Обтачивание конических внутренних и наружных поверхностей. Обработка конической поверхности широкими резцами

Обработка центровых отверстий. Контроль конических поверхностей

Обработка центровых отверстий . В деталях типа валов часто приходится выполнять центровые отверстия, которые используются для последующей обработки детали и для восстановления ее в процессе эксплуатации. Поэтому центровку выполняют особенно тщательно. Центровые отверстия вала должны находиться на одной оси и иметь одинаковые размеры на обоих торцах независимо от диаметров концевых шеек вала. При невыполнении этих требований снижается точность обработки и увеличивается износ центров и центровых отверстий. Конструкции центровых отверстий приведены на рисунке 40, их размеры - в таблице ниже. Наибольшее распространение имеют центровые отверстия с углом конуса 60 градусов. Иногда в тяжелых валах этот угол увеличивают до 75 или до 90 градусов. Для того чтобы вершина центра не упиралась в заготовку, в центровых отверстиях выполняют цилиндрические углубления диаметром d. Для защиты от повреждений центровые отверстия многократного использования выполняют с предохранительной фаской под углом 120 градусов (рисунок 40 б).

Рис. 40. Центровые отверстия

Диаметр заготовки Наименьший диаметр концевой шейки вала Dо, мм Номинальный диаметр центрового отверстия d D не более l не менее a
Свыше 6 до 10 6,5 1,5 1,8 0,6
Свыше 10 до 18 2,0 2,4 0,8
Свыше 18 до 30 2,5 0,8
Свыше 30 до 50 7,5 3,6 1,0
Свыше 50 до 80 4,8 1,2
Свыше 80 до 120 12,5 1,5

На рисунке 41 показано, как изнашивается задний центр станка при неправильно выполненном центровом отверстии в заготовке. При несоосности (а) центровых отверстии и несоосности (b) центров деталь при обработке базируется с перекосом, что вызывает значительные погрешности формы наружной поверхности детали. Центровые отверстия в небольших заготовках обрабатывают различными методами. Заготовку закрепляют в самоцентрирующем патроне, а в пиноль задней бабки вставляют сверлильный патрон с центровочным инструментом.

Рис. 41. Износ заднего центра станка

Центровые отверстия диаметром 1,5-5 мм обрабатывают комбинированными центровыми сверлами без предохранительной фаски (рисунок 42г) и с предохранительной фаской (рисунок справа 41д).

Центровые отверстия больших размеров обрабатывают сначала цилиндрическим сверлом (рисунок справа 41а), а затем однозубой (рисунок 41б) или многозубой (рисунок 41в) зенковкой. Центровые отверстия обрабатывают при вращающейся заготовке; подачу центровочного инструмента осуществляют вручную (от маховика задней бабки). Торец, в котором обрабатывают центровое отверстие, предварительно подрезается резцом. Необходимый размер центрового отверстия определяют по углублению центровочного инструмента, пользуясь лимбом маховика задней бабки или шкалой пиноли. Для обеспечения соосности центровых отверстий деталь предварительно размечают, а при зацентровке поддерживают люнетом.

Рис. 41. Сверла для образования центровых отверстий

Центровые отверстия размечают с помощью разметочного угольника (рисунок 42а). Штифты 1 и 2 расположены на равном расстоянии от кромки АА угольника. Наложив угольник на торец и прижав штифты к шейке вала, вдоль кромки АА проводят риску на торце вала, а затем, повернув угольник на 60-90 градусов, проводят следующую риску и т. д. Пересечение нескольких рисок определит положение центрового отверстия на торце вала. Для разметки можно также использовать угольник, показанный на рисунке 42б. После разметки производят накернивание центрового отверстия. Если диаметр шейки вала не превышает 40 мм, то можно производить накернивание центрового отверстия без предварительной разметки с помощью приспособления, показанного на рисунке 42в. Корпус 1 приспособления устанавливают левой рукой на торце вала 3 и ударом молотка по кернеру 2 намечают центр отверстия. Если в процессе работы конические поверхности центровых отверстий были повреждены или неравномерно изношены, то допускается их исправление резцом; при этом верхнюю каретку суппорта поворачивают на угол конуса.

Рис. 42. Разметка центровых отверстий

Контроль конических поверхностей . Конусность наружных конических поверхностей измеряют шаблоном или универсальным угломером. Для более точных измерений применяют калибры-втулки, рисунок г) и д) слева, с помощью которых проверяют не только угол конуса, но и его диаметры. На обработанную поверхность конуса карандашом наносят 2-3 риски, затем на измерительный конус надевают калибр-втулку, слегка нажимая на нее и поворачивая ее вдоль оси. При правильно выполненном конусе все риски стираются, а конец конической детали находится между метками А и Б калибра-втулки. При измерении конических отверстий применяют калибр-пробку. Правильность обработки конического отверстия определяется (как и при измерении наружных конусов) взаимным прилеганием поверхностей детали и калибра-пробки. Если риски, нанесенные карандашом на калибр-пробку, сотрутся у малого диаметра, то угол конуса в детали велик, а если у большого диаметра - угол мал.

Обработка конических поверхностей на токарных станках производится тремя способами .

Первый способ

Первый способ заключается в том, что корпус задней бабки смещают в поперечном направлении на величину h (рис. 15, а). Вследствие этого ось заготовки образует определенный угол а с осью центров, а резец при своем движении обтачивает коническую поверхность. Из схем видно, что

h = L sin a; (14)

tgα=(D-d)/2l; (15)

Решая совместно оба уравнения, получим

h=L((D-d)/2l)cosα. (16)

Для изготовления точных конусов этот способ непригоден вследствие неправильного положения центровых отверстий относительно центров.

Второй и третий способ

Второй способ (рис. 15, б) заключается в том, что резцовые салазки поворачивают на угол а, определяемый уравнением (15). Так как подача в этом случае осуществляется обычно вручную, данный способ используют при обработке конусов небольшой длины. Третий способ основан на применении специальных приспособлений, имеющих копировальную линейку 1, укрепленную на задней стороне станины на кронштейнах 2 (рис. 15, в). Ее можно устанавливать под требуемым углом к линии центров . По линейке скользит ползун 3, соединенный через палец 4 и кронштейн 5 с поперечной кареткой 6 суппорта. Винт поперечной подачи каретки разобщен с гайкой. При продольном перемещении всего суппорта ползун 3 будет двигаться по неподвижной линейке 1, сообщая одно-

Рис. 15. Схемы обработки конических поверхностей

временно поперечное смещение каретке 6 суппорта. В результате двух движений резец образует коническую поверхность, конусность которой будет зависеть от угла установки копировальной линейки, определяемого уравнением (15). Этот способ обеспечивает получение точных конусов любой длины.

Обработка фасонных поверхностей

Если в предыдущем копировальном устройстве вместо конусной линейки установить фасонную, то резец будет перемещаться по криволинейной траектории, обрабатывая фасонную поверхность. Для обработки фасонных и ступенчатых валов токарные станки иногда оснащают гидравлическими копировальными суппортами, которые располагают чаще всего на задней стороне суппорта станка. Нижние салазки суппорта имеют специальные направляющие, расположенные обычно под углом 45° к оси шпинделя станка, в которых и перемещается копировальный суппорт. На рис. 6, б была показана принципиальная схема, поясняющая работу гидравлического копировального суппорта. Масло от насоса 10 поступает в цилиндр, жестко связанный с продольным суппортом 5, на котором находится поперечный суппорт 2. Последний соединен со штоком цилиндра. Масло из нижней полости цилиндра через щель 7, находящуюся в поршне, поступает в верхнюю полость цилиндра, а затем в следящий золотник 9 и на слив. Следящий золотник конструктивно связан с суппортом. Щуп 4 золотника 9 прижимается к копиру 3 (на участке ab) при помощи пружины (на схеме не показана).

При этом положении щупа масло через золотник 9 поступает на слив, а поперечный суппорт 2, вследствие разности давлений в нижней и в верхней полостях, перемещается назад. В тот момент, когда щуп окажется на участке be, он под действием копира утапливается, преодолевая сопротивление пружины. При этом слив масла из золотника 9 постепенно перекрывается. Так как площадь сечения поршня в нижней полости больше, чем в верхней, давление масла заставит перемещаться суппорт 2 вниз. На практике встречаются самые различные модели токарных и токарно- винторезных станков, от настольных до тяжелых, с широким диапазоном размеров. Наибольший диаметр обработки на советских станках колеблется от 85 до 5000 мм при длине заготовки от 125 до 24 000 мм.

К коническим относятся поверхности, образованные перемещением прямолинейной образующей l по криволинейной направляющей т. Особенностью образования конической поверхности является то, что

Рис. 95

Рис. 96

при этом одна точка образующей всегда неподвижна. Эта точка является вершиной конической поверхности (рис. 95, а). Определитель конической поверхности включает вершину S и направляющую т, при этом l "~S; l "^ т.

К цилиндрическим относятся поверхности, образованные прямой образующей /, перемещающейся по криволинейной направляющей т параллельно заданному направлению S (рис. 95, б). Цилиндрическую поверхность можно рассматривать как частный случай конической поверхности с бесконечно удаленной вершиной S.

Определитель цилиндрической поверхности состоит из направляющей т и направления S, образующих l , при этом l" || S; l" ^ т.

Если образующие цилиндрической поверхности перпендикулярны плоскости проекций, то такую поверхность называют проецирующей. На рис. 95, в показана горизонтально проецирующая цилиндрическая поверхность.

На цилиндрической и конической поверхностях заданные точки строят с помощью образующих, проходящих через них. Линии на поверхностях, например линия а на рис. 95, в или горизонтали h на рис. 95, а, б, строятся с помощью отдельных точек, принадлежащих этим линиям.

Поверхности вращения

К поверхностям вращения относятся поверхности, образующиеся вращением линии l вокруг прямой i, представляющей собой ось вращения. Они могут быть линейчатыми, например конус или цилиндр вращения, и нелинейчатыми или криволинейными, например сфера. Определитель поверхности вращения включает образующую l и ось i.

Каждая точка образующей при вращении описывает окружность, плоскость которой перпендикулярна оси вращения. Такие окружности поверхности вращения называются параллелями. Наибольшую из параллелей называют экватором. Экватор.определяет горизонтальный очерк поверхности, если i _|_ П 1 . В этом случае параллелями являются горизонтали hэтой поверхности.

Кривые поверхности вращения, образующиеся в результате пересечения поверхности плоскостями, проходящими через ось вращения, называются меридианами. Все меридианы одной поверхности конгруэнтны. Фронтальный меридиан называют главным меридианом; он определяет фронтальный очерк поверхности вращения. Профильный меридиан определяет профильный очерк поверхности вращения.

Строить точку на криволинейных поверхностях вращения удобнее всего с помощью параллелей поверхности. На рис. 103 точка М построена на параллели h 4 .

Поверхности вращения нашли самое широкое применение в технике. Они ограничивают поверхности большинства машиностроительных деталей.

Коническая поверхность вращения образуется вращением прямой i вокруг пересекающейся с ней прямой - оси i (рис. 104, а). Точка М на поверхности построена с помощью образующей l и параллели h. Эту поверхность называют еще конусом вращения или прямым круговым конусом.

Цилиндрическая поверхность вращения образуется вращением прямой l вокруг параллельной ей оси i (рис. 104, б). Эту поверхность называют еще цилиндром или прямым круговым цилиндром.

Сфера, образуется вращением окружности вокруг ее диаметра (рис. 104, в). Точка A на поверхности сферы принадлежит главному

Рис. 103

Рис. 104

меридиану f, точка В - экватору h, а точка М построена на вспомогательной параллели h".

Тор образуется вращением окружности или ее дуги вокруг оси, лежащей в плоскости окружности. Если ось расположена в пределах образующейся окружности, то такой тор называется закрытым (рис. 105, а). Если ось вращения находится вне окружности, то такой тор называется открытым (рис. 105, б). Открытый тор называется еще кольцом.

Поверхности вращения могут быть образованы и другими кривыми второго порядка. Эллипсоид вращения (рис. 106, а) образуется вращением эллипса вокруг одной из его осей; параболоид вращения (рис. 106, б) - вращением параболы вокруг ее оси; гиперболоид вращения однополостный (рис. 106, в) образуется вращением гиперболы вокруг мнимой оси, а двуполостный (рис. 106, г) - вращением гиперболы вокруг действительной оси.

В общем случае поверхности изображаются не ограниченными в направлении распространения образующих линий (см. рис. 97, 98). Для решения конкретных задач и получения геометрических фигур ограничиваются плоскостями обреза. Например, чтобы получить круговой цилиндр, необходимо ограничить участок цилиндрической поверхности плоскостями обреза (см. рис. 104, б). В результате получим его верхнее и нижнее основания. Если плоскости обреза перпендикулярны оси вращения, цилиндр будет прямым, если нет - цилиндр будет наклонным.

Рис. 105

Рис. 106

Чтобы получить круговой конус (см. рис. 104, а), необходимо выполнить обрез по вершине и за пределами ее. Если плоскость обреза основания цилиндра будет перпендикулярна оси вращения - конус будет прямой, если нет - наклонный. Если обе плоскости обреза не проходят через вершину - конус получим усеченным.

С помощью плоскости обреза можно получить призму и пирамиду. Например, шестигранная пирамида будет прямой, если все ее ребра имеют одинаковый наклон к плоскости обреза. В других случаях она будет наклонной. Если она выполнена с помощью плоскостей обреза и ни одна из них не проходит через вершину - пирамида усеченная.

Призму (см. рис. 101) можно получить, ограничив участок призматической поверхности двумя плоскостями обреза. Если плоскость обреза перпендикулярна ребрам, например восьмигранной призмы, она прямая, если не перпендикулярна - наклонная.

Выбирая соответствующее положение плоскостей обреза, можно получать различные формы геометрических фигур в зависимости от условий решаемой задачи.

Вопрос 22

Параболо́ид ― тип поверхности второго порядка. Параболоид может быть охарактеризован как незамкнутая нецентральная (то есть не имеющая центра симметрии) поверхность второго порядка.

Канонические уравнения параболоида в декартовых координатах:

2z=x 2 /p+y 2 /q

Если p и q одного знака, то параболоид называется эллиптическим.

если разного знака, то параболоид называется гиперболическим.

если один из коэффициентов равен нулю, то параболоид называется параболическим цилиндром.

Эллиптический параболойд

2z=x 2 /p+y 2 /q

Эллиптический параболойд если p=q

2z=x 2 /p+y 2 /q

Гиперболический параболойд

2z=x 2 /p-y 2 /q


Параболический цилиндр 2z=x 2 /p(или 2z=y 2 /q)

Вопрос23

Вещественное линейное пространство называется Эвклидовым , если в нем определена операция скалярного умножения : любым двум векторам x и y сопоставлено вещественное число (обозначаемое (x,y) ), и это соответственно удовлетворяет следующим условиям, каковы бы ни были векторы x,y и z и число C:

2. (x+y , z)=(x , z)+(y , z)

3. (Cx , y)= C(x, y)

4. (x, x)>0 , если x≠0

Простейшие следствия из вышеуказанных аксиом:

1. (x, Cy)=(Cy, x)=C(y, x) следовательно всегда (X, Cy)=C(x, y)

2. (x, y+z)=(x, y)+ (x, z)

3. ()= (x i , y)

()= (x , y k)

Цель : научиться налаживать станок для обработки наружных конических поверхностей при помощи поворота верхней части суппорта; проверять обрабатываемую коническую поверхность по размерам штангенциркулем, калибром (втулкой), универсальным угломером.

Материально техническое оснащение: плакат станка ТВ1А-616; методическое пособие, резцы с широкой режущей кромкой и ЩЦ-1.

  1. Ознакомиться с методическим указанием;
  2. Ответить на контрольные вопросы;
  3. Получить допуск к выполнению работы;
  4. Получить задание у преподавателя;
  5. Выполнить обработку конуса одним из способов по заданию преподавателя;
  6. Обработку конуса согласовать с технологической картой;
  7. Выполненное изделие предоставить на оценку;

Теоретическое введение.

Коническая поверхность характеризуется следующими параметрами (рис. 1): меньшим d и большим D диаметрами и расстоянием 1 между плоскостями, в которых расположены окружности с диамет­рами d и D.

Угол α называют углом наклона конуса, а угол 2α - углом конуса. Отношение К = (D- d)/l называют конусностью и обычно обозначают отношением, например 1:20 или

1:50, а в некоторых случаях десятичной дробью, например 0,05 или 0,02. Отношение У = (D - d)/2l = tg α называют уклоном.

При обработке валов часто встречаются переходы между обрабатываемыми поверхностями, которые имеют коническую форму, дрели длина конуса не превышает 50 мм, то его срабатывают широким резцом (рис. 2). При этом режущая кромка резца должна быть установлена в плане относительно оси центров на угол, соответствующий углу наклона конуса на обрабатываемой детали. Резцу сообщают подачу в поперечном или продольном направлении. Чтобы уменьшить искажение образующей конической поверхности и отклонение угла наклона конуса, режущую кромку резца устанавливают по оси вращения детали.

Рис. 2. Обработка конической поверхности широким резцом.

Следует учитывать, что при обработке конуса резцом с режущей кромкой длиной более 10 - 15мм могут возникнуть вибрации. Уровень вибраций растет с увеличением длины обрабатываемой детали и с уменьшением ее диаметра, а также с уменьшением угла наклони конуса, с приближением расположения конуса к середине детали и с увеличением вылета резца и при недостаточно прочном его закреплении. При вибрациях появляются следы и ухудшается качество обработан­ной поверхности. При обработке широким резцом жестких деталей вибрации могут не возникать, но при этом возможно смещение резца под действием радиальной составляющей силы резания, что может привести к нарушению настройки резца на требуемый угол наклона. Смещение резца зависит также от режима обработки и на­правления подачи.

Конические поверхности с большими уклонами можно обрабатывать при по­вернутых верхних салазках суппорта с резцедержателем (рис. 3) на угол α, равный углу наклона обрабатываемого конуса. Подача резца производится вручную (рукояткой верхних салазок), что является недостатком этого способа, так как неравномерность подачи приводит к увеличению шероховатости обработанной поверхности. По этому способу обрабатывают конические поверхности, длина которых соизмерима с длиной хода верхних салазок.

Рис 3. Обработка конической поверхности при повернутых верхних салазках суппорта на угол α.

Рис. 4. Обработка конической поверхности при смещении задней бабки.

Конические поверхности большой длины с углом наклона α = 8 - 10° можно обрабатывать при смещении заднего центра (рис. 4). Величину смещения задней бабки определяют по шкале, нанесенной на торце опорной плиты со стороны маховика, и риске на торце корпуса задней бабки. Цена деления на шкале 1 мм. При отсутствии шкалы на опорной плите величину смещения задней бабки отсчитывают по линейке, приставленной к горной плите. Контроль величины смещения задней бабки производят с помощью упора (рис. 5, а) или индикатора (рис.5, б).

Индикатор устанавливают в резцедержатель, подводят к детали до сопри­косновения у задней бабки и перемещают (суппортом) вдоль образующей детали. Заднюю бабку смещают до тех пор, пока отклонение стрелки индикатора не будет минимальным на длине образующей конической поверхности, после чего бабку за­крепляют. Одинаковая конусность деталей в партии, обрабатываемых этим способом, обеспечивается при минимальных отклонениях заготовок по длине и центровых отверстий по размеру (глубине). Поскольку смещение центров станка вызывает изнашивание центровых отверстий заготовок, конические поверхности обрабатывают предварительно, а затем, исправив центровые отверстия, производят окончательную чистовую обработку. Для уменьшения разбивки центровых отверстий и износа центров целесообразно применять центры со скругленными вершинами.

Рис. 6. Обработка конической поверхности с применением копирных устройств при продольном (а) и поперечном (б) перемещении.

Конические поверхности с α = 0 - 12° обрабатывают с использованием копирных устройств. К станине станка крепится плита 1 (рис. 6, а) с копирной линейкой 2, по которой перемещается ползун 5, соединенный с суппортом 6 станка тягой 7 с помощью зажима 8. Для свободного перемещения суппорта в поперечном направлении необходимо отсоединить винт поперечной подачи. При продольном перемещении суппорта 6 резец получает два движения: продольное от суппорта и поперечное от копирной линейки 2. Угол поворота линейки относительно оси 3 оп­ределяют по делениям на плите 1. Закрепляют линейку болтами 4. Подачу резца на глубину резания производят рукояткой перемещения верхних салазок суппорта.

Обработку наружных и торцовых конических поверхностей 9 (рис. 6, б) производят по копиру 10, который устанавливают в пиноли задней бабки или в револь­верной головке станка. В резцедержателе поперечного суппорта закрепляют приспособление 11с копирным роликом 12 и остроконечным проходным резцом. При поперечном перемещении суппорта копирный палец в соответствии с профилей копира 10 получает продольное перемещение на определенную величину, которая передается резцу. Наружные конические поверхности обрабатывают проходными резцами, а внутренние - расточными резцами.

а) б)

в) г)

Рис. 7. Обработка конического отверстия в сплошном материале: а - готовое (после чистового развертывания) отверстие с диаметрами d и D на длине l, б - цилиндрическое отверстие под черновую развертку, в - съем припуска черновой разверткой, г - съем припуска получистовой разверткой.

Для получения конического отверстия в сплошном материале (рис. 7, а - г) заготовку обрабатывают предварительно (сверлят, зенкеруют, растачивают), а за­тем окончательно (развертывают, растачивают).

Контрольные вопросы.

  1. Какие существуют методы обработки конических поверхностей?
  2. Как обрабатывают внутренние конические поверхности?
  3. Как проверяют наружные и внутренние конические поверхности?
  4. Требования к инструменту для обработки конических поверхностей.
  5. Когда применяется тот или иной способ?

§ 1. Общие сведения
1. Область применения конусов. Наряду с цилиндрическими деталями в машиностроении получили довольно широкое распространение детали с коническими поверхностями. Примерами их могут служить конусы центров, хвостовиков сверл, зенкеров, разверток. Для крепления этих инструментов передние участки отверстий шпинделя и пиноли токарного станка имеют также коническую форму.
Однако область использования конусов не ограничивается режущими инструментами. Конические поверхности имеют многие детали машин.
Широкое использование конических соединений объясняется рядом их преимуществ.
1. Они обеспечивают высокую точность центрирования деталей.
2. При плотном соприкосновении пологих конусов получается неподвижное соединение.
3. Изменяя осевое положение деталей конического соединения, можно регулировать величину зазора между ними.
2. Конус и его элементы. Конус представляет собой геометрическое тело, поверхность которого получается вращением прямой линии (образующей), наклонно расположенной к оси вращения (рис. 129, а).
Точка пересечения образующей с осью называется вершиной конуса.
Плоскости, перпендикулярные к оси конуса, называются, основаниями.
Различают полный и усеченный конусы. Первый расположен между основанием и вершиной, второй - между двумя основаниями (большим и меньшим).
Конус характеризуется следующими элементами: диаметром большего основания D; диаметром меньшего основания d; длиной l; углом уклона а между образующей и осью конуса; углом конуса 2а между противоположными образующими.
Кроме этого, на рабочих чертежах конических деталей часто употребляют понятия конусность и уклон.
Конусностью называется отношение разности диаметров двух перечных сечений конуса к расстоянию между ними. Она опреляется по формуле

Уклоном называется отношение разности радиусов двух поперечных сечений конуса к расстоянию между ними. Его определяют по формуле

Из формул (9) и (10) видно, что уклон равен половине конусности.


Тригонометрически уклон равен тангенсу угла уклона (см. рис. 129, б, треугольник ABC), т. е.

На чертеже (рис. 130) конусность обозначают знаком <, а уклон -, острие которых направляется в сторону вершины конуса. После знака указывается отношение двух цифр. Первая из них соответствует разности диаметров в двух принятых сечениях конуса, вторая для конусности- расстояние между сечениями, для уклона - удвоенной величине этого расстояния.
Конусность и уклон иногда записываются числами десятичной дроби: 6,02; 0,04; 0,1 и т. д. Для конусности эти цифры соответствуют разности диаметров конуса на длине 1 мм, для уклона - разности радиусов на этой же длине.
Для обработки полного конуса достаточно знать два элемента: диаметр основания и длину; для усеченного конуса - три элемента: диаметры большего и меньшего оснований и длину. Вместо одного из указанных элементов может быть задан угол наклона а, уклон или конусность. В этом случае для определения недостающих размеров пользуются вышеприведенными формулами (9), (10) и (11).


Пример 1. Дан конус, у которого d=30 мм, /=500 мм, К=1: 20. Определить больший диаметр конуса.
Решение. Из формулы (9)

Пример 2. Дан конус, у которого D=40 мм, l = 100 мм, а=5 , Определить меньший диаметр конуса.
Решение. Из формулы (11)

По таблице тангенсов находим tg5°=0,087. Следовательно, d=40-2*100Х Х0,87=22,6 мм.
Пример 3. Определить угол уклона а, если на чертеже указаны размеры конуса: D-50 мм, d=30 мм, /=200 мм.
Решение. По формуле (11)

Из таблицы тангенсов находим а=2 50 .
Пример 4. Дан конус, у которого D=60 мм, /=150 мм, К=1: 50. Определить угол уклона а.
Решение. Так как уклон равен половине конусности, можно записать:

По таблице тангенсов находим а=0 30 .
3. Нормальные конусы. Конусы, размеры которых стандартизованы, называются нормальными. К ним относятся конусы Морзе, метрические, конусы для насадных разверток и зенкеров с конусностью 1:50 0, под конические штифты - с конусностью 1:50, для конических резьб с конусностью 1: 16 и др.
Наибольшее распространение в машиностроении получили инструментальные конусы Морзе и метрические, основные размеры которых приведены в табл. 13.

Размеры конусов Морзе выражаются дробными числами. Это объясняется тем, что впервые стандарт на них был принят в дюймовой системе измерения, которая сохранилась до настоящего времени. Конусы Морзе имеют различную конусность (примерно 1 20), метрические конусы одинаковую - 1:20.