоут, затем стекломатериал.

RTM (инжекция)

При методе инжекции полиэфирной смолы в закрытую форму используется оснастка из матрицы и ответной формы – пуансона. Стекломатериал укладывается между матрицей и ответной формой, затем в форму под давлением вливается отвердитель – полиэфирная смола. И, конечно, доработка напильником после отверждения – по вкусу.

Вакуумная инфузия

Для метода вакуумной инфузии необходим пакет, в котором с помощью насоса создается вакуум. В самом пакете располагается армирующий материал, поры которого после откачки воздуха заполняются жидким связующим.

Пример метода - для изготовления скейтборда.

Намотка

Метод намотки композитов позволяет сделать сверхлегкие баллоны для сжатого газа, для чего используют РЕТ-лейнер, подкачанный до 2-5 атмосфер, а также композитные трубы, используемые в нефтедобывающей отрасли, химической промышленности и в коммунальном хозяйстве. Из названия легко понять, что стеклоткань наматывают на подвижный или неподвижный объект.

На видео - процесс намотки стеклоткани на баллон.

Пултрузия

Пультрузия – это “протяжка”. При этом методе происходит непрерывный процесс протягивания композиционного материала сквозь тянущую машину. Скорость процесса составляет до 6 метров в минуту. Волокна пропускаются через полимерную ванну, где пропитываются связующим, после чего проходят сквозь преформовочное устройство, получая окончательную форму. Затем в пресс-форме материал нагревается, и на выходе мы получаем окончательный затвердевший продукт.

Процесс производства шпунтовых свай методом пултрузии.

Прямое прессование

Изделия из термопластов изготавливают в пресс-формах под давлением. Для этого используют высокотемпературные гидравлические прессы с усилием от 12 до 100 тонн и максимальной температурой около 650 градусов. Таким способом делают, например, пластиковые ведра.

Автоклавное формование

Автоклав необходим для проведения процессов при нагреве и под давлением выше атмосферного с целью ускорить реакцию и увеличить выход продукта. Внутрь автоклава помещаются композитные материалы на специальных формах.

Продукты из композитов

Композитные материалы широко используются в авиастроении. Например, построен из них.

Автопром.

Протезы и ортезы.

Если у вас появились дополнения, то обязательно напишите о них в комментариях. Спасибо.