Самодельная солнечная станция. Солнечные электростанции для дома

Солнечные электростанции перестают быть редкостью в быту, они все чаще помогают в обеспечении автономности дома, повышая комфорт проживания. Обладая базовыми знаниями в электронике/электротехнике, вы можете собрать домашнюю солнечную станцию сами, сэкономив на этом немалые средства. Солнечные электростанции могут быть трех видов: автономные, сетевые (с генерацией в сеть) и комбинированные (комбинация сетевой и автономной электростанций). В данной статье рассматривается пример построения автономной солнечной электростанции, так как такой тип станции наиболее востребован для решения задачи резервного электроснабжения дома.

Любая солнечная электростанция, выдающая переменный ток, состоит из четырех базовых элементов:

Солнечные панели,

Контроллер заряда АКБ,

Аккумуляторы,

Комбинированный инвертор - преобразователь.

Примечание: в настоящее время не редкость инвертор со встроенным контроллером заряда аккумуляторных батарей, в случае использования такого инвертора количество компонентов солнечной электростанции сокращается. Но необходимо учитывать, что использование отдельного контроллера заряда повышает надежность и возможности модернизации солнечной электростанции.

В принципе, этих элементов достаточно, чтобы комплекс работал и выполнял свои функции.

Однако, если комплекс собирать грамотно, стремиться к повышению эффективности, долговечной работы, а также соблюдать меры безопасности, понадобятся некоторые дополнительные элементы и знания.

Нарисуем подробную схему стандартной солнечной электростанции и составим список необходимых/рекомендуемых элементов.


Перечень и назначение всех элементов стандартной солнечной электростанции

1. Солнечные батареи

Количество и мощность подбираются в зависимости от нагрузки, необходимой продолжительности электроснабжения и географического положения объекта.

2. Ответные коннекторы (комплект "папа+мама")

Провода большинства солнечных панелей оканчиваются специальными водпонепроницаемыми разъемами (коннекторами МС4), которые не найти в магазинах. Поэтому дополнительно к солненчым панелям необходимо приобретать ответные коннекторы.

3. Провод между панелями и контроллером заряда

Так как солнечные панели расположены на улице, а оборудование в помещении, расстоянием между ними, как правило, существенное. Поэтому для сокращения потерь очень важно подобрать провод соответствующей марки и сечения.

Также необходимо помнить о защите провода от негативных факторов окружающей среды (солнечное излучение, осадки, обледенение) и механических повреждений.

4. Контроллер заряда

Необходим для обеспечения правильного заряда АКБ: правильным током и напряжением.

Контроллеры бывают 2х видов: устаревшие ШИМ (PWM) и современные MPPT.

ШИМ-контроллеры (PWM) недороги и обеспечивают простейший режим заряда. Их КПД невысок, настроек нет. Определенные ограничения сужают круг их использования.

MPPT-контроллеры немного дороже, но обладают рядом неоспоримых преимуществ: КПД выше на 20-25%, интеллектуальное управление режимами заряда АКБ, возможность настроек (у более мощных моделей), нет жесткой привязки к входному напряжению от солнечных батарей.

Мощность и вольтаж подбирается в зависимости от количества и мощности солнечных батарей, а также АКБ.

5. Выключатель постоянного тока (до входа в контроллер)

Очень важный элемент, на который многие не обращают внимания.

Во-первых, этот автомат может защитить контроллер от выгорания в случаях, когда ток от солнечных батарей превышает номинал контроллера (такое бывает при неправильно подобранном оборудовании или в солнечные дни).

Во-вторых, что еще более важно, он позволяет безопасно проводить обслуживание всего комплекса. Необходимо помнить важное правило: солнечным панелям, когда их электрический контур замкнут и они вырабатывают ток, ВСЕГДА нужен накопитель (АКБ) или потребитель (любой ТЭН). Если от контроллера отключить АКБ или нагрузку, а панели оставить подключенными, то он сгорит. Причина в том, что контроллер некуда девать приходящую энергию от панелей.

6. Выключатель постоянного тока (после выхода с контроллера)

Этот автомат нужен для того, чтобы защитить оборудование от короткого замыкания, которое может произойти со стороны АКБ.

7. Аккумуляторы-накопители

Их емкость, напряжение и количество подбирается в зависимости от нагрузки, времени электропитания, а также характеристик солнечных батарей, контроллера заряда и инвертора.

8. Перемычки между аккумуляторами

Многие не знают, что качество перемычек значительно влияет на работу и жизнь АКБ.

Хорошие перемычки - короткие, толстые (от 25-35кв.мм.), из меди, с крепко обжатыми наконечниками.

10. Инвертор для солнечной электростанции - это пожалуй самый главный компонент.

Инвертор преобразует постоянный ток в переменный - для всех бытовых приборов.

Модель и мощность подбирается в зависимости от нагрузки, пусковых токов и напряжения АКБ. Вообще, идеальной конструкцией солнечной электростанции следует считать ту, где разные группы нагрузок получают питание от разных инверторов. Многие фирмы выпускают инверторы с самыми различными свойствами. Они могут отличаться формой выходного сигнала (наиболее простые и дешёвые на выходе дают прямоугольный сигнал, так называемый «меандр», изготовители которого, правда, чаще называют его: модифицированной синусоидой, имитированной синусоидой, псевдо синусоидой, квазисинусоидой), способом компенсации нагрузок (за счёт сохранения амплитуды напряжения или площади кривой), применяемым схемным решением (одно или два преобразования напряжения, импульсным или аналоговым преобразованием сигнала).

Некоторые инверторы имеют встроенное зарядное устройство от существующей сети (комбинированный инвертор) и могут дополнительно заряжать аккумуляторную батарею от сети, другие могут осуществлять подпитку энергии, полученной от солнечных панелей энергией от сети (гибридные инверторы), третьи могут направлять энергию, полученную от солнца, в сеть (сетевые или in-grid инверторы) . Вообще, конструкция инвертора может быть самой разнообразной. Качественный инвертор должен выдавать чистый синусоидальный сигнал с искажениями меньше 3 %, не менять значение амплитуды напряжения при подключении максимальной нагрузки более чем на 10 %, осуществлять двойное преобразование (первое - постоянного тока, второе – переменного), иметь аналоговую часть вторичного преобразования с качественным трансформатором, иметь значительный запас по перегрузке и набор защитных функций от короткого замыкания в нагрузке, от неправильного подсоединения к аккумуляторам, от перегрузки, от неисправности аккумуляторов, не допускать глубокого разряда аккумуляторов.

Всем указанным требованиям соответствует инвертор IR с выходной мощностью от 1 до 6 кВт.

Это краткое описание типов инверторов может помочь вам правильно выбрать инвертор для дома (для солнечной электростанции).

11. Автоматический выключатель переменного тока

Предохраняет инвертор от перегрузок и выхода из строя при возникновении короткого замыкания со стороны нагрузки.

12. Защитное заземление

Это не устройство и не прибор. Это рекомендуемые меры по обустройству защитного заземления для ободрудования и человека. Даже если не происходит экстремального события (молния, короткое замыкание), на приборах скапливается статическое электричество. Его и надо отводить в землю.

Решил представить вашему вниманию статью о том, как сделать солнечную электростанцию своими руками .

Конструкция отличается от подобных электростанций улучшенной электронной начинкой :

  • аккумуляторы имеет большую емкость;
  • эффективный контроллер заряда;
  • улучшенная электрическая безопасность;
  • больше выходов;
  • цифровые дисплеи показывают количество потребленной и генерированной электроэнергии.

Если вы хотите изготовить электростанцию или просто вас заинтересовало строение данного устройства, то тогда вам будет интересна данная статья.

Шаг 1: Что необходимо для того, чтобы построить такую систему


Первое, что нужно сделать, приступая к планированию проекта – это определиться , какую мощность вы желаете получить от системы. Обеспечить электроэнергией весь дом, было бы замечательно, но тогда эта система будет дорогой и утратить свою мобильность. Моя электростанция может обеспечивать энергией лишь небольшие ЖК-телевизор, пару 12 Вт энергосберегающих лампочек, цифровой ресивер, проигрыватель компакт-дисков и радиоприемник. Также есть возможность заряжать мобильные телефоны и другие маломощные устройства.


Очень важно определить цены на компоненты, что будут использоваться в проекте. Хотелось сделать все как лучше, поэтому остановил выбор на контроллере PS-30M 30 Amp Morningstar Charge.

Этот контроллер заряда использует широтно-импульсный модулятор для плавной подзарядки батареи, после полной зарядки системы.

Для батарейного блока было приобретено два Trojan T-105 , в одном 6 В , а суммарный вольтаж 12 В и 225 Aч . Ёмкость аккумулятора огромная и достаточная для питания большего количества электроприборов.

Важность выбора основных элементов системы заключается в том, что их параметры необходимы для расчета величины генерированной энергии. ЖК-телевизор и ресивер потребляют 2,2 А постоянного тока на 12 В, энергоэффективное освещение потребляет всего 1 А для 12 Вт лампочки. В то время, как телефон/ GPS во время зарядки потребляет в разы меньше энергии.

Пользуясь телевизор по 3 часа в день, он будет потреблять 6.6 Aч. Освещение в течении 4-5 часов потребляет до 4 Aч, в то время как зарядка портативных устройств потянет на 2 Aч. Суммарная величина будет 12.6 Aч. Заряд батареи глубокого цикла не должен опускаться ниже 50% от полной ёмкости. Для продления срока службы батарей в работе следует использовать меньший цикл разрядки. Поэтому батареи с 30Aч будет достаточно.

В моем регионе на земля солнечный свет падает в течении 6 часов . Поэтому для восстановления заряда батарей потребуется 50 Вт с солнечных панелей и приблизительно 5 часов солнечной активности.

Воспользовавшись формулой мощности Вт = В*А , рассчитаем среднею величину тока с солнечной панели при максимальной мощности 50 Вт/17 В = 2.94 А

Для того, чтобы зарядить батареи при использовании солнечных панелей необходимо затратить 13 Aч / 2.94 А = 4.76 часа прямого солнечного света.

В реальном мире все будет по-другому:

  • Панели закрыты защитными покрытиями;
  • Пасмурная погода;
  • Температура батарей;
  • Сечение проводов;
  • Длина проводки;
  • Другие потери.


Поэтому эффективнее использовать аккумулятор с большим емкостным зарядом. В таком случае можно использовать такую систему несколько раз, без последствий для её элементов, если погодные условия на следующий день не будут подходить для эффективной зарядки с помощью солнечных панелей. 225 Aч хватит с излишком, но лучше иметь больше, чем нужно.

Шаг 2: Планируем проект




Следующий шаг заключается в планировании того, как будет выглядит проект. Экспериментируя с вариантами дизайна установки, были проработаны различные конструкции. Для проектирования пользовались программой Microsoft Word. Это поможет понять расстановку компонентов и проявит аспекты дизайна, которые не будут функциональными.



Было приобретено два Turnigy ваттметра , что наиболее часто используются в авиа моделировании. Эти индикаторы с интеллектом показывают напряжение, силу тока, ватт-часы, ампер-часы, минимальное напряжение и максимальное значение потребляемого тока, что идеально подходят для использовании в системе солнечных панелей. Используя один прибор можно будет контролировать, сколько ватт энергии и сколько ампер-часов в сутки производят солнечные панели, а другой – сколько ватт используется и какой ёмкостной заряд остался в батареях.



После различных вариантов по компоновке элементов, что смонтированы в отдельных отсеках, внешних и внутренних аккумуляторных батарей, широких и узких установок, был принят вариант с наклонной приборной панелью, вертикально установленным контроллером заряда и отдельным батарейным блоком для удобства транспортировки.


Шаг 3: Изготавливаем кожух батарейного блока




Первым этапом будет создание внешнего блока батарей. Для строительства использовалась 12 мм ДСП , общая масса конструкции вместе с батареями составила 56 кг . Ролики и ручки установлены для перемещения установки.




Имея размеры установки, расчертим большом лист ДСП. После чего вырезаем элементы тумб и собираем их, как показано на изображениях.







Шаг 4: Основной блок





После того, как был собран батарейный блок, пришло время построить основную часть. Повторяем процедуру: большой лист ДСП размечаем его по размерам. Вырезаем все с помощью пилой по дереву .



Это самый простой способ, чтобы вырезать длинные прямые линии. Таким образом, большой кусок ДСП разбивается на более мелкие куски, которыми легко управлять. После использования пилы по дереву, необходимо воспользоваться наждачной бумагой для снятия заусенцев.


Вместо пилы, можно использовать электролобзик , с ним работа пойдет быстрее и легче, но линии от лобзика могут быть не такими ровными.


После того, как все элементы панелей вырезаны, необходимо проверить соответствие размеров и форм разработанному плану-модели. Для каркаса устройства используем бруски 20*20 мм , для их соединения воспользуемся 30 мм шурупами.


После завершения основной конструкции, приступаем к монтажу электронных компонентов. Сначала устанавливаем разъёмы на переднюю панель, так как они легче монтируется. Соединением два гнезда для вилок и три для автомобильной зарядки, что наиболее подходят для питания устройств непосредственно от 12 В.

Следующее, что подключаем:

  • Переключатели;
  • Радио;
  • Контроллеры заряда;
  • Счетчики.

Счетчики поставляемые Turnigy заключены в пластиковый корпус, который легко снимается, путем выкручивания четырех маленьких винтов. ЖК-дисплеи счетчиков припаяны непосредственно к плате, это означает, что не надо возиться с припаиваем шлейфа от дисплея к контактным площадкам на микросхеме.


Для защитных дисплеев счетчиков воспользуемся 3 мм оргстеклом . Для его резки можно воспользоваться ножом или пилой по металлу . Рамы защитных стекол монтируются на передней панели и закрепляться с помощью горячего термоклея .

В проекте используются хромированные металлические переключатели с двумя положениями работы. Красочные светодиодные кольца подсвечивают гнезда 12 В зарядки.

Контроллер заряда просто прикручен к задней панели с помощью болтов. Наиболее дорогим элементом проекта выступают батареи, поэтому за ними нужен особый уход.

Задняя часть блока выступает основой для множества портов, восьми входов/выходов для радио, включая четыре акустических выхода, два выхода предусилителя, 1 вход для микрофона и 1 выход для сабвуфер.

Продолжение следует…

Попытаемся понять подход к выбору автономной солнечной системы, какие факторы имеют большее, а какие меньшее значение.

Прежде всего, надо определить, сколько энергии вам понадобится в месяц, и, чтобы стоимость солнечной электростанции не стала фантастически высокой, по мере возможности уменьшить потребности. Затем необходимо определить, сколько солнечной энергии можно получить в той местности, где будет работать солнечная установка. Примерные данные приводятся в метеорологических справочниках, кое-какую информацию по солнечной инсоляции можно найти в Интернете. Обычно уровень солнечной инсоляции выражается в Ваттах/м2 с разбивкой по месяцам. Причём сезонные колебания могут быть очень значительными.

Как выбирать солнечную батарею?

Если предполагается использовать солнечную электростанцию круглогодично, расчёт надо производить по месяцам с наихудшими параметрами по инсоляции (конечно, если предполагается использовать только солнечную энергию). КПД солнечных батарей для расчётов надо принимать не выше 14% (а лучше 12%) , т.к., несмотря на КПД элементов 16 или даже 17 % (а чаще используются элементы с КПД 14-15%), часть излучения отразится от поверхности стекла закрывающего элементы (даже если используется антибликовое стекло), часть излучения погасится в толщине стекла, т.к. не вся поверхность солнечной батареи закрыта кремниевыми пластинами (между ними есть зазоры 2-3 мм). Кроме этого некоторые элементы имеют обрезанные углы, что также уменьшает полезную площадь. Некоторые изготовители приводят примерную выработку энергии в месяц при разных уровнях солнечного излучения.



Теперь, чтобы определить количество солнечных батарей , необходимо разделить желаемую потребность в энергии на возможную выработку энергии одной батареей в те месяцы, когда будет использоваться солнечная электростанция. Естественно, расчёт ведется по самым наихудшим параметрам по инсоляции.

Например, установка будет эксплуатироваться круглогодично, потребность в энергии 100 кВт час/месяц, одна батарея из выбранных вами произведёт в декабре не более 2 кВт-час энергии, 100: 2 = 50 батарей. При тех же условиях, но неизвестной производительности батареи, а известной её площади 0,7 м², определяем, что за месяц будет произведено примерно 20 х 0,7 х 0,12(КПД) = 1,68 кВт-час энергии (инсоляция в декабре составляет примерно 20 кВт-час/м²). Для определения количества солнечных батарей необходимо разделить желаемое количество энергии на выработку одной батареи: 100: 1,68 =59,5 шт., округляем в большую сторону 60 шт.

Следует отметить, что все эти расчёты носят приблизительный, ориентировочный характер, т.к. количество солнечных дней может сильно отличаться в разные годы. Всегда надо учитывать, что запас только улучшает параметры системы.

Увеличение производительности солнечных батарей – это отдельная большая тема. Можно отметить только несколько способов увеличения производительности:

Выбор оптимального угла установки . Желательно, чтобы поверхность солнечной батареи располагалась перпендикулярно к лучам солнца, с максимальным отклонением в ту или иную сторону на не более, чем 15°. В связи с тем, что солнце в течении года постоянно меняет высоту над горизонтом, желательно устанавливать солнечные батареи под тем углом, который обеспечивает максимальный выигрыш по производительности в нужное время. Например, если предполагается использовать солнечную электростанцию круглогодично, то батареи устанавливают под углом + 15° к широте местности, а если только в летние месяцы, то под углом – 15° от широты местности.

Поворот солнечной батареи вслед за солнцем в течение дня (применим только для небольших систем), таким образом можно увеличить выработку энергии вплоть до 50% от выработки в стационарном положении.

Купить гелиоустановку для дома или же для дачи не составляет труда. Но цена подобных систем нередко оказывается чрезмерно завышенной. А между тем их изготовление своими руками – вовсе не такой невозможный процесс, как кажется на первый взгляд. Достаточно подобрать нужные компоненты и произвести соответствующие расчеты. Разумеется, также необходимы определенные навыки работы с электрооборудованием (для подключения аккумуляторов, инверторов и т.д.).

Что для этого нужно?

Самодельная солнечная электростанция должна состоять из нескольких главных частей. Все они вполне доступны по цене и продаются в специализированных магазинах.

Фотомодули

Прежде всего необходимы сами фотоэлементы. Их количество и площадь определяются на основе норм энергопотребления и среднесолнечной географической активности. Каждый модуль можно собрать и самостоятельно, купив только кремниевые фотоячейки. Также можно приобрести уже готовые гелиоблоки, если их параметры удовлетворяют всем требованиям.

Аккумуляторные батареи

Их наличие необходимо для предотвращения перебоев энергоснабжения. Если солнечная электростанция не объединена с другими энергоисточниками, то именно данные аккумуляторы будут поддерживать жизнеобеспечение дома в пасмурные дни.

Контроллеры заряда

Представляют собой электронные устройства, предназначенные для предохранения аккумуляторов от чрезмерной зарядки/разрядки. При полной зарядке батареи они снижают вырабатываемый солнечным модулем ток до величины, позволяющей компенсировать саморазряд. В случае же критической разрядки эти контроллеры прерывают подачу электроэнергии на бытовые устройства. Если собрать солнечную электростанцию самостоятельно и оснастить ее подобными приборами, то срок службы установки значительно увеличится.

Инверторы

Это устройства, преобразующие постоянный ток от гелиоячеек в переменный, от которого «запитано» все бытовое оборудование. Кром того, инверторы производят электричество лучшего качества, чем то, которое поступает из местных энергосетей. Как правило, изготовление солнечной электростанции своими руками подразумевает использование синусоидальных моделей. Дело в том, что такие инверторы менее дороги и идеально подходят именно для домашних сетей. Еще одно назначение этих приборов – роль своеобразного «буфера» между домашней энергосистемой и коммунальной, что позволяет передавать избыток сгенерированного электричества в общую сеть.

Кабели

Ни одна солнечная электростанция не обходится без специальных коммутационных кабелей. Для минимизации энергопотерь кабели между элементами системы должны пролегать по наиболее коротким путям и иметь соответствующее сечение (не менее 4-6мм2). Внешние кабели должны быть устойчивы ко всем погодным явлениям.

Особенности компоновки

Чтобы созданная вами солнечная электростанция работала максимально эффективно, она должна быть спроектирована по определенной схеме. Вкратце эту схему можно изобразить таким образом. Постоянный ток от фотоэлементов подается на контроллер заряда. Как правило, при этом он проходит через специальную соединительную коробку. После контроллера ток попадает на аккумуляторную батарею, и часть его используется для накопления энергии. За аккумуляторной батареей располагается инвертор, который преобразует этот постоянный ток в переменный. Далее энергопоток распределяется на бытовые нагрузки. Причем лучше всего использовать для каждой группы нагрузок свой инвертор.

Монтаж домашней солнечной станции

В первую очередь необходимо расположить на крыше дома солнечные модули. Нужно помнить, что они должны располагаться под прямым углом к падающим лучам, а отклонение не должно превышать 15°. Причем если солнечная электростанция будет функционировать круглый год, то батареи надо поместить под углом +15° относительно географической широты. Для летней эксплуатации лучше придерживаться угла -15°.

Как правило, гелиомодули устанавливаются рядами на наклонных крышах, один ряд над другим. Такой монтаж подразумевает необходимость выдерживания расстояния между рядами. Это необходимо, чтобы модули не затеняли друг друга. Данное расстояние должно составлять минимум 1,7 высоты самих фотобатарей.

Все дополнительное оборудование (инверторы, аккумуляторы, зарядные контроллеры и т.д.) лучше располагать в отдельном техническом помещении. В этом случае уменьшится длина коммутационных кабелей (а значит, и энергопотери), и собранная система будет работать эффективнее.

Установить на крыше солнечные фотоэлементы, которые за день зарядят аккумуляторы, а вечером пользоваться дармовой энергией - это путь к полной независимости от государственного электроснабжения, цен на газ и так далее.

Преимуществ у домашней солнечной электростанции предостаточно:

  1. Простота установки и подключения. Не надо строить высокую башню, как для ветровой электростанции, бетонировать фундамент.
  2. Для строительства не нужны большие площади. Многие укладывают светоактивные листы на крышу частного дома.
  3. Простой и нематериалозатратный монтаж сильно сокращает денежные расходы.
  4. Возможно, по мере накопления средств, добавлять к имеющимся панелям новые, увеличивая мощность установки в целом, чего нельзя сделать для ветровой станции.
  5. Отсутствуют вращающиеся части, которые нужно смазывать, подтягивать. Профилактический осмотр солнечных элементов специалисты рекомендуют проводить раз в 1–2 года.
  6. Может эксплуатироваться без капитального ремонта до 25 лет.
  7. Все компоненты электроустановки подвозятся к месту установки в собранном виде.
  8. Солнечные станции бесшумны, безопасны для людей, не мешают птицам. Они самые экологически безопасные среди зелёных технологий.

Перейдем к недостаткам:

  1. Ограничено применение в некоторых регионах количеством солнечных дней.
  2. Имеют низкий КПД и слабую мощность, особенно в хмурые зимние дни, по сравнению с другими источниками энергии.

Подбор PV-элементов

Черные фотоэлектрические панели, photovoltaic PV-элементы, те, которые в диковинку видеть на крышах российских домов, сплошь покрывают любые строения в Японии. А японцы очень практичны и не будут городить то, от чего мало проку. Главная задача - правильно выбрать тип солнечного элемента.

В продаже представлены четыре типа фотоэлектрических элементов:

  1. монокристаллические;
  2. поликристаллические;
  3. аморфные;
  4. тонкоплёночные.
  • Монокристаллические делают из отполированного листа кремния. Примерно 1 кВт энергии от таких изделий можно получить с площади 7 квадратных метров.
  • Поликристаллические кремниевые менее производительные, чем первые. Чтобы получить 1 кВт уже потребуется занять площадь более 8 кв. метров.
  • Аморфные наиболее экономичны при изготовлении: аморфный кремний наносится тонким слоем на подложку и расходуется гораздо меньше. Эти батареи имеют самую низкую мощность и относительно дешевы.
  • Тонкопленочные имеют наибольший КПД в 25 процентов, по сравнению с показателем 12–17 у первых трёх типов. Могут вырабатывать энергию при слабом освещении, даже зимой в облачную погоду. Производят такие пленки на нескольких американских заводах для промышленного использования. Стоят они очень дорого.

Оптимальным вариантом для южной полосы: Одесса – Ростов на Дону – Астрахань – побережье северное Каспийского моря являются монокристаллические элементы. Можно собрать эффективную солнечную установку мощностью до 500 кВт/час за месяц.

Другие компоненты солнечной электростанции

  1. Инвертор , преобразующий постоянный ток в переменный. Фотоэлектрические элементы вырабатывают постоянный ток низкого напряжения, а большинство бытовых приборов работает на переменном высоком напряжении.
  2. Аккумуляторы , сохраняющие энергию для ночного времени.
  3. Контроллер – зарядное устройство, не допускающее перезарядки аккумуляторов и защищающее от утечки обратного тока на PV-элементы ночью.
  4. Автоматическое реле , которое при полной разрядке аккумуляторов переключает питание домашних приборов к общей сети.
  5. Электросчетчик , остается для контроля потребленной энергии.

Цена солнечной установки

Покупать солнечную электростанцию под ключ, к примеру, СЭС-5 удобно тем, что специалисты компании-производителя сами всё привезут, соберут, подключат, проверят и гарантию дадут.


Стоимость СЭС-5, вместе с монтажом составляет 8250, 9100 долларов. Такая система замечательна тем, что излишки выработанной энергии можно продать в общую сеть по зеленому тарифу. Установка состоит из 25 фотоэлектрических элементов, средней производительностью за месяц – 521 кВт/час. Есть установки равной мощности по цене 15000 долларов. Если в вашем доме все бытовые приборы расходуют за сутки около 10 кВт/час, то этой электростанции вполне достаточно, чтобы всё светилось, крутилось. Кроме отопления, конечно.

Обогрев дома зимой такая электростанция не потянет. Надо увеличить количество солнечных элементов и аккумуляторов как минимум вдвое, соответственно и цена возрастет вдвое.

Если же комплектовать домашнюю электростанцию самостоятельно, то собранная установка обойдется в 8032 доллара. Из расчета, если каждый компонент будет стоить:

  • PV-элементы Yabang Solar YBP 250-60 (250 Вт, 24 В), 20 штук - 4250 долларов;
  • контроллер (зарядное устройство) - 25 долларов;
  • аккумуляторы SIAP PzS 4 APH 420 (2 В, 420 А), 24 шт. - 3624 доллара;
  • инвертор - 69 долларов;
  • автоматическое реле - 33 доллара;
  • электросчетчик - 31 доллар.

Итого: если умудрится и электростанцию для дома, то можно сэкономить лишь 218 долларов.