Скелетная мышечная ткань. Строение скелетной мышцы как органа

Образует скелетную мускулатуру человека и животных, предназначенную для выполнения различных действий: движения тела, сокращения голосовых связок, дыхания. Мышцы состоят на 70-75 % из воды.

Энциклопедичный YouTube

    1 / 3

    Строение мышечной клетки

    Строение скелетных поперечнополосатых мышц

    Сокращение мышечных волокон

    Субтитры

    Мы рассмотрели механизм сокращения мышц на молекулярном уровне. А теперь давайте поговорим о строении самой мышцы и о том, как она связана с окружающими тканями. Я нарисую бицепс. Вот так… Сокращающийся бицепс… Вот локоть, вот - кисть. Вот такой у человека бицепс при сокращении. Наверное, вы все видели рисунки с изображением мышц, по крайней мере схематические, мышца крепится к костям с обеих сторон. Обозначу кости. Схематично… Мышца с обеих сторон прикрепляется к кости с помощью сухожилий. Вот здесь у нас кость. И вот здесь тоже. А белым цветом я обозначу сухожилия. Они прикрепляют мышцы к костям. А это сухожилие. Мышца крепится к двум костям; при сокращении она перемещает часть скелетной системы. Сегодня мы говорим о скелетных мышцах. Скелетных… К другим типам относятся гладкие мышцы и сердечные мышцы. Сердечные мышцы, как вы понимаете, - в нашем сердце; а гладкие мышцы сокращаются непроизвольно и медленно, они образуют, например, пищеварительный тракт. Я подготовлю о них ролик. Но в большинстве случаев под словом «мышцы» подразумеваются скелетные мышцы, которые перемещают кости и дают возможность ходить, разговаривать, жевать и тому подобное. Давайте рассмотрим такие мышцы подробнее. Если посмотреть на мышцу бицепса в поперечном разрезе… поперечный разрез мышцы… Я сделаю рисунок побольше. Нарисуем бицепс… Нет, пусть это будет просто абстрактная мышца. Рассмотрим ее в поперечном разрезе. Сейчас узнаем, что у мышцы внутри. Мышца переходит в сухожилие. Вот здесь сухожилие. И у мышцы есть оболочка. Четкой границы между оболочкой и сухожилием нет; оболочка мышцы называется эпимизий. Это соединительная ткань. Она окружает мышцу, выполняет некоторые защитные функции, уменьшает трение мышцы о кость и другие ткани, в нашем примере - ткани руки. Внутри мышцы тоже есть соединительная ткань. Возьму другой цвет. Оранжевый. Это соединительнотканная оболочка; она окружает пучки мышечных волокон разной толщины. Она называется перимизий, это соединительная ткань внутри мышцы. Перимизий… А каждый из этих пучков окружен перимизием… Если рассматривать его подробней… Вот один такой пучок мышечных волокон, окруженный перимизием… Возьмем вот этот пучок. Он окружен оболочкой, называемой перимизием. Это такое «умное» слово, обозначающее соединительную ткань. Там, конечно, есть и другие ткани - нервные волокна, капилляры, ведь к мышце нужно подводить кровь, нервные импульсы. Так что там помимо соединительной есть и другие ткани, обеспечивающие жизнь мышечных клеток. Каждая из таких групп волокон - а это большие группы волокон мышцы - называется пучок. Это пучок… Пучок. Внутри такого пучка тоже есть соединительная ткань; ее называют эндомизий. Сейчас я его обозначу. Эндомизий. Повторяю: в составе соединительной ткани присутствуют нервные волокна, капилляры - все необходимое для обеспечения контакта с мышечными клетками. Мы рассматриваем строение мышцы. Вот это эндомизий. Зеленым цветом обозначена соединительная ткань, которую называют эндомизий. Эндомизий. А вот такое «волокно», окруженное эндомизием, и есть мышечная клетка. Мышечная клетка. Обозначу другим цветом. Вот такая вытянутая клетка. Я ее немного «вытащу». Мышечная клетка. Заглянем внутрь нее, и посмотрим, как там располагаются миозиновые и актиновые филаменты. Итак, вот мышечная клетка или мышечное волокно. Мышечное волокно… Вам часто будут встречаться два префикса; первый - «мио», произошедший от греческого слова «мышца»; И второй - «сарко», например, в словах «сарколемма», «саркоплазматическая сеть», произошедший от греческого слова «мясо», «плоть». Он сохранился в ряде слов, например, «саркофаг». «Сарко» - плоть, «мио» - мышца. Итак, вот это мышечное волокно. Или мышечная клетка. Давайте рассмотрим ее подробнее. Сейчас я ее нарисую покрупнее. Мышечная клетка, иначе называется мышечное волокно. «Волокно» - потому что в длину она намного больше, чем в ширину; она имеет вытянутую форму. Сейчас я нарисую. Вот такая у меня мышечная клетка… Рассмотрим ее в поперечном разрезе. Мышечное волокно… Они бывают относительно короткие - несколько сот микрометров - и очень длинные, по крайней мере по клеточным меркам. У нас пусть будет несколько сантиметров. Представьте себе такую клетку! Она очень длинная, поэтому в ней несколько ядер. И чтобы обозначить ядра, я подправлю свой рисунок. Добавлю вот такие бугорки на мембране клетки, - под ними как раз и будут ядра. Напомню, это всего одна мышечная клетка; такие клетки очень длинные, поэтому в них несколько ядер. Вот здесь будет поперечный разрез. Как я сказал, в клетке несколько ядер. Представим, что мембрана прозрачная; вот одно ядро, вот - другое, вот здесь - третье, и четвертое. Много ядер нужно для того, чтобы не тратить время на преодоление белка́ми больших расстояний; скажем, от этого ядра до вот этой части клетки. В многоядерной клетке информация ДНК всегда рядом. Если я не ошибаюсь, в одном миллиметре мышечной ткани в среднем тридцать ядер. Не знаю, сколько ядер в нашей клетке, но расположены они непосредственно под мембраной - а вы помните, как она называется, из прошлого занятия. Мембрана мышечной клетки называется сарколемма. Запишем. Сарколемма. Ударение на третий слог. Вот это - ядра. Ядро… А если посмотрим на поперечный разрез, увидим еще более тонкие структуры, их называют миофибриллы. Вот такие нитевидные структуры внутри клетки. Я вытяну одну из них на рисунке. Вот одна из таких «ниточек». Это миофибрилла. Миофибрилла… Если посмотреть на нее в микроскоп, то можно увидеть бороздки. Вот такие бороздки… Здесь, здесь и здесь… И еще пара тонких... Внутри миофибрилл и происходит взаимодействие филаментов миозина и актина. Давайте еще увеличим масштаб. Так и будем увеличивать, пока не дойдем до молекулярного уровня. Итак, миофибрилла; она находится внутри мышечной клетки или мышечного волокна. Мышечное волокно это мышечная клетка. Миофибрилла - это нитевидная структура внутри мышечной клетки. Именно миофибриллы обеспечивают сокращение мышц. Я нарисую миофибриллу в более крупном масштабе. Вот приблизительно так… На ней полоски… Это называется исчерченность. Узкие полоски. Ещё… Есть более широкие полоски. Постараюсь нарисовать как можно аккуратней. Вот здесь еще одна полоска… А затем все повторяется. Каждый из таких повторяющихся участков называется саркомер. Это саркомер. Саркомер… Такие участки находятся между так называемыми Z-линиями. Термины придумывались, когда исследователи впервые увидели эти линии под микроскопом. Мы поговорим о том, как они связаны с миозином и актином совсем скоро. Вот эту зону принято называть Диск А или А-диск. А вот эту зону здесь и здесь - диск I или I-диск. Через пару минут мы узнаем, как они связаны с механизмами, молекулами, о которых мы говорили на прошлом занятии. Если заглянуть внутрь миофибрилл, сделаем ее поперечный разрез, разделим на секции параллельно экрану, в который смотрим, вот что увидим. Так, вот одна Z-линия. Z-линия… Следующая Z-линия. Я рисую один саркомер в крупном масштабе. Соседняя Z-линия. И вот мы переходим на молекулярный уровень, как я и обещал. Вот актиновые филаменты Обозначу их волнистыми линиями. Пусть будет три… Подпишу их… Актиновые филаменты… А между актиновыми филаментами - миозиновые. Нарисую их другим цветом… Помните, на волокнах миозина две головки. На каждом из них по две головки, которые скользят или «ползут» по волокнам актина. Обозначу несколько… Вот здесь они прикреплены... Сейчас мы посмотрим, что происходит, когда мышца сокращается. Нарисуем еще волокна миозина. На самом деле, головок миозина несравнимо больше, но у нас схематический рисунок. Это филаменты белка миозина, они перекручены, как мы видели на прошлом занятии; вот здесь еще один. Я обозначу схематически… Сразу можно заметить, что нити миозина находятся в А-диске. Вот это область А-диска. А-диск… Участки нитей актина и миозина накладываются друг на друга, но I-диск - это область, где нет миозина, только актин. I-диск… Филаменты миозина удерживаются титином; это упругий, эластичный белок. Я его обозначу другим цветом. Вот такие спирали… Нити миозина удерживаются титином. Он соединяет миозин с Z-зоной. Итак, что же происходит? При возбуждении нейрона… Нарисуем концевую ветвь нейрона, точнее говоря, концевую ветвь аксона. Это моторный нейрон. Он отдает миофибрилле команду на сокращение. Потенциал действия распространяется по мембране во всех направлениях. А в мембране, мы помним, есть Т-трубочки. Потенциал действия проходит по ним внутрь клетки и продолжает распространяться. Саркоплазматическая сеть выпускает ионы кальция. Ионы кальция связываются с тропонином, который прикрепляется к актиновым филаментам, тропомиозин сдвигается, и миозин может взаимодействовать с актином. Миозиновые головки могут использовать энергию АТФ и скользить по нитям актина. Помните этот «рабочий ход»? Это можно рассматривать как движение актиновых филаментов вправо (от нас) или как движение головки миозина влево (от нас); это ведь зеркальное движение, верно? Смотрите, миозин останется на месте, а актиновые филаменты притянутся друг к другу. Друг к другу. Вот так сокращается мышца. Итак, мы прошли путь от общего вида мышцы к процессам, происходящим на молекулярном уровне, о которых мы говорили на прошлых занятиях. Эти процессы происходят во всех миофибриллах внутри клетки, - ведь саркоплазматическая сеть выпускает кальций в цитоплазму, другое название которой - миоплазма, ведь речь идет о мышечной клетке, всей клетки. Кальций попадает во все миофибриллы. Ионов кальция достаточно, чтобы связаться со всеми - ну или с большей частью - белков тропонина на актиновых филаментах, и вся мышца сокращается. У отдельных мышечных волокон, мышечных клеток, наверное, небольшая сократительная сила. Кстати, когда сокращается одно или несколько волокон, вы ощущаете подергивания. Но когда они работают все, их силы достаточно, чтобы выполнять работу, двигать наши кости, поднимать вес. Надеюсь, занятие было полезным.

Гистогенез

Источником развития скелетной мускулатуры являются клетки миотомов - миобласты. Часть из них дифференцируется в местах образования так называемых аутохтонных мышц. Прочие же мигрируют из миотомов в мезенхиму ; при этом они уже детерминированы, хотя внешне не отличаются от других клеток мезенхимы. Их дифференцировка продолжается в местах закладки других мышц тела. В ходе дифференцировки возникает 2 клеточные линии. Клетки первой сливаются, образуя симпласты - мышечные трубки (миотубы). Клетки второй группы остаются самостоятельными и дифференцируются в миосателлиты (миосателлитоциты).

В первой группе происходит дифференцировка специфических органелл миофибрилл , постепенно они занимают большую часть просвета миотубы, оттесняя ядра клеток к периферии.

Клетки второй группы остаются самостоятельными и располагаются на поверхности мышечных трубок.

Строение

Структурной единицей мышечной ткани является мышечное волокно. Оно состоит из миосимпласта и миосателлитоцитов (клеток-сателлитов), покрытых общей базальной мембраной . Длина мышечного волокна может достигать нескольких сантиметров при толщине в 50-100 микрометров.

Скелетные мышцы прикреплены к костям или друг к другу крепкими, гибкими сухожилиями .

Строение миосимпласта

Миосимпласт представляет собой совокупность слившихся клеток. В нем имеется большое количество ядер, расположенных по периферии мышечного волокна (их число может достигать десятков тысяч). Как и ядра, на периферии симпласта расположены другие органеллы, необходимые для работы мышечной клетки - эндоплазматическая сеть (саркоплазматический ретикулюм), митохондрии и др. Центральную часть симпласта занимают миофибриллы . Структурная единица миофибриллы - саркомер . Он состоит из молекул актина и миозина , именно их взаимодействие и обеспечивает изменение длины мышечного волокна и как следствие сокращение мышцы . В состав саркомера входят также многие вспомогательные белки - титин , тропонин , тропомиозин и др. мотонейрон . Число мышечных волокон, входящих в состав одной МЕ, варьирует в разных мышцах. Например, там, где требуется тонкий контроль движений (в пальцах или в мышцах глаза), моторные единицы небольшие, они содержат не более 30 волокон. А в икроножной мышце, где тонкий контроль не нужен, в МЕ насчитывается более 1000 мышечных волокон.

Моторные единицы одной мышцы могут быть разными. В зависимости от скорости сокращения моторные единицы разделяют на медленные (slow (S-МЕ)) и быстрые (fast (F-МЕ)). А F-МЕ в свою очередь делят по устойчивости к утомлению на устойчивые к утомлению (fast-fatigue-resistant (FR-МЕ)) и быстроутомляемые (fast-fatigable (FF-МЕ)).

Соответствующим образом подразделяют иннервирующие данные МЕ мотонейроны. Существуют S-мотонейроны (S-МН), FF-мотонейроны (F-МН) и FR -мотонейроны (FR-МН) S-МЕ характеризуются высоким содержанием белка миоглобина, который способен связывать кислород (О2). Мышцы, преимущественно состоящие из МЕ этого типа, за их темно-красный цвет называются красными. Красные мышцы выполняют функцию поддержания позы человека. Предельное утомление таких мышц наступает очень медленно, а восстановление функций происходит наоборот, очень быстро.

Такая способность обуславливается наличием миоглобина и большого числа митохондрий . МЕ красных мышц, как правило, содержат большое количество мышечных волокон. FR-МЕ составляют мышцы, способные выполнять быстрые сокращения без заметного утомления. Волокна FR-ME содержат большое количество митохондрий и способны образовывать АТФ путём окислительного фосфорилирования.

Как правило, число волокон в FR-ME меньше, чем в S-ME. Волокна FF-ME характеризуются меньшим содержанием митохондрий, чем в FR-ME, а также тем, что АТФ в них образуется за счет гликолиза . В них отсутствует миоглобин , поэтому мышцы, состоящие из МЕ этого типа, называют белыми. Белые мышцы развивают сильное и быстрое сокращение, но довольно быстро утомляются.

Функция

Данный вид мышечной ткани обеспечивает возможность выполнения произвольных движений. Сокращающаяся мышца воздействует на кости или кожу, к которым она прикрепляется. При этом один из пунктов прикрепления остаётся неподвижным - так называемая точка фиксации (лат. púnctum fíxsum ), которая в большинстве случаев рассматривается в качестве начального участка мышцы. Перемещающийся фрагмент мышцы называют подвижной точкой , (лат. púnctum móbile ), которая является местом её прикрепления. Тем не менее, в зависимости от выполняемой функции, punctum fixum может выступать в качестве punctum mobile , и наоборот.

Организм человека - сложная и многогранная система, каждая клетка, каждая молекула которой тесно взаимосвязана с другими. Находясь в гармонии друг с другом, они способны обеспечивать единство, которое, в свою очередь, проявляется в здоровье и долголетии, однако при малейшем сбое вся система может рухнуть в один миг. Как устроен этот сложный механизм? Благодаря чему поддерживается его полноценная работа и как предотвратить дисбаланс слаженной и в то же время чувствительной к внешнему воздействию системы? Эти и другие вопросы раскрывает анатомия человека.

Основы анатомии: науки о человеке

Анатомия - это наука, повествующая о внешнем и внутреннем устройстве организма в нормальном состоянии и при наличии всевозможных отклонений. Для удобства восприятия строение человека анатомия рассматривает в нескольких плоскостях, начиная с маленьких «песчинок» и заканчивая крупными «кирпичиками», составляющими единое целое. Такой подход позволяет выделить несколько уровней изучения организма:

  • молекулярный и атомный,
  • клеточный,
  • тканевой,
  • органный,
  • системный.

Молекулярный и клеточный уровни живого организма

Начальный этап изучения анатомии тела человека рассматривает организм как комплекс ионов, атомов и молекул. Как и большинство живых существ, человек образован всевозможными химическими соединениями, основу которых составляют углерод, водород, азот, кислород, кальций, натрий и другие микро- и макроэлементы. Именно эти вещества поодиночке и в комплексе служат основой молекул веществ, входящих в клеточный состав человеческого тела.

В зависимости от особенностей формы, размеров и выполняемых функций выделяют различные виды клеток. Так или иначе, каждая из них имеет схожее строение, присущее для эукариотов - наличие ядра и различных молекулярных компонентов. Липиды, белки, углеводы, вода, соли, нуклеиновые кислоты и т. д. вступают в реакции друг с другом, обеспечивая тем самым выполнение возложенных на них функций.

Строение человека: анатомия тканей и органов

Сходные по строению и функциям клетки в комплексе с межклеточным веществом образуют ткани, каждая из которых выполняет ряд определённых задач. В зависимости от этого в анатомии тела человека выделяют 4 группы тканей:

  • Эпителиальная ткань отличается плотной структурой и малым количеством межклеточного вещества. Такое строение позволяет ей отлично справляться с защитой организма от внешнего воздействия и всасыванием полезных веществ извне. Впрочем, эпителий присутствует не только во внешней оболочке организма, но и во внутренних органах, например, железах. Они быстро восстанавливаются практически без постороннего вмешательства, а потому считаются наиболее универсальными и прочными.
  • Соединительные ткани могут быть очень разнообразны. Они отличаются большим процентом межклеточного вещества, которое может быть любой структуры и плотности. В зависимости от этого варьируют и функции, возложенные на соединительные ткани, - они могут служить опорой, защитой и транспортом питательных веществ для остальных тканей и клеток организма.
  • Особенностью мышечной ткани является умение изменять свои размеры, то есть сокращаться и расслабляться. Благодаря этому она отлично справляется с координацией тела - перемещением как отдельных частей, так и целого организма в пространстве.
  • Нервная ткань - самая сложная и функциональная. Её клетки управляют большинством процессов, протекающих внутри других органов и систем, однако при этом не могут существовать самостоятельно. Всю нервную ткань условно можно разделить на 2 вида: нейроны и глии. Первые обеспечивают передачу импульсов по всему организму, а вторые оберегают и питают их.

Комплекс тканей, локализованный в определённой части организма, имеющий чёткую форму и выполняющий общую функцию, является самостоятельным органом. Как правило, орган представлен различными типами клеток, однако, какой-то определённый вид ткани всегда преобладает, а остальные носят, скорее, вспомогательный характер.

В анатомии человека органы принято условно классифицировать на наружные и внутренние. Наружное, или внешнее, строение человеческого тела можно увидеть и изучить без каких-либо специальных приборов или манипуляций, поскольку все части видны невооружённым глазом. К ним относятся голова, шея, спина, грудь, туловище, верхние и нижние конечности. В свою очередь, анатомия внутренних органов более сложна, поскольку для её изучения требуется инвазивное вмешательство, современные научно-медицинские приспособления или как минимум наглядный дидактический материал. Внутреннее строение представлено органами, находящимися внутри тела человека, - почками, печенью, желудком, кишечником, головным мозгом и т. д.

Системы органов в анатомии человека

Несмотря на то, что каждый орган выполняет какую-то определённую функцию, существовать по-отдельности они не могут - для нормальной жизнедеятельности необходима комплексная работа, поддерживающая функциональность целого организма. Именно поэтому анатомия органов не является самой высокой ступенью изучения тела человека - гораздо удобнее рассматривать устройство организма с системной точки зрения. Взаимодействуя друг с другом, каждая система обеспечивает работоспособность организма в целом.


В анатомии принято выделять 12 систем организма:

  • опорно-двигательный аппарат,
  • покровная система,
  • кроветворение,
  • сердечно-сосудистый комплекс,
  • пищеварение,
  • иммунная,
  • мочеполовой комплекс,
  • эндокринная система,
  • дыхание.

Чтобы детально изучить строение человека, рассмотрим каждую из систем органов более подробно. Краткий экскурс в основу анатомии человеческого тела поможет сориентироваться в том, от чего зависит полноценная работа организма в целом, как взаимодействуют ткани, органы и системы и каким образом сохранить здоровье.

Анатомия органов опорно-двигательной системы

Опорно-двигательный аппарат представляет собой каркас, который позволяет человеку свободно перемещаться в пространстве и поддерживает объёмную форму тела. Система включает скелет и мышечные волокна, которые тесно взаимодействуют друг с другом. Скелет определяет размеры и форму человека и формирует определённые полости, в которых помещены внутренние органы. В зависимости от возраста количество костей в скелетной системе варьирует в пределах выше 200 (у новорождённого 270, у взрослого 205–207), часть из которых выполняют функцию рычагов, а остальные остаются неподвижными, защищая органы от внешних повреждений. Кроме того, костные ткани участвуют в обмене микроэлементов, в частности, фосфора и кальция.


Анатомически скелет состоит из 6 ключевых отделов: пояса верхних и нижних конечностей плюс сами конечности, позвоночный столб и череп. В зависимости от выполняемых функций состав костей включает неорганические и органические вещества в разных пропорциях. Более прочные кости преимущественно состоят из минеральных солей, эластичные - из коллагеновых волокон. Наружный слой костей представлен очень плотной надкостницей, которая не только защищает костную ткань, но и обеспечивает ей необходимое для роста питание - именно из неё в микроскопические канальцы внутренней структуры кости проникают сосуды и нервы.

Соединительными элементами между отдельными костями служат суставы - своеобразные амортизаторы, которые позволяют изменять положение частей тела относительно друг друга. Впрочем, соединения между костными структурами могут быть не только подвижными: полуподвижные сочленения обеспечиваются хрящами различной плотности, а полностью неподвижные - костными швами в местах срастания.

Мышечная система приводит в действие весь этот сложный механизм, а также обеспечивает работу всех внутренних органов благодаря контролируемым и своевременным сокращениям. Скелетные мышечные волокна прилегают непосредственно к костям и отвечают за подвижность тела, гладкие служат основой сосудов и внутренних органов, а сердечные регулирует работу сердца, обеспечивая полноценный кровоток, а значит, жизнеспособность человека.


Поверхностная анатомия человеческого тела: покровная система

Наружное строение человека представлено кожей или, как её принято называть в биологии, дермой, и слизистыми оболочками. Несмотря на кажущуюся незначительность, эти органы играют важнейшую роль в обеспечении нормальной жизнедеятельности: вкупе со слизистыми кожа является огромной рецепторной площадкой, благодаря которой человек может тактильно ощущать различные формы воздействия, как приятные, так и опасные для здоровья.

Покровная система выполняет не только рецепторную функцию - её ткани способны защищать организм от разрушающего внешнего воздействия, выводить через микропоры токсичные и ядовитые вещества и регулировать колебания температуры тела. Составляя порядка 15 % от общей массы тела, она является важнейшей пограничной оболочкой, регулирующей взаимодействие человеческого тела и окружающей среды.

Система кроветворения в анатомии тела человека

Кроветворение является одним из основных процессов, поддерживающих жизнь внутри организма. Как биологическая жидкость кровь присутствует в 99 % всех органов, обеспечивая их полноценное питание, а значит, и функциональность. Вкупе органы кровеносной системы отвечают за образование форменных элементов крови: эритроцитов, лейкоцитов, лимфоцитов и тромбоцитов, которые служат своеобразным зеркалом, отражающим состояние организма. Именно с общего анализа крови начинается диагностика абсолютного большинства заболеваний - функциональность органов кроветворения, а значит, и состав крови чувствительно реагирует на любое изменение внутри организма, начиная с банального инфекционного или простудного заболевания и заканчивая опасными патологиями. Такая особенность позволяет оперативно приспособиться к новым условиям и быстрее восстановиться, подключив иммунитет и другие резервные возможности организма.


Все выполняемые функции чётко разделены между органами, составляющими кроветворный комплекс:

  • лимфатические узлы гарантируют поставку плазматических клеток,
  • костный мозг формирует стволовые клетки, которые позднее трансформируются в форменные элементы,
  • периферические сосудистые системы служат для транспортировки биологической жидкости к другим органам,
  • селезёнка фильтрует кровь от омертвевших клеток.

Всё это в комплексе является сложным саморегулируемым механизмом, малейший сбой в котором чреват серьёзными патологиями, затрагивающими любую из систем организма.

Сердечно-сосудистый комплекс

Система, включающая сердце и все сосуды, начиная с самых крупных и заканчивая микроскопическими капиллярами диаметром в несколько микрон, обеспечивает циркуляцию крови внутри организма, питая, насыщая кислородом, витаминами и микроэлементами и очищая от продуктов распада каждую клеточку человеческого тела. Эту гигантскую по площади сложнейшую сеть нагляднее всего демонстрирует анатомия человека в картинках и схемах, поскольку теоретически разобраться, как и куда ведёт каждый конкретный сосуд, практически нереально - их количество в организме взрослого достигает 40 млрд и более. Тем не менее, вся эта сеть является сбалансированной замкнутой системой, организованной в 2 круга кровообращения: большой и малый.


В зависимости от объёма и выполняемых функций сосуды можно классифицировать следующим образом:

  1. Артерии - крупные трубчатые полости с плотными стенками, которые состоят из мышечных, коллагеновых и эластиновых волокон. По этим сосудам насыщенная молекулами кислорода кровь разносится от сердца к многочисленным органам, обеспечивая их полноценное питание. Единственным исключением является лёгочная артерия, по которой, в отличие от остальных, кровь движется к сердцу.
  2. Артериолы - более мелкие артерии, способные менять величину просвета. Они служат связующим звеном между объёмными артериями и мелкой капиллярной сетью.
  3. Капилляры - самые маленькие сосудики диаметром не более 11 мкм, сквозь стенки которых из крови в близлежащие ткани просачиваются молекулы питательных веществ.
  4. Анастомозы - артериоло-венулярные сосуды, обеспечивающие переход из артериол в венулу в обход сети капилляров.
  5. Венулы - такие же мелкие, как и капилляры, сосуды, которые обеспечивают отток крови, лишённой кислорода и полезных частиц.
  6. Вены - более крупные по сравнению с венулами сосуды, по которым обеднённая кровь с продуктами распада движется к сердцу.

«Двигателем» столь крупной замкнутой сети является сердце - полый мышечный орган, благодаря ритмичным сокращениям которого кровь продвигается по сосудистой сетке. При нормальной работе каждую минуту сердце перекачивает не менее 6 литров крови, а за день - примерно 8 тысяч литров. Неудивительно, что сердечные заболевания являются одними из самых серьёзных и распространённых, - с возрастом этот биологический насос изнашивается, поэтому необходимо тщательно отслеживать любые изменения в его работе.

Анатомия человека: органы пищеварительной системы

Пищеварение является сложным многоступенчатым процессом, в ходе которого поступившая в организм пища расщепляется на молекулы, переваривается и транспортируется к тканям и органам. Весь этот процесс начинается в ротовой полости, куда, собственно, и поступают питательные элементы в составе блюд, включённых в суточный рацион. Там крупные куски пищи подвергаются измельчению, после чего перемещаются в глотку и пищевод.


Желудок - полый мышечный орган в брюшной полости, является одним из ключевых звеньев пищеварительной цепочки. Несмотря на то, что переваривание начинается ещё в ротовой полости, основные процессы протекают именно в желудке - здесь часть веществ сразу всасывается в кровоток, а часть подвергается дальнейшему расщеплению под воздействием желудочного сока. Основные процессы протекают под воздействием соляной кислоты и ферментов, а слизь служит своего рода амортизатором для дальнейшей транспортировки пищевой массы в кишечник.

В кишечнике желудочное пищеварение сменяется кишечным. Поступающая из протока желчь нейтрализует действие желудочного сока и эмульгирует жиры, повышая их соприкосновение с ферментами. Далее, на протяжении всей длины кишечника, оставшаяся непереваренной масса расщепляется на молекулы и всасывается в кровоток через кишечную стенку, а всё, что остаётся невостребованным, выводится с каловыми массами.

Помимо основных органов, отвечающих за транспортировку и расщепление нутриентов, к пищеварительной системе относятся:

  • Слюнные железы, язык - отвечают за подготовку пищевого комка к расщеплению.
  • Печень - самая крупная в организме железа, которая регулирует синтез желчи.
  • Поджелудочная железа - орган, необходимый для выработки ферментов и гормонов, принимающих участие в метаболизме.

Значение нервной системы в анатомии тела

Комплекс, объединённый нервной системой, служит своего рода центром управления всеми процессами организма. Именно здесь регулируется работа тела человека, его способность воспринимать и реагировать на любой внешний раздражитель. Руководствуясь функциями и локализацией конкретных органов нервной системы, в анатомии тела принято выделять несколько классификаций:

Центральная и периферическая нервные системы

ЦНС, или центральная нервная система, - это комплекс веществ головного и спинного мозга. И тот, и другой одинаково хорошо защищены от травмирующих внешних воздействий костными структурами - спинной мозг заключён внутри позвоночного столба, а головной располагается в полости черепа. Такое строение организма позволяет предотвратить повреждения чувствительных клеток мозгового вещества при малейшем воздействии.


Периферическая нервная система отходит от позвоночного столба к различным органам и тканям. Она представлена 12 парами черепных и 31 парой спинномозговых нервов, по которым различные импульсы молниеносно передаются от мозга к тканям, стимулируя или, наоборот, подавляя их работу в зависимости от различных факторов и конкретной ситуации.

Соматическая и вегетативная нервные системы

Соматический отдел служит связующим элементом между окружающей средой и организмом. Именно благодаря этим нервным волокнам человек в состоянии не только воспринимать окружающую действительность (например, «огонь горячий»), но и адекватно на неё реагировать («значит, надо убрать руку, чтобы не получить ожог»). Такой механизм позволяет защитить тело от немотивированного риска, подстроиться под окружающую обстановку и правильно проанализировать информацию.

Вегетативная система более автономна, поэтому медленнее реагирует на влияние извне. Она регулирует деятельность внутренних органов - желёз, сердечно-сосудистой, пищеварительной и других систем, а также поддерживает оптимальный баланс во внутренней среде человеческого тела.

Анатомия внутренних органов лимфатической системы

Лимфатическая сеть хоть и менее обширна, чем кровеносная, но не менее значима для поддержания здоровья человека. К ней относятся разветвлённые сосуды и лимфатические узлы, по которым движется биологически значимая жидкость - лимфа, находящаяся в тканях и органах. Ещё одним отличием лимфатической сети от кровеносной является её незамкнутость - сосуды, несущие лимфу, не смыкаются в кольцо, оканчиваясь непосредственно в тканях, откуда всасывают лишнюю жидкость и впоследствии переносят к венозному руслу.


В лимфатических узлах происходит дополнительная фильтрация, позволяющая очистить лимфу от молекул вирусов, бактерий и токсинов. По их реакции медики обычно и узнают, что в организме начался воспалительный процесс, - места локализации лимфоузлов становятся отёчными и болезненными, а сами узелки заметно увеличиваются в размерах.

Основная сфера деятельности лимфатической системы заключается в следующем:

  • транспорт липидов, всосавшихся с пищей, в кровяное русло;
  • поддержание сбалансированного объёма и состава биологических жидкостей организма;
  • эвакуация скопившихся излишков воды в тканях (например, при отёках);
  • защитная функция тканей лимфоузлов, в которой вырабатываются антитела;
  • фильтрация молекул вирусов, бактерий и токсинов.

Роль иммунитета в анатомии человека

На иммунной системе лежит ответственность за поддержание здоровья организма при любом внешнем воздействии, особенно вирусной или бактериальной природы. Анатомия тела продумана таким образом, чтобы болезнетворные микроорганизмы, попадая внутрь, максимально быстро встречались с органами иммунитета, которые, в свою очередь, должны не только распознать происхождение «незваного гостя», но и правильно отреагировать на его появление, подключив остальные резервы.


Классификация органов иммунитета включает центральную и периферическую группы. К первой относятся костный мозг и тимус. Костный мозг представлен губчатой тканью, которая способна синтезировать клетки крови, в том числе лейкоциты, отвечающие за уничтожение чужеродных микробов. А тимус, или вилочковая железа, является местом для размножения лимфатических клеток.

Периферические органы, отвечающие за иммунитет, более многочисленны. К ним относятся:

  • Лимфатические узлы - место фильтрации и распознавания патологических микроэлементов, проникших в организм.
  • Селезёнка - многофункциональный орган, в котором осуществляется депонирование элементов крови, её фильтрация и производство лимфатических клеток.
  • Участки лимфоидной ткани в органах - место, где «работают» антигены, вступая в реакцию с болезнетворными микроорганизмами и подавляя их.

Благодаря работоспособности иммунитета организм может справляться с вирусными, бактериальными и другими заболеваниями, не обращаясь за помощью к медикаментозной терапии. Крепкий иммунитет позволяет противостоять чужеродным микроорганизмам на начальном этапе, предотвращая тем самым возникновение болезни или как минимум обеспечивая её лёгкое течение.

Анатомия органов чувств

Органы, отвечающие за оценку и восприятие реалий внешней среды, относятся к органам чувств: зрения, осязания, обоняния, слуха и вкуса. Именно через них к нервным окончаниям поступает информация, которая молниеносно обрабатывается и позволяет правильно реагировать на обстановку. К примеру, осязание позволяет воспринять информацию, поступающую через рецепторное поле кожи: на ласковые поглаживания, лёгкий массаж кожа мгновенно реагирует едва ощутимым повышением температуры, которое обеспечивается благодаря притоку крови, тогда как при болезненных ощущениях (например, при термическом воздействии или повреждении тканей), ощущаемых на поверхности дермальных тканей, организм мгновенно реагирует сужением кровеносных сосудов и замедлением кровотока, который обеспечивает защиту от более глубоких повреждений.


Зрение, слух и другие органы чувств позволяют не только физиологически реагировать на изменения во внешней среде, но и испытывать различные эмоции. Например, видя прекрасную картину или слушая классическую музыку, нервная система посылает организму сигналы к расслаблению, умиротворению, благодушию; чужая боль, как правило, вызывает сострадание; а неприятные новости - грусть и озабоченность.

Мочеполовая система в анатомии тела человека

В некоторых научных источниках мочеполовую систему рассматривают как 2 составляющие: мочевыделительную и репродуктивную, однако, из-за тесной взаимосвязи и смежного расположения их всё же принято объединять. Строение и функции этих органов сильно разнятся в зависимости от половой принадлежности, поскольку на них возложен один из самых сложных и загадочных процессов взаимодействия полов - репродукция.

И у женщин, и у мужчин мочевыделительная группа представлена следующими органами:

  • Почки - парные органы, которые выводят из организма излишек воды и токсичные вещества, а также регулируют объём крови и других биологических жидкостей.
  • Мочевой пузырь - полость, состоящая из мышечных волокон, в которой накапливается моча до момента её выведения.
  • Уретра, или мочеиспускательный канал - путь, по которому моча эвакуируется из пузыря после его наполнения. У мужчин он составляет 22–24 см, а у женщин - всего 8.

Репродуктивная составляющая мочеполовой системы сильно разнится в зависимости от пола. Так, у мужчин она включает яички с придатками, семенные железы, простату, мошонку и пенис, которые в комплексе отвечают за формирование и эвакуацию семенной жидкости. Женская половая система устроена более сложно, поскольку именно на представительниц прекрасного пола ложится ответственность за вынашивание ребёнка. К ней относятся матка и маточные трубы, пара яичников с придатками, влагалище и наружные половые органы - клитор и 2 пары половых губ.


Анатомия органов эндокринной системы

Под эндокринными органами подразумевают комплекс различных желёз, которые синтезируют в организме специальные вещества - гормоны, отвечающие за рост, развитие и полноценное протекание многих биологических процессов. К эндокринной группе органов относятся:

  1. Гипофиз - небольшая «горошина» в головном мозге, которая вырабатывает около десятка разнообразных гормонов и регулирует рост и размножение организма, отвечает за поддержание метаболизма, артериального давления и мочеиспускания.
  2. Щитовидная железа, расположенная в области шеи, контролирует деятельность обменных процессов, отвечает за сбалансированный рост, интеллектуальное и физическое развитие личности.
  3. Паращитовидная железа - регулятор усвоения кальция и фосфора.
  4. Надпочечники вырабатывают адреналин и норадреналин, которые не только контролируют поведение в стрессовой ситуации, но и влияют на сердечные сокращения и состояние сосудов.
  5. Яичники и яички - исключительно половые железы, которые синтезируют гормоны, необходимые для нормальной половой функции.

Любое, даже самое минимальное, повреждение эндокринных желёз может стать причиной серьёзного гормонального дисбаланса, который, в свою очередь, приведёт к сбоям в работе организма в целом. Именно поэтому исследование крови на уровень гормонов является одним из базовых исследований в диагностике различных патологий, особенно связанных с репродуктивной функцией и всевозможными нарушениями развития.

Функция дыхания в анатомии человека

Система дыхания человека отвечает за насыщение организма молекулами кислорода, а также выведение отработанного углекислого газа и токсических соединений. По сути, это последовательно соединённые между собой трубки и полости, которые сначала заполняются вдыхаемым воздухом, а потом изгоняют изнутри углекислый газ.


Верхние дыхательные пути представлены носовой полостью, носоглоткой и гортанью. Там воздух согревается до комфортной температуры, позволяя предотвратить переохлаждение нижних отделов дыхательного комплекса. Кроме того, слизь носа увлажняет слишком сухие потоки и обволакивает плотные мельчайшие частички, которые могут травмировать чувствительную слизистую.

Нижние дыхательные пути начинаются гортанью, в которой не только осуществляется функция дыхания, но и формируется голос. При колебании голосовых связок гортани возникает звуковая волна, однако трансформируется в членораздельную речь она только в ротовой полости, с помощью языка, губ и мягкого нёба.

Далее воздушный поток проникает в трахею - трубку из двух десятков хрящевых полуколец, которая прилегает к пищеводу и впоследствии распадается на 2 отдельных бронха. Затем бронхи, впадающие в ткани лёгких, ветвятся на меньшие по размеру бронхиолы и т. д., вплоть до образования бронхиального дерева. Сама же лёгочная ткань, состоящая из альвеол, отвечает за газообмен - всасывание кислорода из бронхов и последующую отдачу углекислоты.

Послесловие

Организм человека представляет собой сложную и уникальную в своем роде структуру, которая способна самостоятельно регулировать свою работу, реагируя на малейшие изменения окружающей среды. Базовые знания анатомии человека обязательно пригодятся каждому, кто стремится сохранить свой организм, поскольку нормальная работа всех органов и систем является основой здоровья, долголетия и полноценной жизни. Понимая, как происходит тот или иной процесс, от чего он зависит и чем регулируется, вы сможете вовремя заподозрить, выявить и скорректировать возникшую проблему, не пуская её на самотёк!

Скелетная мускулатура представляет собой активную часть опорно-двигательного аппарата. Она состоит из скелетных мышц и их вспомогательных приспособлений, к которым относятся фасции, синовиальные сумки, синовиальные влагалища сухожилий, блоки, сезамовидные кости.

В теле животного насчитывается около 500 скелетных мышц . Большинство из них парные и располагаются симметрично по обеим сторонам тела животного. Их суммарная масса составляет у лошади 38-42% от массы тела, у крупного рогатого скота 42-47%, у свиней 30-35% от массы тела.

Мышцы в теле животного располагаются не беспорядочно, а закономерно в зависимости от действия силы тяжести животного и выполняемой работы. Они оказывают свое действие на те части скелета, которые соединены подвижно, т.е. мышцы действуют на суставы, синдесмозы.

Основными местами прикрепления мышц являются кости, но иногда они прикрепляются к хрящам, связкам, фасциям, коже. Они покрывают скелет так, что кости лишь в некоторых местах лежат непосредственно под кожей. Закрепляясь на скелете, как на системе рычагов, мышцы при своем сокращении вызывают различные движения тела, фиксируют скелет в определенном положении и придают форму телу животного

Основные функции скелетных мышц:

1) Основная функция мышц - динамическая . Сокращаясь, мышца укорачивается на 20-50% своей длины и тем самым меняет положение связанных с ней костей. Производится работа, результатом которой является движение.

2) Другая функция мышц – статическая . Проявляется она в фиксации тела в определенном положении, в сохранении формы тела и его частей. Одна из проявлений этой функции – способность спать стоя (лошадь).

3) Участие в обмене веществ и энергии . Скелетные мышцы являются «источниками тепла», так как при их сокращении около 70% энергии превращается в тепло и только 30% энергии обеспечивает движение. В скелетных мышцах удерживается около 70% воды организма, поэтому их еще называют «источниками воды». Кроме этого, между мышечными пучками и внутри их может накапливаться жировая ткань (особенно при откорме у свиней).

4) Одновременно, при своей работе скелетные мышцы помогают работе сердца, проталкивая венозную кровь по сосудам . В экспериментах удалось выяснить, что скелетные мышцы действуют подобно насосу, обеспечивая движение крови по венозному руслу. Поэтому скелетные мышцы еще называют «периферическими мышечными сердцами».

Строение мышцы с точки зрения биохимика

Скелетная мышца состоит из органических и неорганических соединений. К неорганическим соединениям относятся вода и минеральные соли (соли кальция, фосфора, магния). Органическое вещество в основном представлено белками, углеводами (гликоген), липидами (фосфатиды, холестерин).Таблица 2.

Химический состав скелетной мышцы

Существуют три разновидности мышечной ткани. Гладкая мускулатура образует стенки кровеносных сосудов, желудка, кишечника, мочевыводящих путей. Поперечно-полосатая сердечная мышца составляет большую часть мышечного слоя сердца. Третий вид – скелетная мускулатура. Название этих мышц связано с тем, что они соединены с костями. Скелетные мышцы и кости представляют собой единую систему, обеспечивающую движения.

Скелетная мышца состоит из особых клеток – миоцитов. Это весьма крупные клетки: их диаметр составляет от 50 до 100 мкм, а длина достигает нескольких сантиметров. Другая особенность миоцитов – наличие множества ядер, количество которых достигает сотни.

Главная функция скелетной мышцы – сокращение. Оно обеспечивается особыми органеллами – миофибриллами. Они располагаются рядом с митохондриями, ведь сокращение требует большого количества энергии.

Миоциты объединяются в комплекс – миосимпласт, окруженный одноядерными клетками – миосателлитами. Они представляют собой стволовые клетки и начинают активно делиться в случае повреждения мышцы. Миосимпласт и миосателлиты образуют – структурную единицу мышцы.

Мышечные волокна соединены между собой рыхлой соединительной тканью в пучки первого ряда, из которых состоят пучки второго ряда и т.д. Пучки всех рядов покрыты общей оболочкой. Соединительнотканные прослойки достигают концов мышцы, где переходят в сухожилие, прикрепляющееся к кости.

Для сокращений, осуществляемых скелетными мышцами, необходимо большое количество питательных веществ и кислорода, поэтому мышцы в изобилии снабжены кровеносными сосудами. И все же кровь не всегда способна обеспечивать мышцы кислородом: при сокращении мышц сосуды перекрываются, приток крови прекращается, поэтому в клетках мышечной ткани присутствует белок, способный связывать кислород – миоглобин.

Сокращение мышц регулируется соматическим отделом нервной системы. К каждой мышце подходит периферический нерв, состоящий из аксонов нейронов, расположенных в спинном мозге. В толще мышцы нерв разветвляется на отростки-аксоны, каждый из которых достигает отдельного мышечного волокна.

Импульсы из центральной нервной системы, передаваемые по периферическим нервам, регулируют тонус мышц – их постоянное напряжение, благодаря которому тело сохраняет определенное положение, а также сокращения мышц, связанное с непроизвольными и произвольными двигательными актами.

При сокращении мышца укорачивается, ее концы сближаются. Мышца при этом тянет за собой кость, к которой прикреплена с помощью сухожилия, и кость изменяет свое положение. Каждой скелетной мышце соответствует мышца- , которая расслабляется при ее сокращении, а затем сокращается, чтобы вернут кость в прежнее положение. Например, например, антагонист бицепса – двуглавой мышцы плеча – это трицепс, трехглавая мышца. Первая из них выступает как сгибатель локтевого сустава, а вторая – как разгибатель. Впрочем, разделение условно, некоторые двигательные акты требуют одновременного сокращения мышц-антагонистов.

У человека более 200 скелетных мышц, отличающихся друг от друга по размеру, форме, способу прикрепления к кости. Они не остаются неизменными в течение жизни – в них возрастает количество либо мышечной, либо соединительной ткани. Увеличению количества мышечной ткани способствует двигательная активность.

Структурно-функциональной единицей скелетной мышцы является симпласт или мышечное волокно - огромная клетка, имеющая форму протяженного цилиндра с заостренными краями (под наименованием симпласт, мышечное волокно, мышечная клетка следует понимать один и тот же объект).

Длина мышечной клетки чаще всего соответствует длине целой мышцы и достигает 14 см, а диаметр равен нескольким сотым долям миллиметра.

Мышечное волокно , как и любая клетка, окружено оболочкой - сарколемой. Снаружи отдельные мышечные волокна окружены рыхлой соединительной тканью, которая содержит кровеносные и лимфатические сосуды, а так же нервные волокна.

Группы мышечных волокон, образуют пучки, которые, в свою очередь, объединяются в целую мышцу, помещенную в плотный чехол соединительной ткани переходящей на концах мышцы в сухожилия, крепящиеся к кости (рис.1).

Рис. 1.

Усилие, вызываемое сокращением длины мышечного волокна, передается через сухожилия костям скелета и приводит их в движение.

Управление сократительной активностью мышцы осуществляется с помощью большого числа мотонейронов (рис. 2) - нервных клеток, тела которых лежат в спинном мозге, а длинные ответвления - аксоны в составе двигательного нерва подходят к мышце. Войдя в мышцу, аксон разветвляется на множество веточек, каждая из которых подведена к отдельному волокну.

Рис. 2.

Таким образом, один мотонейрон иннервирует целую группу волокон (так называемая нейромоторная единица), которая работает как единое целое.

Мышца состоит из множества нервно моторных единиц и способна работать не всей своей массой, а частями, что позволяет регулировать силу и скорость сокращения.

Для понимания механизма сокращения мышцы необходимо рассмотреть внутреннее строение мышечного волокна, которое, как вы уже поняли, сильно отличается от обычной клетки. Начнем с того, что мышечное волокно многоядерно. Связано это с особенностями формирования волокна при развитии плода. Симпласты (мышечные волокна) образуются на этапе эмбрионального развития организма из клеток предшественников - миобластов.

Миобласты (неоформленные мышечные клетки) интенсивно делятся, сливаются и образуют мышечные трубочки с центральным расположением ядер. Затем в мышечных трубочках начинается синтез миофибрилл (сократительных структур клетки см. ниже), и завершается формирование волокна миграцией ядер на периферию. Ядра мышечного волокна к этому времени уже теряют способность к делению, и за ними остается только функция генерации информации для синтеза белка.

Но не все миобласты идут по пути слияния, часть из них обособляется в виде клеток-сателлитов, располагающихся на поверхности мышечного волокна, а именно в сарколеме, между плазмолемой и базальной мембраной - составными частями сарколемы. Клетки-сателлиты, в отличие от мышечных волокон, не утрачивают способность к делению на протяжении всей жизни, что обеспечивает увеличение мышечной массы волокон и их обновление. Восстановление мышечных волокон при повреждении мышцы возможно благодаря клеткам-сателлитам. При гибели волокна, скрывающиеся в его оболочке, клетки-сателиты активизируются, делятся и преобразуются в миобласты.

Миобласты сливаются друг с другом и образуют новые мышечные волокна, в которых затем начинается сборка миофибрилл. То есть при регенерации полностью повторяются события эмбрионального (внутриутробного) развития мышцы.

Помимо многоядерности отличительной чертой мышечного волокна является наличие в цитоплазме (в мышечном волокне ее принято называть саркоплазмой) тонких волоконец – миофибрилл (рис.1), расположенных вдоль клетки и уложенных параллельно друг другу. Число миофибрилл в волокне достигает двух тысяч.

Миофибриллы являются сократительными элементами клетки и обладают способностью уменьшать свою длину при поступлении нервного импульса, стягивая тем самым мышечное волокно. Под микроскопом видно, что миофибрилла имеет поперечную исчерченность - чередующиеся темные и светлые полосы.

При сокращении миофибриллы светлые участки уменьшают свою длину и при полном сокращении исчезают вовсе. Для объяснения механизма сокращения миофибриллы около пятидесяти лет назад Хью Хаксли была разработана модель скользящих нитей, затем она нашла подтверждение в экспериментах и сейчас является общепринятой.

ЛИТЕРАТУРА

  1. МакРоберт С. Руки титана. – М.: СП " Уайдер спорт", 1999.
  2. Остапенко Л. Перетренированность. Причины возникновения перетренированности при силовом тренинге // Ironman, 2000, № 10-11.
  3. Солодков А. С., Сологуб Е. Б. Физиология спорта: Учебное пособие. – СПб: СПбГАФК им. П.Ф. Лесгафта, 1999.
  4. Физиология мышечной деятельности: Учебник для институтов физической культуры / Под ред. Коца Я. М. – М.: Физкультура и спорт, 1982.
  5. Физиология человека (Учебник для институтов физической культуры. Изд. 5-е). / Под ред. Н. В. Зимкина. – М.: Физкультура и спорт, 1975.
  6. Физиология человека: Учебник для студентов медицинских институтов / Под ред. Косицкого Г. И. - М.: Медицина, 1985.
  7. Физиологические основы спортивной тренировки: Методические указания по спортивной физиологии. – Л.: ГДОИФК им. П.Ф. Лесгафта, 1986.