Устройства на эффекте ранка. Вихревой теплогенератор – новый источник тепла в доме

С каждым годом подорожание отопления заставляет искать более дешевые способы обогрева жилой площади в холодную пору года. Особенно это относится к тем домам и квартирам, которые имеют большую квадратуру. Одним из таких способов экономии является вихревой . Он имеет массу преимуществ, а также позволяет экономить на создании. Простота конструкции не затруднит его сбор даже у новичков. Далее рассмотрим преимущества такого способа отопления, а также попытаемся составить план-схему по сбору теплогенератора своими руками.

Теплогенератор – это специальный прибор, основная цель которого вырабатывать тепло, путем сжигания, загружаемого в него, топлива. При этом вырабатывается тепло, которое затрачивается на обогрев теплоносителя, который уже в свою очередь непосредственно выполняет функцию обогрева жилой площади.

Первые теплогенераторы появились на рынке еще в 1856 году, благодаря изобретению британского физика Роберта Бунзена, который в ходе ряда проведенных опытов заметил, что вырабатываемое при горении тепло можно направлять в любое русло.

С тех пор генераторы, конечно же, модифицировались и способны обогревать гораздо больше площади, нежели это было 250 лет назад.

Принципиальным критерием, по которому генераторы отличаются друг от друга, является загружаемое топливо. В зависимости от этого выделяют следующие виды :

  1. Дизельные теплогенераторы – вырабатывают тепло в результате сгорания дизельного топлива. Способны хорошо обогревать большие площади, но для дома их лучше не использовать в силу наличия выработки токсичных веществ, образуемых в результате сгорания топлива.
  2. Газовые теплогенераторы – работают по принципу непрерывной подачи газа, сгорая в специальной камере который также вырабатывает тепло. Считается вполне экономичным вариантом, однако установка требует специального разрешения и соблюдения повышенной безопасности.
  3. Генераторы, работающие на твердом топливе – по конструкции напоминают обычную угольную печь, где имеется камера сгорания, отсек для сажи и пепла, а также нагревательный элемент. Удобны для эксплуатации на открытой местности, поскольку их работа не зависит от погодных условий.
  4. – их принцип работы основывается на процессе термической конверсии, при которой пузырьки, образуемые в жидкости, провоцируют смешанный поток фаз, увеличивающий вырабатываемое количество тепла.

Для отопления частного дома и квартиры, часто используются автономные генераторы. Предлагаем рассмотреть, что такое индукционный вихревой теплогенератор, его принцип работы, как сделать устройство своими руками, а также чертежи приборов.

Описание генератора

Существуют разные виды вихревых тепрогенераторов, в основном различают их по форме. Ранее использовались только трубчатые модели, сейчас активно применяют круглые, ассиметричные или овальные. Нужно отметить, что это небольшое устройство может обеспечить полностью автономное отопление, а при правильном подходе еще и горячее водоснабжение.

Фото – Мини-теплогенератор вихревого типа

Вихревой и гидровихревой теплогенератор, представляет собой механическое устройство, которое отделяет сжатый газ их горячих и холодных потоков. Воздух, выходящий из «горячего» конца, может достигать температуры 200 ° С, а из холодного доходить до -50. Нужно отметить, что главным преимуществом такого генератора является то, что это электрическое устройство не имеет движущихся частей, все стационарно закреплено. Трубы чаще всего изготовлены из нержавеющей легированной стали, которая отлично противостоит высоким температурам и внешним разрушающим факторам (давлению, коррозии, ударным нагрузкам).


Фото – Вихревой теплогенератор

Сжатый газ вдувают по касательной в вихревую камеру, после чего он ускоряется до высокой скорости вращения. В связи с коническим соплом на конце выходной трубы, только «входящая» часть сжатого газа допускается для движения в данном направлении. Остальная часть вынуждено возвращается во внутренний вихрь, который является меньшего диаметра, чем наружный.

Где используются вихревые теплогенераторы энергии:

  1. В холодильных установках;
  2. Для обеспечения отопления жилых зданий;
  3. Для нагрева промышленных помещений;

Нужно учитывать, что вихревой газовый и гидравлический генератор имеет меньшую эффективность, чем традиционное оборудование для кондиционирования воздуха. Они широко используются для недорогого точечного охлаждения, когда доступен сжатый воздух из локальной сети обогрева.

Видео: изучение вихревых теплогенераторов

Принцип действия

Существуют различные объяснения причин возникновения вихревого эффекта вращения при полном отсутствии движения и магнитных полей.

Фото – Схема вихревого теплогенератора

В данном случае, газ выступает телом вращения, за счет быстрого перемещения внутри устройства. Такой принцип работы отличается от общепринятого стандарта, где отдельно идет холодный и горячий воздух, т.к. при совмещении потоков согласно законам физики образуется разное давление, которое в нашем случае вызывает вихревое движение газов.

Благодаря наличию центробежной силы, температура воздуха на выходе намного больше температуры её на входе, это позволяет использовать устройства, как для получения тепла, так и для эффективного охлаждения.

Существует еще одна теория принципа работы теплогенератора, за счет того, что оба вихря вращаются с одинаковой угловой скоростью и направлением, внутренний вихревой угол теряет свой угловой момент. Уменьшение момента передается кинетической энергии к внешнему вихрю, в результате чего образуются отрывные течения горячего и холодного газа. Такой принцип работы является полным аналогом эффекта Пельтье, в котором устройство использует электрическую энергию давления (напряжения) для перемещения тепла к одной стороне перехода разнородных металлов, в результате чего другая сторона охлаждается и потребляемая энергия возвращается к источнику.


Фото – Принцип работы генератора гидротипа

Достоинства вихревого теплогенератора :

  • Обеспечивает значительную (до 200 º С) разность температур между «холодным» и «горячим» газом, работает даже при низком входном давлении;
  • Работает с эффективностью до 92%, не нуждается в принудительном охлаждении;
  • Преобразует весь поток на входе в один охлаждающий. Благодаря чему практически исключена вероятность перегрева систем отопления
  • Используется энергия, вырабатываемая в вихревой трубки единым потоком, что способствует эффективному нагреву природного газа при минимальных теплопотерях;
  • Обеспечивает эффективное разделение вихревой температуры входного газа при атмосферном давлении и выходного газа при отрицательном давлении.

Такое альтернативное отопление при практически нулевой затрате вольт отлично нагревает помещение от 100 квадратных метров (в зависимости от модификации). Главные минусы : это высокая стоимость и редкое применение на практике.

Как сделать теплогенератор своими руками

Вихревые теплогенераторы – это очень сложные приспособления, на практике можно сделать автоматический ВТГ Потапова, схема которой подходит как для дома, так и для промышленных работ.

Фото – Вихревой теплогенератор Потапова

Так появился механический теплогенератор Потапова (КПД 93%), схема которого приведена на рисунке. Несмотря на то, что первым патент получил Николай Петраков, именно устройство Потапова пользуется особым успехом у домашних мастеров.

На данной схеме изображена конструкция вихрегенератора. Патрубок смешения 1 присоединен к напорному насосу фланцем, который в свою очередь подает жидкость с давлением от 4 до 6 атмосфер. Когда вода попадает в коллектор, на чертеже 2,образовывается вихрь, и она подается в специальную вихревую трубу (3), которая сконструирована так, что длина в 10 раз больше, чем диаметр. Вихрь воды передвигается по спиральной трубе у стенок к горячему патрубку. Этот конец заканчивается донышком 4, в центре которого есть специальное отверстие для выхода горячей воды.

Чтобы контролировать поток, перед донышком расположено специальное тормозящее приспособление, или выпрямитель потока воды 5, он представляет собой несколько рядов пластин, которые приварены к втулке по центру. Втулка соосна тубе 3. В тот момент, когда вода движется по трубе к выпрямителю по стенкам, в осевом участке образовывается противоточное течение. Здесь вода движется по направлению к штуцеру 6, который врезан в стенку улитки и трубе подачи жидкости. Здесь производитель установил еще один дисковый выпрямитель потока 7, чтобы контролировать течение холодной воды. Если из жидкости выходит тепло, то его направляет по специальному байпасу 8 к горячему концу 9, где вода смешивается с нагретой при помощи смесителя 5.

Непосредственно из патрубка горячей воды жидкость поступает в радиаторы, после чего делая «круг», возвращается к теплоносителю для повторного нагрева. Далее источник нагревает жидкость, насос повторяет круг.

По такой теории даже существуют модификации теплогенератора для серийного производства низкого давления. К сожалению, проекты хороши только на бумаге, реально их мало кто использует, особенно, если учитывать, что расчет осуществляется при помощи теоремы Вириала, которая обязана учитывать энергию Солнца (непостоянную величину), и центробежную силу в трубе.

Формула представляет собой следующее:

Епот = – 2 Екин

Где Екин =mV2/2 – это кинетическое движения Солнца;

Масса планеты – m, кг.

Бытовой теплогенератор вихревого типа для воды Потапова может иметь следующие технические характеристики:


Фото – Модификации вихревых теплогенераторов

Обзор цен

Несмотря на относительную простоту, чаще проще купить вихревые кавитационные теплогенераторы, чем самостоятельно собрать самодельный прибор. Продажа генераторов нового поколения осуществляется во многих крупных городах России, Украины, Беларуси и Казахстана.

Рассмотрим прайс-лист из открытых источников (мини-приборы будут дешевле), сколько стоит генератор Мустафаева, Болотова и Потапова:

Наиболее низкая цена на теплогенератор вихревой энергии марки Акойл, Вита, Гравитон, Муст, Евроальянс, Юсмар, НТК, в Ижевске, к примеру, около 700 000 рублей. При покупке обязательно проверяйте паспорт прибора и сертификаты качества.

В основе работы вихревой трубы лежит т.н. эффект Ранка-Хилша (1933 г). Вихревая труба представляет собой газодинамическое устройство с тангенциальным входом газа, рис. 2.3.1.

Рис. 2.3.1. Схема вихревой трубы.

Как известно, в закрученных потоках вязкого газа при наличии поперечного градиента скорости поверхности тока взаимодействуют между собой из-за наличия касательных сил вязкости. Работа, затраченная на преодоление этих сил преобразуется в тепло. При этом разные струйки могут обладать разными запасами полной энергии

.

Наличие в потоке градиента температур предопределяет теплообмен между слоями газа. Однако, большой вклад в перераспределение полной энергии принадлежит турбулентному механизму переноса.

Вихревая труба состоит из корпуса, выполненного в виде цилиндрической или диффузорной трубы с диаметром начального сечения и длиной , тангенциально расположенных по отношению к корпусу вводных сопел с площадью проходного сечения , диафрагмы с диаметром отверстия , расположенной вблизи соплового входа, и конического регулировочного вентиля на противоположном от диафрагмы конце корпуса.

Интенсивность энергетического разделения газов в вихревой трубе обычно оценивают по зависимости величин избыточных температур газа и от доли охлажденного потока . При этом

,

где - температура торможения на входе в вихревую трубу, на выходе из нее охлажденного и горячего потоков соответственно;

и - массовые расходы исходного и охлажденного потоков газа соответственно.

Рис. 2.3.2. Температура газа на выходе из ВТ.

Типичные экспериментальные зависимости величин и от относительного расхода холодного потока приведены на рисунке 2.3.2.(195).

Обычно каждой паре кривых соответствуют определенные условия проведения экспериментов: отношение давлений газа на входе в вихревую трубу и выходе охлажденного потока из диафрагмы , температура газа на входе в вихревую трубу , безразмерная площадь вводных сопел и др.

Эффект энергетического разделения газа неразрывно связан с перестройкой затухающего вихревого турбулентного движения и происходит в довольно протяженной области течения, простирающейся от соплового входа на расстояние от одного до нескольких десятков диаметров вихревой трубы. При большой длине области происходящие в ней явления не будут определяться детальной структурой потока на входе в вихревую трубу и должны зависеть от переменных, характеризующих течение в целом. т.е. от интегральных величин, таких как массовый расход поступающего в трубу газа , поток импульса в направлении оси трубы , поток энергии и массовый расход отбираемого через отверстие диафрагмы холодного газа . К этим интегральным характеристикам, необходимо, добавить характерный размер - диаметр трубы .

Следует отметить, что поток газа в вихревой трубе является развитым турбулентным потоком. Можно предположить, что турбулентность, возбуждаемая струями, истекающими из вводных сопел вихревой трубы, имеет высокий уровень, превышающий во всей области энергетического разделения уровень турбулентности, порождаемый в пограничном слое на стенках трубы.

Рабочая величина давления на входе в вихревую трубу может меняться в широких пределах; по имеющимся данным вихревая труба устойчиво работает при полном давлении на входе 0,5-0,7 МПа, известны эксперименты с пропусканием через ВТ газа с давлением до 25 МПа. Температура теплого и холодного потоков зависит от начальной температуры газа на входе; рисунок дает представление о перепаде температур в потоках; этот перепад, как правило, сохраняется. Потери энергии в ВТ связаны с трением высокоскоростного газового потока о стенки.

Таким образом, вихревая труба является весьма удобным инструментом для получения высокотемпературных (+60, +800С) и низкотемпературного (-20, -400С) газовых потоков, которые можно использовать для отопительных целей и холодильной техники.

В настоящее время вихревая техника широко внедрена в промышленность: вихревые управляющие клапаны в системах управления тягой ракетных двигателей, вихревые холодильники, вихревые системы очистки, осушки газа в газовой промышленности, вихревые системы газоподготовки для нужд пневмо-газоавтоматики.

Эффект Ранка-Хилша и его применение.Часть1.

Вихревой эффект (эффект Ранка –Хилша) – эффект разделения газа или жидкости на две фракции при закручивании в цилиндрической или конической камере. На периферии образуется закрученный поток с большой температурой, а в центре – охлаждённый поток, закрученныё в противоположную сторону.

Впервые данный эффект был открыт при исследовании работы циклонов французским инженером Жозефом Ранком в конце двадцатых годов прошлого столетия, который и запатентовал изделие на основе этого эффекта - “Трубку Ранка” (Вихревую трубку Ранка).

На рисунке схема работы, а на фото - наиболее типичный вид серийно выпускаемых вихревых трубок

В сороковых годах дополнительными исследованиями эффекта и доработкой Трубки Ранка занимался немецкий физик Роберт Хилш. В честь этих выдающихся исследователей интересующий нас эффект и стали называть эффектом Ранка-Хилша.

Дальнейшие исследования проводились во многих странах, в том числе и в СССР. Однако исследования эти носили случайный характер. Причина-отсутствие теории достоверно объясняющей этот парадоксальный, чрезвычайно впечатляющий эффект.

А как всегда получается, - что не можем объяснить, откладываем подальше, до лучших времён.

Тем не менее, исследования пусть недостаточно, но проводились, и в СССР были выпущены две книги (две известных автору статьи, а так может и больше), целиком посвященные этому эффекту и возможности его практического применения.

Один известный в то время рационализатор пытался внедрить изготовленную им трубку для охлаждения токарных резцов непосредственно в процессе резания.

Работа предложенного к испытаниям изделия впечатлила. При подключении трубки к заводской воздушной сети из ”холодного ” конца практически пошёл снег. Эффект охлаждения был достигнут.

Однако побочный эффект, возникший при испытаниях этой, довольно большой по габаритам, трубки сразу перечеркнул возможность её использования, по крайней мере в таком виде, для охлаждения инструмента при точении. Поток воздуха был настолько силён, что мгновенно раздул металлическую стружку со станка во все стороны, в том числе и на соседние станки, на работающих на них людей. Испытания ведь проводились на станке с открытой рабочей зоной, да и других станков в то время практически и не было. Кроме того, очень сильный шум при работе этой большой трубки тоже не способствовал её дальнейшему внедрению.

Однако, вернёмся в наше время. Серийно выпускаемые вихревые трубки, специально предназначенные для охлаждения зоны резания, оснащаются эффективными глушителями шума, имеют различные приспособления для крепления к станку (механические, магнитные), имеют удобную регулировку температуры выходящего воздуха, оснащаются гибкими патрубками для подвода потока холодного воздуха непосредственно в нужное место. Выпускаются трубки различной мощности, что позволяет подобрать трубку в соответствии с поставленной задачей. Все трубки оснащаются фильтрам масло и водо –отделителями.

Кстати, как мы уже отмечали, поток воздуха разделяется в Трубке Ранка на два – холодный и горячий. Так вот, выпускаются специальные трубки, предназначенные для нагрева. Они имеют некоторые конструктивные особенности. Преимущества таких нагревателей - абсолютная безопасность, так как для их работы не используются электрические нагревательные элементы и открытое пламя.

Интересно то, что, как мы уже отмечали, в мире выпускается громадное количество вихревых трубок Ранка различных типоразмеров и видов. Вместе с тем, в открытой прессе практически не встречается информация о их практическом применении при обработке того или иного материала, режимах резания, режущих пластинах. Нам попадали статьи о применении охлаждающих трубок Ранка при обработке чугуна, но тут и так всё понятно, а для остальных обрабатываемых материалов только общая информация. Вместе с тем, теоретический эффект от внедрения этих интереснейших изделий может быть громадным. Представьте только – обработка без применения СОЖ… Не в этом то смысл практического закрытия информации? В общем – вихревая трубка Ранка, это просто “золотая жила” для различных “внедренцев” и исследователей, работающих в области обработки различных материалов. Можно предположить, что ещё много диссертаций будет защищено по этой теме. Ну и хорошо. Была бы польза.

Готовый тепловой генератор.

В зависимости от типа устройства изменяется и методика его изготовления. Стоит ознакомиться с каждым типом прибора, изучить особенности производства, прежде чем браться за работу. Простой способ изготовить вихревую трубу Ранке своими руками – использовать готовые элементы. Для этого понадобится любой двигатель. При этом прибор большей мощности способен подогреть больше теплоносителя, что увеличит продуктивность системы.

Для успешного сооружения следует найти готовые решения. Создать вихревой теплогенератор своими руками, чертежи и схемы которого будут в наличии, можно без особых сложностей. Для проведения работ по сооружению понадобится следующий инструментарий:

  • болгарка;
  • железные уголки;
  • сварка;
  • дрель и набор из нескольких сверл;
  • фурнитура и набор ключей;
  • грунтовка, красящее вещество и кисточки.

Вихревой двигатель — это один из источников альтернативной энергии для отопления дома.

Стоит понимать, что роторные приборы издают достаточно сильный шум при работе. Но в сравнении с прочими устройствами они характеризуются большей производительностью. Чертежи и схемы для изготовления вихревого теплогенератора своими руками можно найти повсеместно. Стоит понимать, что работа будет выполнена успешно исключительно при полном соответствии технологии производства.

Установка насоса вихревого генератора теплоты и сооружение корпуса

Кожух данного устройства изготавливается в виде цилиндра, который должен закрываться со сторон каждой основы. На каждом боку расположены сквозные отверстия. Используя их, можно подключить вихревой теплогенератор своими руками к системе обогрева дома. Основная особенность такого изделия заключается с том, что внутри кожуха, возле входного отверстия устанавливается жиклер. Данное приспособления должно подбираться индивидуально для каждого отдельно взятого случая.

Схема вихревого двигателя.

Процесс производства включает в себя следующие пункты:

  • отрезание трубы необходимого размера (около 50-60 см);
  • нарезка резьбы;
  • изготовление пары колец из трубы того же диаметра с длиной примерно 50 мм;
  • приваривание крышек к местам, где не нарезалась резьба;
  • вырезание двух отверстий в центре каждой крышки (одно для подключения патрубка, второе – для жиклера);
  • сверление фаски рядом с жиклером для получения форсунки.

Установка насоса вихревого двигателя проводится после подбора агрегата необходимой мощности. При покупке стоит придерживаться двух правил. Первое – устройство должно быть центробежным. Второе – выбор будет целесообразным лишь в случае, когда устройство будет оптимально функционировать в паре с установленным электродвигателем.

Утепление вихревого двигателя

Перед тем как запускать в работу устройство следует его утеплить. Делается это после сооружения кожуха. Конструкцию рекомендуется обмотать тепловой изоляцией. Как правило, в этих целях используется стойкий к высоким температурам материал. Слой утепления крепится к кожуху прибора проволокой. В качестве тепловой изоляции стоит использовать один из следующих материалов:

Готовый тепловой генератор.

  • стекловата;
  • минеральная вата;
  • базальтовая вата.

Как видно из списка, подойдет практически любая волокнистая теплоизоляция. Вихревой индукционный нагреватель, отзывы о котором можно найти по всему рунету, должен утепляться качественно. В ином случае есть риск, что прибор будет отдавать больше теплоты в помещение, где он установлен. Полезно знать: « .

В конце следует дать несколько советов. Первое – поверхность изделия рекомендуется окрасить. Это защитит его от коррозии. Второе – все внутренние элементы прибора желательно сделать потолще. Такой подход повысит их износостойкость и сопротивляемость агрессивной среде. Третье – стоит изготовить несколько запасных крышек. Они также должны иметь на плоскости отверстия требуемого диаметра в необходимых местах. Это необходимо, чтобы путем подбора добиться более высокого КПД агрегата.

Подведение итогов

Если все правила изготовления конструкции были учтены, то вихревой генератор прослужит долгое время. Не стоит забывать, что от грамотной установки прибора тоже зависит многое в системе отопления. В любом случае изготовление такой конструкции из подручных средств обойдется дешевле приобретения готового приспособления. Однако для оптимального функционирования устройства следует ответственно подойти к процессам изготовления корпуса и обшивки тепловой изоляции.