Рассчитать технологические потери. Калькулятор расчета потерь напряжения

МЕТОДЫ РАСЧЕТА ПОТЕРЬ ЭЛЕКТРОЭНЕРГИИ

При передаче электроэнергии с шин электростанций до потребителей часть электроэнергии расходуется на нагрев проводников, создание электромагнитных полей и другие эффекты, сопутствующие переменному току. Бόльшая часть этих расходов, которые в дальнейшем будем называть потерями электроэнергии, приходится на нагрев проводников.

Термин “потери энергии” следует понимать как технологический расход электроэнергии на её передачу. Именно по этой причине вместо термина “потери электроэнергии” в отчётных документах энергосистем используется термин “технологический расход электроэнергии при передаче по электрическим сетям ”.

В линии, работающей с постоянной нагрузкой и имеющей потери активной мощности ΔР , потери электроэнергии за время t составят

Если же нагрузка в течение года изменяется, то потери электроэнергии можно рассчитать различными способами.

Наиболее точный метод расчёта потерь электроэнергии ΔW – это определение их по графику нагрузок ветви, причём расчёт потерь мощности производится для каждой ступени графика. Этот метод называют методом графического интегрирования. При расчёте за каждый час получается почасовой расчёт потерь электроэнергии.

Различают суточные и годовые графики нагрузок. На рис. 7.3 приведены летний и зимний суточные графики активной и реактивной нагрузок.

Рис. 7.3. Графики нагрузок: а – зимний суточный; б – летний суточный;

в – по продолжительности

Годовой график строится на основе характерных суточных графиков за весенне-летний и осенне-зимний периоды. Это пример упорядоченного графика, т.е. такого, в котором все значения нагрузки расположены в порядке убывания (рис. 7.3). В результате получают годовой график нагрузки, который показывает продолжительность работы при данной нагрузке. Поэтому такой график называется графиком по продолжительности .

По годовому графику нагрузок можно определить потери электроэнергии за год. Для этого определяют потери мощности и электроэнергии для каждого режима.

После подсчета потерь мощности в каждом режиме получают суммарные потери электроэнергии за год, суммируют все потери при различных режимах

, (7.7)

где ΔР i – потери мощности на i -ой ступени графика нагрузок;

Δt i – длительность i -ой ступени графика нагрузок.

Величина потери мощности находится по соотношению

где S i – полная мощность на i- ой ступени графика нагрузок;

U i – линейное напряжение на i- ой ступени графика нагрузок.

Потери мощности и электроэнергии в трансформаторе за время Δt i:

;

,

где ΔР к и ΔР x – потери соответственно в меди и стали трансформатора;

S 2 i – нагрузка на вторичной стороне трансформатора на i -ой ступени графика;

S ном номинальная мощность трансформатора.

При k параллельно работающих идентичных трансформаторах

. (7.9)

Потери электроэнергии за год

. (7.10)

В зависимости от степени равномерности графика нагрузок число параллельно включенных трансформаторов k может быть различным.

Достоинством метода определения потерь по графику нагрузки является высокая точность. Недостатком метода следует считать отсутствие информации о графиках нагрузок для всех ветвей сети. Кроме того, стремление к точности расчёта вызывает увеличение числа ступеней в графике нагрузки, а это, в свою очередь, приводит к повышению трудоемкости расчёта.

Одним из наиболее простых методов определения потерь является расчёт потерь электроэнергии по времени наибольших потерь . Из всех режимов выбирается режим, в котором потери мощности наибольшие. Рассчитывая этот режим, получают потери мощности в нём ΔР нб. Потери энергии за год находят умножением этих потерь мощности на время наибольших потерь τ :

Время наибольших потерь – это время, за которое при работе с наибольшей нагрузкой потери электроэнергии были бы те же, что и при работе по действительному графику нагрузки:

где N – число ступеней нагрузки.

Можно установить связь между потерями электроэнергии и электроэнергией, полученной потребителем.

Энергия, полученная потребителем за год, равна

где Р нб – наибольшая потребляемая нагрузкой мощность;

Т нб – это время в часах, за которое при работе с наибольшей нагрузкой потребитель получал бы то же количество электроэнергии, что и при работе по реальному графику.

Рис. 7.4. Определение ΔW по графику нагрузок и по τ :

а – схема замещения линии; б, г – трехступенчатый и многоступенчатый графики нагрузок; в, д – трехступенчатый и многоступенчатый графики S 2

Из графиков, приведённых на рис. 7.4 видно, что значения τ и Т нб в общем случае не совпадают. Например, Т нб представляет собой абсциссу прямоугольника, площадь которого равна площади трёхступенчатого графика на рис. 7.4,б или многоступенчатого графика на рис. 7.4,г.

Построим график S 2 = f(t) (рис. 7.4,в). Предположим, что потери мощности i -ой ступени графика приближённо определяются по номинальному напряжению, т.е. вместо (7.8) будем использовать следующее выражение

Учитывая, что r л / = соnst, следует заметить, что потери электроэнергии за время Δt i в определённом масштабе равны .

Потери электроэнергии за год в определённом масштабе равны площадям фигур на рис. 6.4, в и д.

Время наибольших потерь τ представляет собой абсциссу прямоугольника, площадь которого равна площади трёхступенчатого графика на рис. 7.4,в или многоступенчатого графика на рис. 7.4,д. Аналогично (7.13) получаем

.

Время наибольшей нагрузки из (7.13)

.

Потери электроэнергии в трансформаторах рассчитывают по формуле

, (7.14)

где

Т = 8760 ч – число часов в году.

Выражение можно применять лишь при постоянном числе включённых на параллельную работу трансформаторов, т.е. К = const .

Поскольку мощность потребления Р ~ I×cosφ , а потери мощности ΔР ~ I 2 , то становится очевидным несовподение значений времени наибольшей нагрузки Т нб и времени наибольших потерь τ (рис. 7.4). Существуют эмпирические формулы, связывающие между собой τ и Т нб . Для ряда характерных нагрузок можно расчётным путём построить зависимости τ = f (Т нб, cosφ ), приведённые на рис. 7.5.

Рис. 7.5. Зависимости τ от Т нб и cosφ

Порядок расчёта потерь по методу τ, т.е. по времени наибольших потерь, следующий:

1) находят время наибольшей нагрузки, используя годовой график;

2) из графических зависимостей τ = f (Т нб, cosφ) , приведённых в справочной литературе, находят время наибольших потерь;

3) определяют потери в режиме наибольшей нагрузки ΔР нб ;

4) по соотношению ΔW = ΔР нб × τ находят потери энергии за год.

Метод расчёта по времени наибольших потерь был одним из самых распространённых до широкого внедрения ЭВМ. В основу метода положены допущения, что максимальные потери энергии в элементе сети соответствуют максимуму нагрузки системы и графики активных и реактивных мощностей подобны, т.е. cosφ = const. При использовании эмпирических зависимостей τ от Т нб и cosφ лишь частично учитывается конфигурация графиков нагрузки. Сделанные допущения приводят к большим погрешностям этого метода. Кроме того, по методу τ нельзя рассчитывать потери в линиях со стальными проводами, сопротивление которых переменно.

Дальнейшее повышение точности расчёта потерь привело к разработке метода τ P и τ Q . При этом методе в величине ΔР нб разделяются потери мощности от протекания по сети активной и реактивной мощностей.

Расчётное соотношение имеет вид

ΔW = ΔP P × τ P + ΔP Q × τ Q ,

где ΔР р, ΔР Q – составляющие потерь мощности от протекания по сети активной и реактивной мощностей.

При передаче электроэнергии часть ее расходуется на нагрев, создание электромагнитных полей и другие эффекты. Этот расход принято называть потерями. В электроэнергетике термин “потери” имеет специфическое значение. Если в дру-гих производствах потери связаны с браком продукции, то потери электроэнергии – это технологический расход на ее передачу.

Величина потерь электроэнергии зависит от характера изменения нагрузки в рассматриваемый период времени. Например, в ЛЕП, работающей с неизменной нагрузкой, потери электроэнергии за время t рассчитываются следующим образом:

где
суммарные потери активной мощности в сопротивлении и проводимости ЛЕП.

Если нагрузка меняется, то потери электроэнергии можно рассчитать различными способами. В зависимости от используемой математической модели методы делятся на две групп:

    детерминированные;

    вероятностно-статистические.

Наиболее точным из детерминированных методов является метод расчета потерь электроэнергии по графику нагрузок для каждого потребителя.

Предположим, что нагрузка потребителя в году менялась по следующему графику (см. рис. 7.4). Тогда,


Интеграл – это фактически площадь, ограниченная графиком изменения квадрата тока. Таким образом, потери активной электроэнергии пропорциональны площади квадратичного годового графика нагрузки.

Так как напряжение на шинах электроприемника меняется незначительно, то его значение можно считать неизменным. Заменяя интеграл суммой площадей прямоугольников с шагом Δt i , получим:

Потери электроэнергии в трансформаторах при заданном графике нагрузки при использовании его паспортных данных рассчитываются по формулам:

    для двухобмоточных

    для трехобмоточных трансформаторов (автотрансформаторов)

Достоинство метода – высокая точность расчета. Недостаток – большое количество вычислений.

Графики нагрузок не всегда известны. В этом случае потери электроэнергии можно вычислить другим детерминированным методом – через τ м . Метод основан на двух допущениях:

    максимальные потери в электрической сети наблюдаются в период максимума нагрузки в энергосистемы (утренний максимум с 9 до 11 часов; вечерний – с 17 до 21 часа);

    графики активной и реактивной мощности подобны, т.е. график реактивной мощности пересчитан из графика активной мощности.

Время максимальных потерь τ м – это время, в течении которого при работе потребителя с максимальной нагрузкой из сети потребляется такое же количество электроэнергии, что и при работе по реальному графику нагрузки. Исходя из определения, запишем:

где
соответственно время максимальных потерь для активной и реактивной нагрузок.

На практике эти значения усредняют и заменяют общим – τ м . Тогда,

Для типовых графиков нагрузки величина τ м определяется по известной величинеT м :

(7.3)

В соответствии с этим методом потери электроэнергии в элементах сети рассчитываются по формулам:

    в линии электропередач

    в двухобмоточных трансформаторах

;

    в трехобмоточных трансформаторах (автотрансформаторах)

Величина τ м в рассчитывается по формуле (7.3) по величинеT м в, значение которой определяется как средневзвешенное:

Аналогично определяется величина τ м для ЛЕП, питающей несколько потребителей.

Потери электроэнергии в электрических сетях неминуемы, поэтому важно чтобы они не превышали экономически обоснованного уровня. Превышение норм технологического расхода говорит о возникших проблемах. Чтобы исправить ситуацию необходимо установить причины возникновения нецелевых затрат и выбрать способы их снижения. Собранная в статье информация описывает многие аспекты этой непростой задачи.

Виды и структура потерь

Под потерями подразумевается разница между отпущенной потребителям электроэнергией и фактически поступившей к ним. Для нормирования потерь и расчетов их фактической величины, была принята следующая классификация:

  • Технологический фактор. Он напрямую зависит от характерных физических процессов, и может меняться под воздействием нагрузочной составляющей, условно-постоянных затрат, а также климатических условий.
  • Расходы, затрачиваемые на эксплуатацию вспомогательного оборудования и обеспечение необходимых условий для работы техперсонала.
  • Коммерческая составляющая. К данной категории относятся погрешности приборов учета, а также другие факторы, вызывающие недоучет электроэнергии.

Ниже представлен среднестатистический график потерь типовой электрокомпании.

Как видно из графика наибольшие расходы связаны с передачей по воздушным линиям (ЛЭП), это составляет около 64% от общего числа потерь. На втором месте эффект коронированния (ионизация воздуха рядом с проводами ВЛ и, как следствие, возникновение разрядных токов между ними) – 17%.


Исходя из представленного графика, можно констатировать, что наибольший процент нецелевых расходов приходится на технологический фактор.

Основные причины потерь электроэнергии

Разобравшись со структурой, перейдем к причинам, вызывающим нецелевой расход в каждой из перечисленных выше категорий. Начнем с составляющих технологического фактора:

  1. Нагрузочные потери, они возникают в ЛЭП, оборудовании и различных элементах электросетей. Такие расходы напрямую зависят от суммарной нагрузки. В данную составляющую входят:
  • Потери в ЛЭП, они напрямую связаны с силой тока. Именно поэтому при передаче электроэнергии на большие расстояния используется принцип повышения в несколько раз, что способствует пропорциональному уменьшению тока, соответственно, и затрат.
  • Расход в трансформаторах, имеющий магнитную и электрическую природу (). В качестве примера ниже представлена таблица, в которой приводятся данные затрат на трансформаторах напряжения подстанций в сетях 10 кВ.

Нецелевой расход в других элементах не входит в данную категорию, ввиду сложностей таких расчетов и незначительного объема затрат. Для этого предусмотрена следующая составляющая.

  1. Категория условно-постоянных расходов. В нее входят затраты, связанные со штатной эксплуатацией электрооборудования, к таковым относятся:
  • Холостая работа силовых установок.
  • Затраты в оборудовании, обеспечивающем компенсацию реактивной нагрузки.
  • Другие виды затрат в различных устройствах, характеристики которых не зависят от нагрузки. В качестве примера можно привестисиловую изоляцию, приборы учета в сетях 0,38 кВ, змерительные трансформаторы тока, ограничители перенапряжения и т.д.

Учитывая последний фактор, следует учитывать затраты электроэнергии на расплавление льда.

Расходы на поддержку работы подстанций

К данной категории отнесены затраты электрической энергии на функционирование вспомогательных устройств. Такое оборудование необходимо для нормальной эксплуатации основных узлов, отвечающих за преобразование электроэнергии и ее распределение. Фиксация затрат осуществляется приборами учета. Приведем список основных потребителей, относящихся к данной категории:

  • системы вентиляции и охлаждения трансформаторного оборудования;
  • отопление и вентиляция технологического помещения, а также внутренние осветительные приборы;
  • освещение прилегающих к подстанциям территорий;
  • зарядное оборудование АКБ;
  • оперативные цепи и системы контроля и управления;
  • системы обогрева наружного оборудования, например, модули управления воздушными выключателями;
  • различные виды компрессорного оборудования;
  • вспомогательные механизмы;
  • оборудование для ремонтных работ, аппаратура связи, а также другие приспособления.

Коммерческая составляющая

Под данными затратами подразумевается сальдо между абсолютными (фактическими) и техническими потерями. В идеале такая разница должна стремиться к нулю, но на практике это не реально. В первую очередь это связано с особенностями приборов учета отпущенной электроэнергии и электросчетчиков, установленных у конечных потребителей. Речь идет о погрешности. Существует ряд конкретных мероприятий для уменьшения потерь такого вида.

К данной составляющей также относятся ошибки в счетах, выставленных потребителю и хищения электроэнергии. В первом случае подобная ситуация может возникнуть по следующим причинам:

  • в договоре на поставку электроэнергии указана неполная или некорректная информация о потребителе;
  • неправильно указанный тариф;
  • отсутствие контроля за данными приборов учета;
  • ошибки, связанные с ранее откорректированными счетами и т.д.

Что касается хищений, то эта проблема имеет место во всех странах. Как правило, такими противозаконными действиями занимаются недобросовестные бытовые потребители. Заметим, что иногда возникают инциденты и с предприятиями, но такие случаи довольно редки, поэтому не являются определяющими. Характерно, что пик хищений приходится на холодное время года, причем в тех регионах, где имеются проблемы с теплоснабжением.

Различают три способа хищения (занижения показаний прибора учета):

  1. Механический . Под ним подразумевается соответствующее вмешательство в работу прибора. Это может быть притормаживание вращения диска путем прямого механического воздействия, изменение положения электросчетчика, путем его наклона на 45° (для той же цели). Иногда применяется более варварский способ, а именно, срываются пломбы, и производится разбалансирование механизма. Опытный специалист моментально обнаружит механическое вмешательство.
  2. Электрический . Это может быть как незаконное подключение к воздушной линии путем «наброса», метод инвестирования фазы тока нагрузки, а также использование специальных приборов для его полной или частичной компенсации. Помимо этого есть варианты с шунтированием токовой цепи прибора учета или переключение фазы и нуля.
  3. Магнитный . При данном способе к корпусу индукционного прибора учета подносится неодимовый магнит.

Практически все современные приборы учета «обмануть» вышеописанными способами не удастся. Мало того, подобные попытки вмешательства могут быть зафиксированы устройством и занесены в память, что приведет к печальным последствиям.

Понятие норматива потерь

Под данным термином подразумевается установка экономически обоснованных критериев нецелевого расхода за определенный период. При нормировании учитываются все составляющие. Каждая из них тщательно анализируется отдельно. По итогу производятся вычисления с учетом фактического (абсолютного) уровня затрат за прошедший период и анализа различных возможностей, позволяющих реализовать выявленные резервы для снижения потерь. То есть, нормативы не статичны, а регулярно пересматриваются.

Под абсолютным уровнем затрат в данном случае подразумевается сальдо между переданной электроэнергией и техническими (относительными) потерями. Нормативы технологических потерь определяются путем соответствующих вычислений.

Кто платит за потери электричества?

Все зависит от определяющих критериев. Если речь идет о технологических факторах и расходах на поддержку работы сопутствующего оборудования, то оплата потерь закладывается в тарифы для потребителей.

Совсем по иному обстоит дело с коммерческой составляющей, при превышении заложенной нормы потерь, вся экономическая нагрузка считается расходами компании, осуществляющей отпуск электроэнергии потребителям.

Способы уменьшения потерь в электрических сетях

Снизить затраты можно путем оптимизации технической и коммерческой составляющей. В первом случае следует принять следующие меры:

  • Оптимизация схемы и режима работы электросети.
  • Исследование статической устойчивости и выделение мощных узлов нагрузки.
  • Снижение суммарной мощности за счет реактивной составляющей. В результате доля активной мощности увеличится, что позитивно отразится на борьбе с потерями.
  • Оптимизация нагрузки трансформаторов.
  • Модернизация оборудования.
  • Различные методы выравнивания нагрузки. Например, это можно сделать, введя многотарифную систему оплаты, в которой в часы максимальной нагрузки повышенная стоимость кВт/ч. Это позволит существенно потребление электроэнергии в определенные периоды суток, в результате фактическое напряжение не будет «проседать» ниже допустимых норм.

Уменьшить коммерческие затраты можно следующим образом:

  • регулярный поиск несанкционированных подключений;
  • создание или расширение подразделений, осуществляющих контроль;
  • проверка показаний;
  • автоматизация сбора и обработки данных.

Методика и пример расчета потерь электроэнергии

На практике применяют следующие методики для определения потерь:

  • проведение оперативных вычислений;
  • суточный критерий;
  • вычисление средних нагрузок;
  • анализ наибольших потерь передаваемой мощности в разрезе суток-часов;
  • обращение к обобщенным данным.

Полную информацию по каждой из представленных выше методик, можно найти в нормативных документах.

В завершении приведем пример вычисления затрат в силовом трансформаторе TM 630-6-0,4. Формула для расчета и ее описание приведены ниже, она подходит для большинства видов подобных устройств.


Расчет потерь в силовом трансформаторе

Для понимания процесса следует ознакомиться с основными характеристиками TM 630-6-0,4.


Теперь переходим к расчету.

Потерями в электросетях считают разность между переданной электроэнергией от производителя до учтенной потребленной электроэнергией потребителя. Потери происходят на ЛЭП, в силовых трансформаторах, за счет вихревых токов при потреблении приборов с реактивной нагрузкой, а также из-за плохой изоляции проводников и хищения неучтенного электричества. В этой статье мы постараемся подробно рассказать о том, какие бывают потери электроэнергии в электрических сетях, а также рассмотрим мероприятия по их снижению.

Расстояние от электростанции к поставляющим организациям

Учет и оплата всех видов потерь регулируется законодательным актом: «Постановление Правительства РФ от 27.12.2004 N 861 (ред. от 22.02.2016) «Об утверждении Правил недискриминационного доступа к услугам по передаче электрической энергии и оказания этих услуг…» п. VI. Порядок определения потерь в электрических сетях и оплаты этих потерь. Если вы хотите разобраться с тем, кто должен оплачивать часть утраченной энергии, рекомендуем изучить данный акт.

При передаче электроэнергии на большие расстояния от производителя до поставщика ее к потребителю теряется часть энергии по многим причинам, одна из которых — напряжение, потребляемое обычными потребителями (оно составляет 220 или 380 В). Если производить транспортировку такого напряжения от генераторов электростанций напрямую, то необходимо проложить электросети с диаметром провода, который обеспечит всех необходимым током при указанных параметрах. Провода будут очень толстыми. Их невозможно будет подвесить на линиях электропередач, из-за большого веса, прокладка в земле тоже обойдется недешево.

Более подробно узнать о том, вы можете в нашей статье!

Для исключения этого фактора в распределительных сетях применяют высоковольтные линии электропередач. Простая формула расчета такова: P=I*U. Мощность равна произведению тока на напряжение.

Мощность потребления, Вт Напряжение, В Ток, А
100 000 220 454,55
100 000 10 000 10

Повышая напряжение при передаче электроэнергии в электрических сетях можно существенно снизить ток, что позволит обойтись проводами с намного меньшим диаметром. Подводный камень данного преобразования заключается в том, что в трансформаторах есть потери, которые кто-то должен оплатить. Передавая электроэнергию с таким напряжением, она существенно теряется и от плохого контакта проводников, которые со временем увеличивают свое сопротивление. Возрастают потери при повышении влажности воздуха – увеличивается ток утечки на изоляторах и на корону. Также увеличиваются потери в кабельных линиях при снижении параметров изоляции проводов.

Передал поставщик энергию в поставляющую организацию. Та в свою очередь должна привести параметры в нужные показатели: преобразовать полученную продукцию в напряжение 6-10 кВ, развести кабельными линиями по пунктам, после чего снова преобразовать в напряжение 0,4 кВ. Снова возникают потери на трансформацию при работе трансформаторов 6-10 кВ и 0,4 кВ. Бытовому потребителю доставляется электроэнергия в нужном напряжении – 380 В или 220В. Любой трансформатор имеет свой КПД и рассчитан на определенную нагрузку. Если мощность потребления больше или меньше расчетной мощности, потери в электрических сетях возрастают независимо от желания поставщика.

Следующим подводным камнем всплывает несоответствие мощности трансформатора, преобразующего 6-10 кВ в 220В. Если потребители берут энергии больше паспортной мощности трансформатора, он или выходит из строя, или не сможет обеспечить необходимые параметры на выходе. В результате снижения напряжения сети электроприборы работают с нарушением паспортного режима и, как следствие, увеличивают потребление.

Мероприятия по снижению технических потерь электроэнергии в системах электроснабжения подробно рассмотрены на видео:

Домашние условия

Потребитель получил свои 220/380 В на счетчике. Теперь потерянная после счетчика электрическая энергия ложится на конечного потребителя.

Она складывается из:

  1. Потерь на при превышении расчетных параметров потребления.
  2. Плохой контакт в приборах коммутации (рубильники, пускатели, выключатели, патроны для ламп, вилки, розетки).
  3. Емкостной характер нагрузки.
  4. Индуктивный характер нагрузки.
  5. Использование устаревших систем освещения, холодильников и другой старой техники.

Рассмотрим мероприятия по снижению потерь электроэнергии в домах и квартирах.

П.1 - борьба с таким видом потерь одна: применение проводников соответствующих нагрузке. В существующих сетях необходимо следить за соответствием параметров проводов и потребляемой мощностью. В случае невозможности откорректировать эти параметры и ввести в норму, следует мириться с тем, что энергия теряется на нагрев проводов, в результате чего изменяются параметры их изоляции и повышается вероятность возникновения пожара в помещении. О том, мы рассказывали в соответствующей статье.

П.2 - плохой контакт: в рубильниках - это использование современных конструкций с хорошими неокисляющимися контактами. Любой окисел увеличивает сопротивление. В пускателях - тот же способ. Выключатели - система включения-выключения должна использовать металл, хорошо выдерживающий действие влаги, повышенных температур. Контакт должен быть обеспечен хорошим прижатием одного полюса к другому.

П.3, П.4 - реактивная нагрузка. Все электроприборы, которые не относятся к лампам накаливания, электроплитам старого образца имеют реактивную составляющую потребления электроэнергии. Любая индуктивность при подаче на нее напряжения сопротивляется прохождению по ней тока за счет возникающей магнитной индукции. Через время электромагнитная индукция, которая препятствовала прохождению тока, помогает его прохождению и добавляет в сеть часть энергии, которая является вредной для общих сетей. Возникают так называемые вихревые токи, которые искажают истинные показания электросчетчиков и вносят отрицательные изменения в параметры поставляемой электроэнергии. То же происходит и при емкостной нагрузке. Возникающие вихревые токи портят параметры поставленной потребителю электроэнергии. Борьба - использование специальных компенсаторов реактивной энергии, в зависимости от параметров нагрузки.

П.5. Использование устаревших систем освещения (лампочки накаливания). Их КПД имеет максимальное значение - 3-5%, а может быть и меньше. Остальные 95% идут на нагревание нити накала и как следствие на нагревание окружающей среды и на излучение не воспринимаемое человеческим глазом. Поэтому совершенствовать данный вид освещения стало нецелесообразным. Появились другие виды освещения - люминесцентные лампы, которые стали широко применяться в последнее время. КПД люминесцентных ламп достигает 7%, а светодиодных до 20%. Использование последних даст экономию электроэнергии прямо сейчас и в процессе эксплуатации за счет большого срока службы - до 50 000 часов (лампа накаливания - 1 000 часов).

Отдельно хотелось бы отметить, что сократить потери электрической энергии в доме можно с помощью . Помимо этого, как мы уже сказали, электроэнергия теряется при ее хищении. Если вы заметили, что , нужно сразу же предпринимать соответствующие меры. Куда звонить за помощью, мы рассказали в соответствующей статье, на которую сослались!

Рассмотренные выше способы уменьшения мощности потребления дают снижение нагрузки на электропроводку в доме и, как следствие, сокращение потерь в электросети. Как вы уже поняли, методы борьбы наиболее широко раскрыты для бытовых потребителей потому что не каждый хозяин квартиры или дома знает о возможных потерях электроэнергии, а поставляющие организации в своем штате держат специально обученных по этой теме работников, которые в состоянии бороться с такими проблемами.

Особенности расчета нормативов потерь электроэнергии для территориальных сетевых организаций

Папков Б. В., доктор техн. наук, Вуколов В. Ю., инж. НГТУ им. Р. Е. Алексеева, Нижний Новгород

Рассмотрены особенности расчета нормативов потерь для территориальных сетевых организаций в современных условиях. Приведены результаты исследования методов расчета потерь в сетях низкого напряжения.

Вопросы, связанные с транспортом и распределением электрической энергии и мощности по электрическим сетям, решаются в условиях естественного монополизма территориальных сетевых организаций (ТСО). Экономическая эффективность их функционирования во многом зависит от обоснованности материалов, предоставляемых в службы государственного регулирования тарифов. При этом серьезных усилий требует расчет нормативов потерь электрической энергии.

В остается нерешенным ряд проблем, возникающих на этапах подготовки обосновывающих материалов по нормативам потерь, их экспертизы, рассмотрения и утверждения. В настоящее время ТСО приходится преодолевать следующие трудности:

необходимость сбора и обработки достоверных исходных данных для расчетов нормативов потерь;

недостаточное количество персонала для сбора и обработки данных измерений нагрузок электрических сетей, выявления бездоговорного и безучетного потребления электроэнергии;

нехватка современных приборов учета электроэнергии для достоверного расчета балансов электроэнергии как по сети в целом, так и по отдельным ее частям: подстанциям, линиям, выделенным участкам сети и т. п.;

отсутствие приборов учета электроэнергии для разделения потерь электроэнергии от собственного потребления и на оказание услуг по передаче электроэнергии субабонентам; специализированного программного обеспечения у ряда ТСО; необходимых материальных, финансовых и людских ресурсов для практической реализации программ и мероприятий по снижению потерь; нормативно-правовой базы для борьбы с бездоговорным и безучетным потреблением электроэнергии;

сложность и трудоемкость расчетов нормативов потерь (особенно в распределительных электрических сетях 0,4 кВ), практическая невозможность достоверной оценки их точности;

недостаточность проработки методов достоверной оценки технико-экономической эффективности мероприятий и программ снижения потерь электроэнергии;

трудности разработки, согласования и утверждения сводных прогнозных балансов электроэнергии на регулируемый период из-за отсутствия соответствующих методик и достоверной статистики по динамике составляющих баланса.

Особое внимание следует уделить расчету потерь электроэнергии в сетях 0,4 кВ вследствие их исключительной социальной важности (по России в целом они составляют около 40 % суммарной протяженности всех электрических сетей). На этом напряжении осуществляется потребление электрической энергии конечными электроприемниками: в большой химии - 40 - 50 %, в машиностроении - 90-95 %, в коммунально-бытовой сфере - практически 100%. От надежности работы сетей 0,4 кВ и их загрузки в значительной степени зависят качество и экономичность электроснабжения потребителей.

Расчет нормативов потерь в сетях 0,4 кВ - один из наиболее трудоемких. Это связано со следующими особенностями:

разнородностью исходной схемотехнической информации и низкой ее достоверностью;

разветвленностью воздушных линий 0,4 кВ, при расчете потерь в которых требуется наличие поопорных схем с соответствующими параметрами;

динамикой изменения схемных и особенно режимных параметров;

исполнением участков сетей с различным числом фаз;

неравномерностью загрузки фаз; неодинаковостью фазных напряжений на шинах питающей ТП.

Необходимо подчеркнуть, что методы расчетов потерь мощности и электроэнергии в сетях 0,4 кВ должны быть в максимальной степени адаптированы к имеющимся в условиях эксплуатации сетей схемным и режимным параметрам с учетом объемов исходной информации.

Обследование 10 ТСО Нижегородской области, выполнение расчетов нормативов потерь, их экспертиза и утверждение позволяют структурировать создаваемые ТСО на следующие группы :

  1. правопреемники АО-энерго;
  2. создаваемые на базе служб главного энергетика промышленного предприятия в соответствии с ограничениями антимонопольного законодательства;
  3. создаваемые с целью обеспечения эксплуатации электрооборудования, оказавшегося "бесхозным" в ходе реализации рыночной реформы в сфере промышленного и сельскохозяйственного производства.

Появление организаций - правопреемников ранее существовавших АО-энерго - связано с реструктуризацией и ликвидацией РАО "ЕЭС России". Расчет и утверждение нормативов потерь для ТСО данной группы требуют минимального вмешательства сторонних исследователей, поскольку для них эта задача неновая: имеются довольно долгая предыстория, персонал с большим опытом расчетов, максимальная информационная обеспеченность. Методические материалы ориентированы главным образом на особенности эксплуатации именно этой группы ТСО.

Анализ проблем, связанных с определением нормативов потерь для предприятий второй группы, показывает, что сегодня остро не хватает персонала, готового применять не адаптированную к реальным условиям работы таких ТСО существующую методику расчета нормативов потерь. В данном случае целесообразно привлекать для расчетов и утверждения нормативов потерь внешние специализированные компании. При этом отпадает необходимость в дорогостоящем специальном сертифицированном программном обеспечении, имеющемся у сторонних исследователей. Если же рассматривать задачу утверждения тарифа на услуги транспорта электроэнергии по заводским сетям как более общую, в которой расчет норматива потерь является всего лишь ее составляющей (хотя и важной), то возникает юридическая проблема правомерности применения ретроспективной технико-экономической информации в условиях изменения формы обслуживания электрооборудования.

При расчете потерь в сетях 0,4 кВ таких ТСО наиболее остро стоит проблема разделения единой системы электроснабжения на транспортную и технологическую части. Под последней подразумеваются участки транспортной сети, обеспечивающие непосредственно конечное преобразование электроэнергии в иные ее виды. Учитывая реальное распределение точек подключения сторонних потребителей, объемы полезного отпуска по уровням напряжения и сложности расчета потерь в сетях 0,4 кВ, практически во всех случаях целесообразно полностью отнести эти сети к технологической части.

ТСО, относимые к третьей группе, образуются в результате вынужденных мер, предпринимаемых государством и частным бизнесом для ликвидации недопустимого положения, когда из-за отказа от непрофильных видов деятельности или банкротства различных предприятий большое количество электроустановок (в основном напряжением 10-6-0,4 кВ) было брошено прежними владельцами. В настоящее время техническое состояние многих таких электроустановок можно охарактеризовать как неудовлетворительное. Однако вывод их из работы невозможен вследствие социальной значимости. С учетом этого в регионах реализуется программа восстановления ветхих и "бесхозных" сетей, финансирование которой осуществляется, в том числе и централизованно, из федерального бюджета. В большинстве случаев электрооборудование принимается на баланс органами местного самоуправления, которые и решают задачу обеспечения его нормального функционирования. На основании опыта Нижегородской области можно сделать вывод, что главное направление использования указанного оборудования - передача его в аренду государственным и частным специализированным компаниям.

Из-за рассредоточения сетей таких ТСО по разным административным районам для решения задач передачи и распределения электроэнергии, обеспечения работоспособности электрических сетей (монтаж, наладка, ремонт и техническое обслуживание электротехнического оборудования и средств защиты электрических сетей) возможны два пути: создание собственной эксплуатационно-ремонтной службы (что вследствие охвата большой территории приведет к увеличению длительности обслуживания оборудования) или заключение договоров на техническое обслуживание со службами АО-энерго. При этом оперативность будет обеспечена, но целесообразность существования организаций такого типа теряет смысл. В настоящее время ТСО третьей группы проводят работы по установке узлов учета электроэнергии, финансируемые в рамках областной программы восстановления ветхих сетей и из иных источников. Решаются вопросы организации системы сбора и обработки информации о показаниях счетчиков электрической энергии с привлечением специализированных организаций. Однако большие стоимость и объем необходимых работ, а также имеющиеся противоречия между участниками процесса формирования системы учета электроэнергии потребуют длительного времени на их полное завершение.

В условиях действующей системы тарифо- образования на транспорт электрической энергии основу расчета составляют информация о технико-экономических характеристиках используемого электрооборудования и ретроспективная информация о фактических издержках на осуществление функционирования ТСО в предыдущем (базовом) периоде. Для вновь создаваемых ТСО третьей группы это - труднопреодолимое препятствие.

С точки зрения расчета норматива электрических потерь ТСО данного класса создают наибольшие проблемы. Основные из них:

практически нет паспортных данных на электрооборудование;

отсутствуют однолинейные схемы электрических сетей, поопорные схемы воздушных линий электропередачи (BJI) и схемы трасс проложенных кабельных линий (КЛ);

часть участков ВЛ и КЛ таких сетей не имеют непосредственных связей с другим оборудованием рассматриваемых ТСО и являются элементами присоединений иных ТСО.

В данной ситуации можно использовать методы принятия решений в условиях недостатка и неопределенности исходной информации. Это позволяет достичь позитивных результатов уже потому, что дается обоснованное предпочтение тем вариантам, которые оказываются наиболее гибкими и обеспечивающими наибольшую эффективность. Один из них - метод экспертных оценок. Его применение для каждой конкретной ТСО третьей группы является единственно возможным способом количественной оценки показателей, необходимых для расчета потерь электроэнергии на начальном этапе функционирования сетевых организаций.

В качестве примера рассмотрим особенности расчета нормативов потерь электроэнергии для организации (условно названной ТСО-энер- го), электрооборудование которой рассредоточено на территории 17 районов Нижегородской области. Источниками исходной информации об электрооборудовании и режимах работы ТСО-энерго к моменту начала обследования были договоры аренды электрооборудования и сооружений, договоры на техническое и оперативное обслуживание, заключенные его администрацией с филиалами ОАО "Нижновэнерго" на местах и с гарантирующим поставщиком электроэнергии по региону. Ввиду невозможности на начальном этапе функционирования ТСО-энерго в качестве электросетевой организации осуществлять учет транспортируемой электрической энергии с помощью электрических счетчиков объемы передаваемой электроэнергии определяли расчетным путем.

В ходе обследования электроустановок была получена дополнительная информация о сетях 0,4 кВ, питающихся от ТП, арендуемых ТСО-энерго у администраций только двух районов области. В результате анализа полученных данных эксперты качественно определили конфигурацию сетей 0,4 кВ исследуемой организации, провели разделение общей длины (общего числа пролетов) фидеров 0,4 кВ на магистральные участки и ответвления (с учетом числа фаз), получили средние значения таких параметров, как число фидеров 0,4 кВ на одно ТП (2,3); сечение головного участка магистрали фидера ЛЭП 0,4 кВ (38,5 мм 2), сечения кабельных (50 мм 2) и воздушных (35 мм") ЛЭП 6 кВ.

Информация об электрических сетях 0,4 кВ всех 17 районов структурирована на основе экстраполяции результатов анализа поопорных схем электрических сетей по выборке из двух. Согласно экспертному заключению, данные районы являются типовыми для ТСО- энерго, и экстраполяция результатов выборки не искажает общую картину конфигурации сетей организации в целом. Ниже приведены полученные значения норматива потерь электроэнергии AW Hn3 , тыс. кВт ч (%), на период регулирования, равный 1 году, для сетей 6- 10 и 0,4 кВ:

    6- 10 кВ 3378,33 (3,78)

    0,4 кВ 12452,89 (8,00)

    Всего 15831,22 (9,96)

В сложившейся ситуации с учетом состояния электроустановок большинства ТСО наи

более эффективным, а иногда и единственно возможным для расчета потерь в сетях 0,4 кВ был метод оценки потерь по обобщенной информации о схемах и нагрузках сети. Однако согласно последней редакции его использование возможно лишь при питании сети низкого напряжения не менее чем от 100 ТП, что существенно ограничивает применение метода для расчета потерь в сетях ТСО. Здесь возможна ситуация, когда полученный расчетным путем и обоснованный наличием подтверждающих документов норматив потерь электроэнергии в сетях низкого напряжения будет значительно ниже отчетных потерь в них ввиду сложности, а иногда и невозможности сбора исходной информации для расчетов. Это в дальнейшем может привести к банкротству ТСО и появлению "бесхозных" электрических сетей. Поэтому были исследованы разные методы расчета нормативов потерь электроэнергии в сетях низкого напряжения с целью проведения сравнительного анализа точности расчета каждого из предлагаемых в подходов.

Для расчета нормативов потерь электроэнергии в сетях 0,4 кВ при известных их схемах применяются те же алгоритмы, что и для сетей 6-10кВ, которые реализуются по методу средних нагрузок или методу числа часов наибольших потерь мощности. Вместе с тем существующими методиками предусмотрены специальные оценочные методы, определяющие порядок расчета нормативов потерь в сетях низкого напряжения (метод оценки потерь по обобщенной информации о схемах и нагрузках сети, а также метод оценки потерь с использованием измеренных значений потерь напряжения) .

Для проведения численного анализа точности расчетов указанными методами определены потери электрической энергии на основе схемы электроснабжения бытовых потребителей 0,4 кВ. Расчетная модель сети 0,4 кВ представлена на рисунке (где Н - нагрузка). Наличие полного объема информации о ее конфигурации и режиме позволяет рассчитать потери электроэнергии AW пятью методами. Результаты расчетов представлены в табл. 1.

Промышленная энергетика №i, 2010

Таблица 1

        Метод расчета
A W, кВт ч (%)
    8 W, %
Метод характерных сезонных суток 11997,51 (3,837)
Метод средних нагрузок 12613,638 (4,034)
Метод числа часов наибольших потерь мощности 12981,83 (4,152)
Метод оценки потерь с использованием измеренных значений потерь напряжения 8702,49 (2,783)
Метод оценки потерь по обобщенной информации о схемах и нагрузках сети 11867,21 (3,796)

Наиболее достоверны результаты, полученные поэлементным расчетом сети 0,4 кВ методом характерных сезонных суток. Однако при этом необходимо иметь полную информацию о конфигурации сети, марках и сечениях проводов, токах в фазных и нулевых проводах, получение которой весьма затруднительно. Более простым с этой точки зрения является расчет потерь электроэнергии методом средних нагрузок или методом числа часов наибольших потерь мощности. Но использование данных методов также требует весьма трудоемкого поэлементного расчета сети при наличии исходной информации о токах и потоках активной мощности по линиям, сбор которой для многих сетевых организаций также практически невозможен. Анализ результатов потерь в расчетной модели путем применения метода средних нагрузок и метода числа часов наибольших потерь мощности показывает завышение потерь электроэнергии по сравнению с результатом, полученным методом характерных сезонных суток.

Использование метода оценки потерь электроэнергии по измеренным значениям потерь напряжения в условиях рассматриваемой модели сети приводит к существенному занижению норматива рассматриваемых потерь. Потери напряжения в линиях 0,4 кВ не могут быть измерены в полном объеме, а их достоверность не может быть оценена при проверке результатов расчета. В связи с этим метод является скорее теоретическим, он неприменим для практических расчетов, результаты которых должны быть приняты регулирующим органом.

Поэтому согласно проведенным исследованиям наиболее эффективным представляется метод оценки потерь электроэнергии по обобщенной информации о схемах и нагрузках сети. Он наименее трудоемок с точки зрения сбора достаточного для расчета количества исходной схемотехнической информации. Результаты при его использовании в расчетной модели имеют малое расхождение с данными поэлементного расчета даже на уровне определения потерь в двух фидерах, питающихся от одной ТП. С учетом реальных схем низкого напряжения существующих ТСО, в которых количество фидеров 0,4 кВ достигает нескольких десятков и сотен, погрешность применения данного метода оценки потерь будет еще меньше, чем на уровне рассмотренной расчетной модели. Другим достоинством этого метода является возможность определения потерь в произвольном количестве линий электропередачи одновременно. К основным его недостаткам следует отнести невозможность детального анализа потерь в сети 0,4 кВ и разработки на основании полученных данных мероприятий по их снижению. Однако при утверждении нормативов потерь электроэнергии в целом по сетевой организации в Министерстве энергетики РФ данная задача - не главная.

Положительный опыт обследования ряда сетевых организаций позволяет проанализировать динамику изменения нормативов потерь электрической энергии в сетях рассматриваемых ТСО. В качестве объектов исследования выбрали две организации второй группы (условно обозначенные ТСО-1 и ТСО-2) и шесть третьей группы (ТСО-3 - ТСО-8). Итоги расчета их нормативов потерь в 2008 - 2009 гг. представлены в табл. 2.

В результате было установлено, что невозможно выделить единые тенденции изменения нормативов потерь в целом для рассмотрен-

Таблица 2

Организация Нормативы потерь в целом по ТСО, %
    в 2008 г.
    в 2009 г.
ТСО-1
ТСО-2
ТСО-3
ТСО-4
ТСО-5
ТСО-6
ТСО-7
ТСО-8
В целом

ных организаций, поэтому необходима разработка мероприятий по снижению потерь для каждой ТСО в отдельности.

        Выводы

  1. Основными направлениями повышения обоснованности нормирования потерь электроэнергии в электрических сетях являются разработка, создание и внедрение автоматизированных информационно-измерительных систем коммерческого учета для рынков электроэнергии, сетевых организаций и предприятий.
  2. Наиболее простой и эффективный, а иногда и единственно возможный для использования на данном этапе развития сетевых организаций - метод оценки потерь по обобщенной информации о схемах и нагрузках сети.
  3. Детальный анализ результатов расчета технических потерь в сетях 0,4 кВ обусловливает эффективность разработки мероприятий по их снижению, поэтому необходимо продолжение исследований методов расчета потерь в этих сетях.

      Список литературы

    1. Порядок расчета и обоснования нормативов технологических потерь электроэнергии при ее передаче по электрическим сетям (утвержден приказом Мин- промэнерго России от 4 октября 2005 г. № 267). - М.: ЦПТИ и ТО ОРГРЭС, 2005.
    2. Вуколов В. Ю., Папков Б. В. Особенности расчета нормативов потерь для электросетевых организаций. Энергосистема: управление, конкуренция, образование. - В кн.: Сб. докладов III международной научно-практической конференции. Т. 2. Екатеринбург: УГТУ-УПИ, 2008.