Снип прогрева бетона в зимнее время. Прогрев бетона в зимнее время: инфракрасный, индукционный, термос

Если вам требуется залить фундамент или провести иные подобные работы при отрицательных температурах, то без обогревательных процедур не обойтись. Причем они должны проводиться по строительным нормативам. О том, как производится прогрев бетона в зимнее время по СНИПу №3_03_01-87, вы сейчас и узнаете.

Для чего нужно подогревать бетон

Как уже было отмечено, заливка бетона производится не только летом, но также и зимой. Разница заключается в том, что в зимний период цементному составу требуется подогрев, цена которого может быть довольно высокой.

Данный процесс необходим по следующим причинам:

  • при отрицательных температурах ;
  • происходит разрушение структуры материала, из-за чего на нем образуются деформированные участки, и он в итоге становится менее долговечным.

Совет! Удалить выступающие неровности вам поможет резка железобетона алмазными кругами. При этом обязательно нужно применять защитные средства в виде респиратора и специальных очков. Что касается небольших впадин, то для их зачистки потребуется алмазное бурение отверстий в бетоне и последующее заполнение углублений цементным раствором.

Указанных процессов можно избежать, но для этого потребуется оборудование для прогрева бетона в зимнее время. Обойтись без него можно лишь в том случае, если до появления низких температур состав успел набрать определенную прочность. Для удобства данные внесены в таблицу:

Состав марки Процент от проектного значения
М-150 Не ниже 50%
М-200 Не ниже 40%
М-300 Не ниже 40%
М-400 Не ниже 30%
М-500 Не ниже 30%

Виды прогрева бетона

СНиП под номером 3_03_01-87 устанавливает, какие способы прогрева бетона в зимнее время должны применяться для тех или иных сооружений.

К данным методам относится:

  • термос;
  • предварительный разогрев состава;
  • обогрев в опалубке;
  • индукционный способ;
  • электродный прогрев;
  • использование нагревательных проводов;
  • термос с противоморозными компонентами;
  • инфракрасный обогрев.

Мы рассмотрим наиболее распространенные из них.

Обогрев бетона нагревательным проводом

Чтобы свести к минимуму время прогрева бетона в зимнее время применяется специальный нагревательный провод – ПНСВ.

Его составными частями являются:

  1. стальная жила, состоящая из одной проволоки;
  2. изоляционный слой, выполненный из полиэтилена или ПВХ.

Данный метод обогрева основан на использовании трансформаторных подстанций, которые сильно нагревают провода. От них происходит передача тепла бетонному составу. Следует отметить, что такой способ весьма удобен, поскольку он позволяет регулировать уровень нагрева в зависимости от погодных условий.

Чтобы смонтировать подобную систему потребуется технологическая карта прогрева бетона в зимнее время. Ее обычно составляет специалист-энергетик, являющийся сотрудником строительной организации. Также существуют типовые образцы такого документа.

Данная карта определяет количество и расположение станций прогрева, а также порядок размещения и число нагревательных проводов. Как показывает расчет прогрева бетона в зимнее время, для нагревания 1м³ раствора требуется в среднем 50-60 метров кабеля.

Реализуется данная технология следующим образом:

  1. нагревательный провод размещается внутри возводимой конструкции — делается это так, чтобы проводники размещались равномерно, не касались опалубки, не выходили за края бетона и не соприкасались друг с другом ;

На фото — укладка провода

  1. к греющему проводу припаиваются холодные концы – после этого они выводятся за пределы зоны нагрева ;

Совет! Чтобы в зоне пайки сохранялось тепловое поле, следует обернуть данную область фольгой.

  1. выводы проводов подключаются к трансформаторному оборудованию в соответствии с предписаниями, содержащимися в технологических картах:
  2. собранная электрическая цепь проверяется мегаомметром;
  3. в созданную систему подается напряжение и начинается процесс обогрева, для правильного проведения которого потребуется температурный график прогрева бетона в зимнее время, содержащийся в технологической карте .

Способ «термос»

Как понятно из названия, данный метод предназначен не для передачи, а для сохранения тепла. Он заключается в защите бетона с помощью теплоизоляционных материалов, размещаемых снаружи него. Благодаря ним применяемая смесь медленнее теряет тепло и быстрее приобретает прочность ().

Преимущество рассматриваемого способа заключается в его доступной стоимости, ведь в качестве утеплителя могут быть использованы даже обычные опилки. Однако следует отметить, что одного лишь пассивного сохранения тепла может оказаться недостаточно. В этом случае придется вдобавок к нему применять дополнительные методы прогрева бетона в зимнее время.

Инфракрасный прогрев бетонных конструкций

Этот способ основан на использовании инфракрасных нагревателей. Они устанавливаются таким образом, чтобы исходящее от них излучение было направлено на открытую бетонную поверхность или на опалубку. Передаваемая ими энергия вызывает нагрев цементного раствора и его ускоренное отвердение.

Совет! Не используйте данный метод для прогревания конструкции, имеющей большой объем. Инфракрасные лучи не смогут нагреть ее равномерно, что приведет к уменьшению прочности материала. Поэтому для массивных изделий лучше использовать иные виды прогрева бетона в зимнее время.

Индукционный нагрев

В данном методе в целях получения тепла используется явление электромагнитной индукции. С ее помощью энергия электромагнитного поля видоизменяется и становится тепловым излучением, которое передается обрабатываемому материалу. Указанное превращение происходит в стальной опалубке или на арматуре.

Инструкция по реализации данного способа устанавливает, что он может быть использован только в тех конструкциях, которые имеют замкнутый контур. Кроме того, у них должна быть густая арматура, у которой коэффициент армирования составляет свыше 0,5. Еще одно необходимое условие – наличие металлической опалубки или возможности обмотать конструкцию кабелем в целях создания индуктора.

Вывод

При проведении железобетонных работ в морозную погоду нужно обязательно использовать прогрев. Без него полученная в итоге конструкция будет менее прочной и долговечной ().

К наиболее распространенным способам нагрева относится использование нагревательных проводов, инфракрасных излучателей, применение электромагнитной индукции, а также теплоизоляции. Подробнее о том, как осуществляется прогрев бетона в зимнее время, вам расскажет видео в этой статье.

Бетон – это очень популярный на сегодняшний день строительный материал, для изготовления которого применяют такие компоненты, как цемент, вода, заполнитель и вода. Но одно дело, когда вы производите заливку бетона летом, ведь теплое время года благоприятно влияет на процесс набора прочности. Что же происходит зимой? При сильных морозах набор прочностных характеристик прекращается, а это крайне нежелательно. В этом случае необходимо применять ряд мероприятия, которые позволят прогревать бетон. Для этого нужно знать все особенности технологической карты бетона на зимний период и актуальные способы прогрева.

Технологическая карта и способы прогрева бетона

Прогревать сварочным аппаратом

Этот метод прогрева предполагает применение следующих материалов:

  • кусков арматуры;
  • лампы накаливания и градусника для измерения температуры.

Процесс установки кусков арматуры выполняется параллельно цепи, с примыкающими и прямыми проводами, между которыми монтируется лампа наливания. Именно благодаря ей будет возможным производить измерения напряжения.

Чтобы померить температуры, стоит задействовать градусник. По времени этот процесс занимает много времени, примерно 2 месяца. При этом на весь процесс прогревания необходимо оградить конструкцию от влияния холода и воды. Применять обогрев сварочным аппаратом целесообразно при малом объеме бетона и отличных условиях погоды.

Инфракрасный метод

Смысл этого метода состоит в том, что ведется установка оснащения, работа которого выполняется в инфракрасном диапазоне. В результате этого удается преобразовать излучение в тепло. Именно тепловая энергия внедряется в материал.

Инфракрасный подогрев бетонной смеси представляет собой электромагнитные колебания, у которых скорость распространения волны будет составлять 2,98*108 м/с и длина волны 0,76-1, 000 мкм. Очень часто в роли генератора задействуют трубки, выполненные из кварца и металла.

Главной особенностью представленной технологии является возможность питания энергией от обычного переменного тока. При инфракрасном обогреве бетона параметр мощности может меняться. Она зависит от необходимого температурного режима нагревания.

Благодаря лучам энергия может проникать в более глубокие слои. Для достижения необходимой эффективности процесс обогрева должен выполняться плавно и постепенно. Здесь запрещено работать при высоких показателях мощности, иначе верхний слой будет иметь высокую температуру, что в конечном результате приведет к потере прочности. Применять такой метод необходимо в случаи, когда нужно разогреть тонкие слои конструкции, а также подготовить раствор для ускорения времени сцепки.

Какие существуют плюсы и минусы дома из газобетона, указано в данной

Индукционный метод

Для осуществления этого метода необходимо задействовать энергию переменного тока, которая будет преобразовываться в тепловую в опалубке или арматуре, выполненной из стали.

После преобразованная тепловая энергия будет распространяться на материал. Применять индукционный метод обогрева целесообразно при обогреве железобетонных каркасных конструкций. Это могут быть ригели, балки, колонны.

Если использовать индукционный прогрев бетона по внешним поверхностям опалубки, то здесь необходимо выполнить монтаж последовательных витков, которые изолированы от индукторов и проводом, а число и шаг определяется расчетным путем. С учетом полученных результатов удается изготовить шаблоны с пазами.

Когда индуктор был установлен, то можно выполнять обогрев арматурного каркаса или стыка. Делается это для того, что удалить наледь до того, как будет происходить бетонирование. Теперь открытые поверхности опалубки и конструкции можно укрыть при помощи теплоизоляционного материала. Только после обустройства скважин можно приступать к непосредственной работе.

Когда смесь примет необходимый температурный режим, то процедуру обогрева прекращают. Следите, чтобы опытные показатели отличались от расчетных не менее чем на 5 градусов. Скорость остывания может сохранить свои пределы 5-15 С/ч.

Применение трансформаторов

Для повышения температурного режима в бетоне можно воспользоваться таким недорогим и простым методом, как нагревательный провод ПНСВ.

Конструкция этого кабеля предусматривает два элемента:

  • однопроволочная жила круглой формы, выполненная из стали;
  • изоляция, для которой можно задействовать ПВХ пластик или полиэтилен.

Если вам необходимо обогреть смесь 40-80 м3, то для этого будет достаточно установить всего лишь одну трансформаторную подстанцию. Применяют такой метод в том случае, когда на улице температура воздуха достигла отметки -30 градусов. Использовать трансформаторы целесообразно для обогрева монолитных конструкций. Для 1 м веса будет достаточно провода в 60 м.

Какие производители автоклавного газобетона существуют, указано в данной

Выполняется такая манипуляция по следующей инструкции:

  1. Внутрь бетона укладывают нагревательный провод. Его подсоединяют к станции или выводам трансформатора.
  2. При помощи электрического тока массив начинает набирать температуру, в результате чего ему удается затвердеть.
  3. так как материал обладает отличными свойствами проводимости тепловой энергии, тепло с высокой скоростью начинает двигаться по всему массиву.

Таблица 1 – Характеристика проводов марки ПНСВ

1 Напряжение переменного тока, В 380
2 Длина секции кабеля на напряжение 220 В:
– ПНСВ1,0 мм, м 80
– ПНСВ1,2 мм, м 110
– ПНСВ1,4 мм, м 140
3 Удельная мощность тепловыделения кабеля:
– для армированных установок, Вт/п.м. 30-35
– для неармированных установок, Вт/п.м. 35-40
4 Напряжение питания рекомендуемое, В 55-100
5 Среднее значение сопротивления жилы:
– ПНСВ1,2 мм, Ом/м 0,15
– ПНСВ1,4 мм, Ом/м 0,10
6 Параметры метода:
– Мощность удельная, кВт/м3 1,5-2,5
– Расход провода, п.м./м3 50-60
– Цикл термосного выдерживания конструкций, суток 2-3

Провод для обогрева, который уложен внутрь бетона, должен обогревать конструкцию до 80 градусов. Электропрогрев происходить при помощи трансформаторных подстанций КПТ ТО-80. Для такой установки характерно наличие нескольких ступеней низкого напряжения. Благодаря этому становится возможным выполнять регулировку мощности нагревательных кабелей, а также подгонят ее согласно измененной температуре воздуха.

Использование кабеля

Использование такого варианта прогрева не требует больших затрат электроэнергии и дополнительного оснащения.

Весь процесс протекает по следующей схеме:

  1. Ведется установка кабеля на бетонное основание перед заливкой раствора.
  2. Все зафиксировать, используя крепежные детали.
  3. Будьте внимательны во время установки кабеля и го эксплуатации, чтобы на его поверхности не возникли повреждения.
  4. Выполнить подключение кабеля в низковольтный электрический шкаф.

Противоморозные добавки

При добавлении противоморозных добавок бетон способен противостоять самым агрессивным атмосферным осадкам. Входящие в состав такой смеси компоненты могут быть самые различные, но роль главного отведена антифризу. Это жидкость, которая не позволяет воде замерзать.

Если необходимо взвести конструкции из железобетона, то в составе смеси должен находиться нитрит натрия и формат натрия. Главной особенностью противоморозных смесей остается сохранение антикоррозийных и физико-химических свойств при низком температурном режиме.

При возведении товарного бетона, производстве бордюров необходимо задействовать смесь, в составе которой имеется хлорид кальция. Этот компонент позволяет добиться быстрой скорости затвердения, устойчивости к низкому температурному режиму.

Идеальной противоморозной добавкой остается такое химическое вещество, как поташ. Оно очень быстро растворяется в воде, при этом отсутствует коррозия. Если вы будет применять поташ при прогреве бетона зимой, то удастся сэкономить на строительных материалах.

Если вы используете противоморозные добавки, то очень важно придерживаться всех норм безопасности. Например, не стоит задействовать бетон с такими компонентами, когда конструкция расположена под напряжением, возводятся монолитные дымовые трубы.

СНиП

Все мероприятия по монтажу и строительству нужно выполнять в соответствии с установленными нормами. Процесс бетонирования в зимнее время не считается исключением. Прогрев бетонной конструкции при низких температурах воздуха происходят согласно следующих документов:

  • СНиП 3.03.01-87 – Несущие и ограждающие конструкции
  • СНиП 3.06.04-91 – Мосты и трубы

На видео – прогрев бетона в зимнее время, технологическая карта:

Несмотря на то, что представленная документация лишь косвенно затрагивает тему, связанную с прогревом бетона, в ней содержатся определенные разделы, в которых имеется технология заливки бетонного раствора в морозное время года.

Расчет времени

При расчете прогрева бетона необходимо принимать во внимание таки факторы, как тип конструкции, общую площадь обогрева, объем бетона и электрическую мощность.

Во время обогревательных работ с бетоном стоит разработать технологическую карту. В нее будут вписаны все значения лабораторных наблюдений, а также время прогрева и время затвердения материала.

Расчет прогрева бетона начинается с выбора схемы. Например, чаще всего выбирают четырехстадийную. Первая стадия предполагает собой выдерживание материала. После этого показатели температуры повышают до конкретного значения, осуществляют обогрев и остывание длительность выдерживания перед началом мероприятия примерно 1-3 часа при низком температурном режиме. Поле этого можно переходить к расчету обогрева, которое находится в прямой зависимости от скорости и итоговой температуры.

На протяжении всего процесса стоит вести контроль температуры, отмечая все результаты при повышении через 30-60 минут, а при остывании контролирование осуществляют 1 раз за смену. При нарушении режима необходимо поддерживать все параметры, отключив ток и повысив напряжение. В таком случае показатели фактические и полученные в ходе расчета могут не совпадать. После этого строят график зависимости времени от прочности, где обозначают необходимое значение времени и температуры обогрева, а после отыскивают необходимое значение прочности.

Процесс обогрева бетона – это очень важные мероприятия, без проведения которых бетонная конструкция при морозах просто перестанет набирать прочность, в результате чего это приведет к понижению марки и дальнейшему разрушению. Осуществить все эти мероприятия несложно, достаточно просто определить, какой из представленных подходит вам больше всего.

Основы зимнего бетонирования

Бетонные работы при среднесуточной температуре наружного воздуха ниже 5°С и минимальной суточной температуре ниже 0°С выполняют по специальным правилам, установленным для работ в зимних условиях {СНиП III-15-76).

В зимних условиях основной задачей является не допустить преждевременного замерзания уложенного бетона. Необходимо, чтобы бетон сохранял при укладке и выдерживании положительную температуру (вышеО0) до тех пор, пока его прочность не достигнет определенного значения, называемого «критической» прочностью

Для конструкций, подвергающихся сразу после выдерживания попеременному замораживанию и оттаиванию, критическая прочность бетона независимо от его класса должна быть не менее 70%. а в преднапряжен-ных конструкциях - не менее 80% проектной прочности.

Для конструкций, подвергающихся сразу по окончании выдерживания действию расчетного давления воды (резервуаров, подпорных стен), а также конструкций, к которым предъявляют специальные требования по морозостойкости и водонепроницаемости, критическая прочность должна быть не ниже 100 % проектной прочности.

Для массивных сооружений специального назначения (плотин, опор, мостов и др.) условия и сроки допустимого замерзания бетона устанавливают в проекте. Перечисленные выше требования вызваны тем, что бетон при отрицательной температуре (ниже 0°С) не твердеет, так как вода в нем превращается в лед и физико-химические процессы взаимодействия между цементом и водой затворения практически прекращаются. Однако, когда замерзший бетон оттает, процессы твердения возобновляются, и, если замерзание произошло не ранее достижения им критической прочности, то бетон впоследствии приобретет заданную (проектную) прочность. Если же дать бетону замерзнуть.раньше, то произойдет частично безвозвратная потеря прочности (главным образом из-за нарушения сцепления между крупным заполнителем и цементным раствором).

Потеря прочности будет тем больше, чем моложе был бетон к моменту замерзания (так, например, бетон на портландцементе, достигающий прочности на 28-й день и замороженный через сутки, после укладки, безвозвратно теряет до половины своей прочности). Бетон, замо-- роженный при достижении им указанных выше значений критической прочности, необходимо выдерживать после оттаивания в условиях, обеспечивающих получение им проектной прочности до момента загружения конструкции проектной нагрузкой.

К моменту снятия несущей опалубки бетонных и железобетонных конструкций требуется, чтобы прочность бетона составляла 50...100% проектной. Такие конструкции после распалубливания могут быть во многих случаях без вреда для них подвергнуты действию низких температур, но в каждом конкретном случае необходимо все же сопоставить распалубочную и критическую прочность. В тех случаях, когда из условий многократной оборачиваемости опалубки последнюю (например, боковые щиты опалубки фундаментов, подколонни-ков, стен и т. п.) снимают раньше достижения -бетоном критической прочности, распалубленные поверхности следует временно укрывать.

Это же приходится делать и в тех случаях, когда разность температур поверхности бетона и наружного воздуха превышает следующие значения: 20СС - для конструкций с модулем поверхности от 2 до 5 и;Ш°С - для конструкций с модулем поверхности 5 и ныше. Иначе при быстром охлаждении на поверхности бе юна образуются температурные трещины.

Распалубливание конструкций выполняют при положительной температуре бетона; ни в коем случае нельзя допускать примерзания опалубки к бетону.

Для твердения в зимних условиях бетона, приготовленного на обычной воде (без введения в нее химических добавок солей, понижающих точку замерзания образующегося при этом солевого раствора), необходимо прежде всего, чтобы смесь была уложена в опалубку теплой и все ее составные части имели положительную температуру. Нельзя, например, укладывать в опалубку бетонную смесь, приготовленную на мерзлом песке и щебне. При обогреве такой смеси после укладки содержащаяся в мерзлом состоянии в песке и щебне влага оттает и займет меньший объем (известно, что вода при замерзании увеличивается и, наоборот, лед при оттаивании уменьшается в объеме примерно на 10%)." 13 результате этого получается рыхлый, пористый, а следовательно, и малопрочный бетон.

Поэтому в зимнее время бетонную смесь приготовляют на подогретой воде; заполнители (песок, щебень) также нагревают или оттаивают до положительной температуры. Исключение может быть допущено для сухого щебня или гравия, не содержащего наледи на зернах и смерзшихся комьев (влажность не выше 1...1,5%). Такой заполнитель можно загружать в смеситель неото-гретым при условии, что по выходе из смесителя бетонная смесь будет иметь заданную положительную" температуру. Цемент не подогревают, так как при перемешивании с водой и заполнителями он быстро принимает положительную температуру.

Перевозку и укладку бетонной смеси осуществляют быстро, чтобы ее температура в опалубке была положительной.

Строительство в современных условиях не останавливается даже в холодный сезон: в зимнее время этот процесс усложняется из-за погодных условий и начинает требовать применения определённых технологий. Например, для качественного схватывания бетона его необходимо прогреть, но как это сделать зимой?


Существует много методов прогрева бетона в зимнее время. Это достаточно сложные и недешёвые способы, однако, если игнорировать их бетон не наберёт прочность и не будет отвечать проектным требованиям. Для прогрева бетона чаще всего используют провода ПНСВ. Чтобы запустить процесс, потребуется трансформатор или сварочный аппарат. Второй вариант более слабый и не даст быстрого и качественного эффекта, как первый.

Термоматы для прогрева бетона

Термомат для подогрева бетона не является каким-то новым изобретением: он активно применяется уже более десяти лет на всех стройках страны. Особенно популярен метод в северных регионах, где необходимость прогревать конструкции стоит острее. Способ хорошо себя зарекомендовал, однако за годы существования был усовершенствован.

Термоэлектроматы – это устройства, способные работать автономно. Время прогрева задано автоматически, и человеку не нужно следить за включением и выключением оборудования. Устройства расходуют значительно меньше электроэнергии, чем это происходит при нагреве конструкции при помощи проводов. Способ позволяет прогреть материал качественно. Подогрев происходит равномерно, не происходит локальный перегрев: это значит, что бетон застынет без микротрещин и будет иметь высокую прочность.

Преимущества данного способа:

  • Просто использовать;
  • Оборудование не требует сложного ухода;
  • Не требуется контролировать температуру нагрева, контроль осуществляется автоматически;
  • Высококачественный прогрев;
  • За 12 часов смесь достигает 70% марочной прочности.

Недостатки:

  • Термоматы дорого стоят, и не каждый застройщик может их приобрести;
  • Большинство представленного на рынке товара – подделка, которая не подходит для прогрева бетона, так как состоит из корейской греющей плёнки, рассчитанной на использование в качестве тёплого пола. Мощность таких устройств слишком мала, чтобы прогреть бетонную смесь.

Отличить подделку вполне возможно: необходимо обратить внимание на то, как нанесена плёнка. У устройств для тёплого пола она нанесена полосами, в устройствах для прогревания бетона слой плёнки нанесён равномерно.

Прогрев бетона в зимнее время проводом ПНСВ

Это достаточно простой способ прогрева. Он применяется в 70% случаев, так как является очень доступным. Для того чтобы сделать его возможным, необходимо позаботиться о монтаже проводов заранее, поэтому прокладывают сначала провод ПНСВ, а затем заливают бетонную смесь. Нагревание кабеля происходит при помощи трансформатора, который создаёт пониженное напряжение.

Преимущества:

  • Низкая стоимость процедуры. Трансформатор тратит значительно меньше энергии, чем другое оборудование, поэтому очень актуален, если бюджет ограничен. Покупать его тоже необязательно: вполне возможна аренда необходимого оборудования на время.
  • Для прогрева бетонной смеси подходит понижающий трансформатор 80 kW. При помощи такого оборудования без проблем прогревается 90 м 3 бетона.
  • Возможна прокладка провода в любую погоду.

Способ не лишён недостатков:

  • Необходимо заранее позаботиться о процедуре прогрева, проложить провод, заложить подогревочные петли (провод укладывается по особой технологии: недостаточно просто забетонировать его, необходимо, чтобы конструкция охватила весь бетон, для чего её укладывают петлями, которые закрепляют специальным образом, похожим на закладку тёплых полов).
  • Способ требует физических усилий от рабочих.

Прогрев бетона в зимнее время электродами

Необязательно для подогрева использовать провод ПНСВ: для этой цели подойдёт арматура, перевязанная проволокой катанкой 8-10 мм. Такой способ не подходит, если необходимо залить плитный фундамент или бетонную плиту. Обычно он используется при заливке колонн, диафрагм, стен: данный метод подогрева достаточно удобен и не требует лишних затрат.

Для работы также потребуется трансформатор. К нему подключаются стержни из металла, которые соединяются с бетонной конструкцией. Понижающий трансформатор будет подавать пониженное напряжение, которое разогреет металлические части конструкции.

Температура окружающей среды – важный фактор, который необходимо учитывать, определяя интервал между электродами. Стандартный интервал – это 0,6-1 метр. Прогрев бетона осуществляется за счёт влаги, содержащейся в его массе. Трансформатор подаёт на конструкцию три фазы. Участки, находящиеся между установленными электродами, прогреваются. Если необходимо прогреть колонну, то достаточно будет установить один электрод, так как прогрев бетона в зимнее время произойдёт за счёт соприкосновения конструкции с фазой трансформатора и землёй.

Преимущества данного способа:

  • Быстрый, несложный монтаж подогрева;
  • Недорогие материалы, используемые для монтажа.

К недостаткам можно отнести следующее:

  • Большое потребление энергии электродами. Один электрод требует примерно 45-50 ампер
  • Понижающий трансформатор мощностью 80 kW нельзя подключить к большому количеству электродов. Его мощности может не хватить. Для решения проблемы рекомендуется использовать несколько трансформаторов.
  • Арматуру и проволоку нельзя вытащить из конструкции после прогрева, она останется там навсегда.


Опалубка для прогрева бетона

Для этого метода используется опалубка, в щиты которой вставляют нагревательный элемент. Удобство конструкции заключается в том, что при необходимости можно легко заменить её неисправные элементы. Если дом монолитный, то при помощи такой опалубки можно прогреть его полностью. Если прогревать этажи поэтапно, то опалубку можно переставлять, переходя к нужному участку работы. Использовать такой способ можно даже при температуре окружающей среды -25 градусов.

Преимущества такой методики:

  • Высокая производительность при относительно небольших затратах энергии;
  • Требует немного времени на приготовления, монтаж;
  • Можно использовать в сильные морозы;
  • Можно использовать несколько раз.

Недостатки:

  • Высокая стоимость.
  • Неудобно, если строение нестандартное.

Индукционный прогрев бетона в зимнее время

Этот способ подогрева применяется достаточно редко и составляет менее десяти процентов. Прогрев материала осуществляется за счёт магнитной индукции, преобразовываемой в тепловую. Этот процесс возможен за счёт использования витков изолированного провода и вмонтированных в конструкцию металлических деталей.

Основная сложность процесса состоит в том, что необходимо точно рассчитать витки провода, учитывая количество металла в конструкции. Зачастую сделать это практически невозможно, именно поэтому способ магнитной индукции непопулярен.

Инфракрасный прогрев бетона

Направляемые инфракрасные установки могут значительно облегчить прогрев бетона в зимнее время. Установку не нужно никуда монтировать: прогрев может происходить непосредственно через опалубку конструкции. Инфракрасная установка позволяет качественно прогревать открытые поверхности бетона. Она подходит для работы с любой конструкцией вне зависимости от её формы. Регулировка тепла довольно проста: она осуществляется путём отдаления или приближения греющего элемента к конструкции.

Преимущества:

  • Метод эффективно расходует электроэнергию и качественно прогревает бетон.

Недостатки:

  • Высокая цена оборудования. Если объем производства большой, то инфракрасных установок требуется много, что невыгодно застройщику.
  • Метод вытравливает из бетона влагу, что может ослабить его прочность. Во избежание этой проблемы рекомендуется накрывать конструкцию плёнкой.

Тепляк для прогрева бетона

Это довольно старый способ прогрева: над бетонной конструкцией строят каркас, накрывают его брезентом. Внутрь шара ставится тепловая установка.

Преимущества метода:

  • Прогрев осуществляется относительно быстро;
  • Небольшие затраты энергии, можно использовать газ или другое топливо.

Недостатки:

  • Трудозатратный способ, особенно на больших площадях.

Чаще всего на строительных площадках применяют понижающий трансформатор. Это наиболее доступный и эффективный способ быстро прогреть бетон в зимнее время по приемлемой цене.

Выдержки из СНиП имеющие отношение к бетонным работам в зимнее время: транспортировка, укладка бетонной смеси, как заливать бетон зимой при отрицательных температурах.

СНиП. ПРОИЗВОДСТВО БЕТОННЫХ РАБОТ ПРИ ОТРИЦАТЕЛЬНЫХ ТЕМПЕРАТУРАХ ВОЗДУХА

2.53. Настоящие правила выполняются в период производства бетонных работ при ожидаемой среднесуточной температуре наружного воздуха ниже 5 °С и минимальной суточной температуре ниже 0 °С.

2.54. Приготовление бетонной смеси следует производить в обогреваемых бетоносмесительных установках, применяя подогретую воду, оттаянные или подогретые заполнители, обеспечивающие получение бетонной смеси с температурой не ниже требуемой по расчету. Допускается применение неотогретых сухих заполнителей, не содержащих наледи на зернах и смерзшихся комьев. При этом продолжительность перемешивания бетонной смеси должна быть увеличена не менее чем на 25 % по сравнению с летними условиями.

2.55. Способы и средства транспортирования должны обеспечивать предотвращение снижения температуры бетонной смеси ниже требуемой по расчету.

2.56. Состояние основания, на которое укладывается бетонная смесь, а также температура основания и способ укладки должны исключать возможность замерзания смеси в зоне контакта с основанием. При выдерживании бетона в конструкции методом термоса, при предварительном разогреве бетонной смеси, а также при применении бетона с противоморозными добавками допускается укладывать смесь на неотогретое непучинистое основание или старый бетон, если по расчету в зоне контакта на протяжении расчетного периода выдерживания бетона не произойдет его замерзания.

При температуре воздуха ниже минус 10 °С бетонирование густоармированных конструкций с арматурой диаметром больше 24 мм, арматурой из жестких прокатных профилей или с крупными металлическими закладными частями следует выполнять с предварительным отогревом металла до положительной температуры или местным вибрированием смеси в приарматурной и опалубочной зонах, за исключением случаев укладки предварительно разогретых бетонных смесей (при температуре смеси выше 45 °С). Продолжительность вибрирования бетонной смеси должна быть увеличена не менее чем на 25 % по сравнению с летними условиями.

2.57. При бетонировании элементов каркасных и рамных конструкций в сооружениях с жестким сопряжением узлов (опор) необходимость устройства разрывов в пролетах в зависимости от температуры тепловой обработки, с учетом возникающих температурных напряжении, следует согласовывать с проектной организацией. Неопалубленные поверхности конструкций следует укрывать паро- и теплоизоляционными материалами непосредственно по окончании бетонирования.

Выпуски арматуры забетонированных конструкций должны быть укрыты или утеплены на высоту (длину) не менее чем 0,5 м.

2.58. Перед укладкой бетонной (растворной) смеси поверхности полостей стыков сборных железобетонных элементов должны быть очищены от снега и наледи.

2.59. Бетонирование конструкций на вечномерзлых грунтах следует производить в соответствии со СНиП II-18-76.

Ускорение твердения бетона при бетонировании монолитных буронабивных свай и замоноличивании буроопускных следует достигать путем введения в бетонную смесь комплексных противоморозных добавок, не снижающих прочность смерзания бетона с вечномерзлым грунтом.

2.60. Выбор способа выдерживания бетона при зимнем бетонировании монолитных конструкций следует производить в соответствии с рекомендуемым приложением 9.

2.61. Контроль прочности бетона следует осуществлять, как правило, испытанием образцов, изготовленных у места укладки бетонной смеси. Образцы, хранящиеся на морозе, перед испытанием надлежит выдерживать 2-4 ч при температуре 15-20 °С.

Допускается контроль прочности производить по температуре бетона в процессе его выдерживания.

2.62. Требования к производству работ при отрицательных температурах воздуха установлены в таблице. 6

6. Требования к производству бетонных работ при отрицательных температурах.
Параметр Величина параметра Контроль (метод, объем, вид регистрации)
Заливать бетон при отрицательных температурах.
1. Прочность бетона монолитных и сборно-монолитных конструкций к моменту замерзания: Измерительный по ГОСТ 18105-86, журнал работ
для бетона без противоморозных добавок:
конструкций, эксплуатирующихся внутри зданий, фундаментов под оборудование, не подвергающихся динамическим воздействиям, подземных конструкций Не менее 5 МПа
конструкций, подвергающихся атмосферным воздействиям в процессе эксплуатации, для класса: Не менее, % проектной прочности:
В7,5-В10 50
В12,5-В25 40
В30 и выше 30
конструкций, подвергающихся по окончании выдерживания переменному замораживанию и оттаиванию в водонасыщенном состоянии или расположенных в зоне сезонного оттаивания вечномерзлых грунтовпри условии введения в бетон воздухововлекающих или газообразующих ПАВ 70
в преднапряженных конструкциях 80
для бетона с противоморозными добавками К моменту охлаждения бетона до температуры, на которую рассчитано количество добавок, не менее 20 % проектной прочности
2. Загружение конструкций расчетной нагрузкой допускается после достижения бетоном прочности Не менее 100 % проектной -
3. Температура воды и бетонной смеси на выходе из смесителя, приготовленной: Измерительный, 2 раза в смену, журнал работ
на портландцементе, шлакопортландцементе, пуццолановом портландцементе марок ниже М600 Воды не более 70 °С, смеси не более 35 °С
на быстротвердеющем портландцементе и портландцементе марки М600 и выше Воды не более 60°С,смеси не более 30 °С
на глиноземистом портландцементе Воды не более 40 С, смеси не более 25 °С
Температура бетонной смеси, уложенной в опалубку, к началу выдерживания или термообработки: Измерительный, в местах, определенных ППР, журнал работ
при методе термоса Устанавливается расчетом, но не ниже 5°С
с противоморозными добавками Не менее чем на 5 С выше температуры замерзания раствора затворения
при тепловой обработке Не ниже 0 °С
5. Температура в процессе выдерживания и тепловой обработки для бетона на: Определяется расчетом, но не выше, °С: При термообработке - через каждые 2 ч в период подъема температуры или в первые сутки. В последующие трое суток и без термообработки - не реже 2 раз в смену. В остальное время выдерживания - один раз в сутки
портландцементе 80
шлакопортландцементе 90
6. Скорость подъема температуры при тепловой обработке бетона: Измерительный, через каждые 2 ч, журнал работ
для конструкций с модулем поверхности: Не более, °С/ч:
до 4 5
от 5 до 10 10
св. 10 15
для стыков 20
7. Скорость остывания бетона по окончании тепловой обработки для конструкций с модулем поверхности: Измерительный, журнал работ
до 4 Определяется расчетом
от 5 до 10 Не более 5°С/ч
св. 10 Не более 10°С/ч
8. Разность температур наружных слоев бетона и воздуха при распалубке с коэффициентом армирования до 1 %, до 3 % и более 3 % должна быть соответственно для конструкций с модулем поверхности: То же
от 2 до 5 Не более 20, 30, 40 °С
св. 5 Не более 30, 40, 50 °С