Простой ёмкостной датчик прикосновения. Построение систем емкостных датчиков прикосновений На базе MSP430

Датчики определения расстояния и касания

Ультразвуковой датчик

Ультразвуковой сенсор - один из двух сенсоров, заменяющих роботу зрение. Ультразвуковой сенсор позволяет роботу видеть и обнаруживать объекты. Его также можно использовать для того, чтобы робот мог обойти препятствия, оценить и измерить расстояние, а также зафиксировать движение объекта.

Показания ультразвукового датчика измеряется в сантиметрах и дюймах. Он может измерять расстояние от 0 до 255 сантиметров с точностью +/-3 см. Ультразвуковой сенсор работает по тому же принципу, что и локатор летучей мыши: он измеряет расстояние путем расчета времени, которое потребовалось звуковой волне для возвращения после отражения от объекта, подобно эху.

Крупные объекты с твердыми поверхностями определяются лучше всего. Объекты из мягких материалов (тканей) или округлые (мяч), а также слишком тонкие, маленькие и т.п., могут создавать для сенсора определенные затруднения при работе.

Следует помнить, что два и более ультразвуковых датчика, работающих в одном помещении, могут интерферировать и снижать точность результатов

К примерам применения ультразвуковых датчиков расстояния можно отнести использования в машинах для предупреждающих сигналов водителю или автоматический контроль по сигналам от датчиков, идентифицирующих опасные ситуации, объединяемых в сетевые связи, с человеко-машинным интерфейсом human - machine interface (HMI).

Рис.1

В основе ультразвукового принципа обнаружения препятствий лежит принцип эха. В состав датчика входят два преобразователя: один преобразователь излучает ультразвуковые волны, а отраженные волны обнаруживаются другим, одним или более, преобразователем. Тот же самый преобразователь, который передает ультразвуковые волны, может быть использован и для обнаружения отраженной волны. Основное назначение датчиков -- обнаруживать присутствие или отсутствие препятствия, но данный принцип (time of flight) позволяет также по времени возвращения эха при известной скорости распространения звука рассчитывать расстояние до объекта.

Ультразвук представляет собой не что иное, как вибрацию на частоте > 20 кГц. Большинство коммерчески доступных преобразователей работает на частотах в диапазоне 40-250 кГц.

Вариации акустических параметров датчиков, окружающая среда и различные цели значительно влияют на работу устройств .

В ультразвуковом датчике преобразователь генерирует короткий импульс, направляемый на цель и возвращающийся обратно

Важно, что скорость звука является функцией состава и температуры среды (воздуха) и влияет на точность и разрешение датчика. Точность измерений расстояния прямо пропорциональна точности значения скорости звука, используемого в вычислениях, и варьируется в реальных условиях от 345 м/c при комнатной температуре до более чем 380 м/c при температуре порядка 70 °C. Длина звуковой волны

является функцией скорости ультразвука c и взаимосвязана с его частотой ѓ, поэтому эти параметры (длина волны и частота) также влияют на разрешение и точность, а также минимальный размер целей и диапазон расстояний, измеряемых датчиком.

Затухание звука является функцией частоты и влажности, что влияет на максимальное расстояние, детектируемое датчиком. Длинные волны (с меньшей частотой) характеризуются меньшим затуханием. На частотах свыше 125 кГц максимальное затухание случается при относительной влажности 100%, на частотах 40 кГц -- уже при влажности в 50%. Так как датчик должен работать при любых значениях влажности, в расчетах используется максимальное затухание для каждой частоты.

Фоновые шумы являются функцией частоты и уменьшаются с ее увеличением, также оказывая влияние на максимально детектируемое расстояние и минимальный размер цели. Разрешение и точность на высоких частотах выше, тогда как диапазон выше с более длинными волнами.

Датчик касания

Датчик касания это кнопка, у которой возможно два состояния - нажато и отжато. Программно датчик распознает еще одно состояние Касание.

Увидеть на экране дисплея реакцию датчика касания можно в режиме Просмотра. При не нажатой кнопке датчика на дисплее появляется 0, а при нажатой - 1.

Добавив в конструкцию робота датчик касания (например в виде бампера) вы можете сделать так, чтобы робот изменил поведение при активации датчика.

Датчик касания является одним из органов осязания для роботов, что делает его необходимым там где требуется реакция робота на объекты.

Датчик касания позволяет роботу осуществлять прикосновения.

Сенсор нажатия может определить момент нажатия на него чего-либо, а так же момент освобождения.

Датчик касания представлен на рис.2.

Рис.2 Датчик касания

Используемые образцовые приборы и дополнительное оборудование

Микрометр

Для замера холостого хода у датчика касания необходим микрометр (или Индикатор часового типа) ИЧ-25 который будет измерять расстояние прошедшее датчиком до момента срабатывания.

ИЧ-25 предназначен для измерения линейных размеров абсолютным и относительным методами, определения величины отклонений от заданной геометрической формы и взаимного расположения поверхностей.

На рис.3 представлены несколько видов индикаторов.


Рис.3.

Параметры микрометра ИЧ 25:

Диапазон измерений 0-25 мм.

Цена деления 0.01 мм.

Габариты 159х85х51 мм.

Предлагаемая для повторения схема представляет собой усилитель, обладающий высокой чувствительностью к электромагнитному полю, создаваемому внешними устройствами. При подключении входного контакта схемы к антенне светодиод сигнализирует о наличии излучения электромагнитного поля и наводок от электрооборудования. Светодиод также будет индицировать факт прикосновения к контакту, так как роль антенны в данном случае выполняет тело человека. Отсюда и название - датчик прикосновения. Другое название схемы - активная антенна .

Принципиальная схема датчика прикосновения показана на Рисунке 1.

Схема напоминает автогенератор на транзисторе n-p-n структуры. Один из выводов обмотки L1 подключается непосредственно к входному контакту X1. Полярность включения светодиода VD1 не имеет значения. Резистор R2 ограничивает ток через светодиод и, тем самым, определяет яркость его свечения при срабатывании датчика.

Датчик прикосновения собран на макетной плате размером 40 × 40 мм. Внешний вид конструкции показан на Рисунке 2.

Рисунок 2. Внешний вид датчика прикосновения.

Обмотки L1 и L2 расположены на общем каркасе с двумя секциями для намотки и подстроечным ферритовым сердечником. Наружный диаметр каркаса - 10 мм, длина сердечника - 23 мм, диаметр резьбы у основания сердечника - 6 мм. В конструкции, показанной на Рисунке 2, L1 намотана на верхней секции, L2 - на нижней. Каждая катушка содержит 100 витков провода ПЭЛ 0,2. Обмотки включены согласно. При помощи отвертки сердечник ввинчивается внутрь каркаса. Светодиод VD1 - любой из серии АЛ307 . В качестве Х1 использован лепесток заземления. Прикосновение к нему вызывает зажигание светодиода.

Параллельно VD1 можно подключить измерительный прибор, к примеру, мультиметр в режиме измерения напряжения, что позволит оценивать уровень напряженности поля. В этом случае внешняя антенна может представлять собой отрезок монтажного провода длиной несколько сантиметров. Настройка схемы будет сводиться к выбору длины антенны и поиску такого положения сердечника, при котором напряжение на светодиоде максимально.

Схема не привередлива к выбору элементной базы. К примеру, в первоначальном варианте схемы применялся транзистор КТ815Г , сопротивление резистора R1 составляло 100 кОм. В качестве L1 и L2 использовались две катушки на стержневом ферритовом сердечнике длинноволновой магнитной антенны из радиоприемника. Катушки можно было двигать вдоль сердечника. При перемещении катушек наблюдались явления, не противоречащие закону электромагнитной индукции, в отличие от схемы, предложенной в . При значительном удалении катушек друг от друга и без ферритового сердечника схема работать переставала.

Практическое применение схема может найти не только при конструировании измерителей напряженности поля, но и в устройствах автоматики и сигнализации. Датчик прикосновения можно подключить к микроконтроллеру. Для этого следует выполнить аналого-цифровое преобразование напряжения на светодиоде VD1, возможно, с помощью ресурсов самого микроконтроллера, если он содержит встроенный АЦП.

В заключение необходимо отметить, что существует немало схем датчиков прикосновения, основанных на полевых транзисторах и не содержащих индуктивных элементов. Возможно, их работа во многих случаях более эффективна, но конструкция, приведенная в этой статье, является примером оригинального технического решения и ориентирована на начинающих радиолюбителей.

Литература

  1. Бровин В. И. Явление передачи энергии индуктивностей через магнитные моменты вещества, находящегося в окружающем пространстве, и его применение. - М.: МетаСинтез, 2003 - 20 с.
  2. Крылов К. С., Ли Жаехо, Ким Янг Жин, Ким Сеунгхван, Ли Санг-Ха. Патент на изобретение №2395876. Активная магнитная антенна с ферритовым сердечником.

Емкостной датчик – это один из типов бесконтактных датчиков, принцип работы которого основан на изменении диэлектрической проницаемости среды между двух обкладок конденсатора. Одной обкладкой служит сенсорный датчик схемы в виде металлической пластины или провода, а второй – электропроводящее вещество, например, металл, вода или тело человека.

При разработке системы автоматического включения подачи воды в унитаз для биде возникла необходимость применения емкостного датчика присутствия и выключателя, обладающих высокой надежностью, устойчивостью к изменению внешней температуры, влажности, пыли и питающему напряжению. Хотелось также исключить необходимость прикосновения человека с органами управления системы. Предъявляемые требования могли обеспечить только схемы сенсорных датчиков, работающих на принципе изменения емкости. Готовой схемы удовлетворяющей необходимым требованиям не нашел, пришлось разработать самостоятельно.

Получился универсальный емкостной сенсорный датчик, который не требует настройки и реагирует на приближающиеся электропроводящие предметы, в том числе и человека, на расстояние до 5 см. Область применения предлагаемого сенсорного датчика не ограничена. Его можно применять, например, для включения освещения, систем охранной сигнализации, определения уровня воды и в многих других случаях.

Электрические принципиальные схемы

Для управления подачей воды в биде унитаза понадобилось два емкостных сенсорных датчика. Один датчик нужно было установить непосредственно на унитазе, он должен был выдавать сигнал логического нуля при присутствии человека, а при отсутствии сигнал логической единицы. Второй емкостной датчик должен был служить включателем воды и находиться в одном из двух логических состояний.

При поднесении к сенсору руки датчик должен был менять логическое состояние на выходе – из исходного единичного состояния переходить в состояние логического нуля, при повторном прикосновении руки из нулевого состояния переходить в состояние логической единицы. И так до бесконечности, пока на сенсорный включатель поступает разрешающий сигнал логического нуля с сенсорного датчика присутствия.

Схема емкостного сенсорного датчика

Основой схемы емкостного сенсорного датчика присутствия является задающий генератор прямоугольных импульсов, выполненный по классической схеме на двух логических элементах микросхемы D1.1 и D1.2. Частота генератора определяется номиналами элементов R1 и C1 и выбрана около 50 кГц. Значение частоты на работу емкостного датчика практически не влияет. Я менял частоту от 20 до 200 кГц и влияния на работу устройства визуально не заметил.

С 4 вывода микросхемы D1.2 сигнал прямоугольной формы через резистор R2 поступает на входы 8, 9 микросхемы D1.3 и через переменный резистор R3 на входы 12,13 D1.4. На вход микросхемы D1.3 сигнал поступает с небольшим изменением наклона фронта импульсов из-за установленного датчика, представляющего собой кусок провода или металлическую пластину. На входе D1.4, из за конденсатора С2, фронт изменяется на время, необходимое для его перезаряда. Благодаря наличию подстроечного резистора R3, есть возможность фронты импульса на входе D1.4, выставить равным фронту импульса на входе D1.3.

Если приблизить к антенне (сенсорному датчику) руку или металлический предмет, то емкость на входе микросхемы DD1.3 увеличится и фронт поступающего импульса задержатся во времени, относительно фронта импульса, поступающего на вход DD1.4. чтобы «уловить» эту задержку про инвертированные импульсы подаются на микросхему DD2.1, представляющую собой D триггер, работающий следующим образом. По положительному фронту импульса, поступающего на вход микросхемы C, на выход триггера передается сигнал, который в тот момент был на входе D. Следовательно, если сигнал на входе D не изменяется, поступающие импульсы на счетный вход C не оказывают влияния на уровень выходного сигнала. Это свойство D триггера и позволило сделать простой емкостной сенсорный датчик.

Когда емкость антенны, из за приближения к ней тела человека, на входе DD1.3 увеличивается, импульс задерживается и это фиксирует D триггер, изменяя свое выходное состояние. Светодиод HL1 служит для индикации наличия питающего напряжения, а HL2 для индикации приближения к сенсорному датчику.

Схема сенсорного включателя

Схему емкостного сенсорного датчика можно использовать и для работы сенсорного включателя, но с небольшой доработкой, так как ему необходимо не только реагировать на приближение тела человека, но и оставаться в установившемся состоянии после удаления руки. Для решения этой задачи пришлось к выходу сенсорного датчика добавить еще один D триггер, DD2.2, включенный по схеме делителя на два.

Схема емкостного датчика была немного доработана. Для исключения ложных срабатываний, так как человек может подносить и удалять руку медленно, из-за наличия помех датчик может выдавать на счетный вход D триггера несколько импульсов, нарушая необходимый алгоритм работы включателя. Поэтому была добавлена RC цепочка из элементов R4 и C5, которая на небольшое время блокировала возможность переключение D триггера.


Триггер DD2.2 работает так же, как и DD2.1, но сигнал на вход D подается не с других элементов, а с инверсного выхода DD2.2. В результате по положительному фронту импульса, приходящего на вход С сигнал на входе D изменяется на противоположный. Например, если в исходном состоянии на выводе 13 был логический ноль, то поднеся руку к сенсору один раз, триггер переключится и на выводе 13 установится логическая единица. При следующем воздействии на сенсор, на выводе 13 опять установится логический ноль.

Для блокировки включателя при отсутствии человека на унитазе, с сенсора на вход R (установка нуля на выходе триггера вне зависимости от сигналов на всех остальных его входах) микросхемы DD2.2 подается логическая единица. На выходе емкостного выключателя устанавливается логический ноль, который по жгуту подается на базу ключевого транзистора включения электромагнитного клапана в Блоке питания и коммутации.

Резистор R6, при отсутствии блокирующего сигнала с емкостного датчика в случае его отказа или обрыва управляющего провода, блокирует триггер по входу R, тем самым исключает возможность самопроизвольной подачи воды в биде. Конденсатор С6 защищает вход R от помех. Светодиод HL3 служит для индикации подачи воды в биде.

Конструкция и детали емкостных сенсорных датчиков

Когда я начал разрабатывать сенсорную систему подачи воды в биде, то наиболее трудной задачей мне казалась разработка емкостного датчика присутствия. Обусловлено это было рядом ограничений по установке и эксплуатации. Не хотелось, чтобы датчик был механически связан с крышкой унитаза, так как ее периодически надо снимать для мойки, и не мешал при санитарной обработке самого унитаза. Поэтому и выбрал в качестве реагирующего элемента емкость.

Сенсорного датчика присутствия

По выше опубликованной схеме сделал опытный образец. Детали емкостного датчика собраны на печатной плате, плата размещена в пластмассовой коробке и закрывается крышкой. Для подключения антенны в корпусе установлен одноштырьковый разъем, для подачи питающего напряжения и сигнала установлен четырех контактный разъем РШ2Н. Соединена печатная плата с разъемами пайкой медными проводниками в фторопластовой изоляции.

Сенсорный емкостной датчик собран на двух микросхемах КР561 серии, ЛЕ5 и ТМ2. Вместо микросхемы КР561ЛЕ5 можно применить КР561ЛА7. Подойдут и микросхемы 176 серии, импортные аналоги. Резисторы, конденсаторы и светодиоды подойдут любого типа. Конденсатор С2, для стабильной работы емкостного датчика при эксплуатации в условиях больших колебаниях температуры окружающей среды нужно брать с малым ТКЕ.

Установлен датчик под площадкой унитаза, на которой установлен сливной бачек в месте, куда в случае протечки из бачка вода попасть не сможет. К унитазу корпус датчика приклеен с помощью двустороннего скотча.


Антенный датчик емкостного сенсора представляет собой отрезок медного многожильного провода длинной 35 см в изоляции из фторопласта, приклеенного с помощью прозрачного скотча к внешней стенке чаши унитаза на сантиметр ниже плоскости очка. На фотографии сенсор хорошо виден.

Для настойки чувствительности сенсорного датчика необходимо после его установки на унитаз, изменяя сопротивление подстроечного резистора R3 добиться, чтобы светодиод HL2 погас. Далее положить руку на крышку унитаза над местом нахождения сенсора, светодиод HL2 должен загораться, если руку убрать, потухнуть. Так как бедро человека по массе больше руки, то при эксплуатации сенсорный датчик, после такой настройки, будет работать гарантировано.

Конструкция и детали емкостного сенсорного включателя

Схема емкостного сенсорного включателя имеет больше деталей и для их размещения понадобился корпус большего размера, да и по эстетическим соображениям, внешний вид корпуса, в котором был размещен сенсорный датчик присутствия не очень подходил для установки на видном месте. Внимание на себя обратила настенная розетка rj-11 для подключения телефона. По размерам она подходила и имела хороший внешний вид. Удалив из розетки все лишнее, разместил в ней печатную плату емкостного сенсорного выключателя.


Для закрепления печатной платы в основании корпуса была установлена короткая стойка и к ней с помощью винта прикручена печатная плата с деталями сенсорного выключателя.


Датчик емкостного сенсора сделал, приклеив ко дну крышки розетки клеем «Момент» лист латуни, предварительно вырезав в них окошко для светодиодов. При закрывании крышки, пружина (взята от кремневой зажигалки) соприкасается с латунным листом и таким образом обеспечивается электрический контакт между схемой и сенсором.


Крепится емкостной сенсорный включатель на стену с помощью одного самореза. Для этого в корпусе предусмотрено отверстие. Далее устанавливается плата, разъем и закрепляется защелками крышка.


Настройка емкостного выключателя практически не отличается от настройки сенсорного датчика присутствия, описанного выше. Для настойки нужно подать питающее напряжение и резистором отрегулировать, чтобы светодиод HL2 загорался, когда к датчику подносится рука, и гас, при ее удалении. Далее нужно активировать сенсорный датчик и поднести и удалить руку к сенсору выключателя. Должен мигнуть светодиод HL2 и загореться красный светодиод HL3. При удалении руки красный светодиод должен продолжать светиться. При повторном поднесении руки или удалении тела от датчика, светодиод HL3 должен погаснуть, то есть выключить подачу воды в биде.

Универсальная печатная плата

Представленные выше емкостные датчики собраны на печатных платах, несколько отличающихся от печатной платы приведенной ниже на фотографии. Это связано с объединением обеих печатных плат в одну универсальную. Если собирать сенсорный включатель, то необходимо только перерезать дорожку под номером 2. Если собирать сенсорный датчик присутствия, то удаляется дорожка номер 1 и не все элементы устанавливаются.


Не устанавливаются элементы, необходимые для работы сенсорного включателя, но мешающие работе датчика присутствия, R4, С5, R6, С6, HL2 и R4. Вместо R4 и С6 запаиваются проволочные перемычки. Цепочку R4, С5 можно оставить. Она не будет влиять на работу.

Ниже приведен рисунок печатной платы для накатки при использовании термического метода нанесения на фольгу дорожек.

Достаточно распечатать рисунок на глянцевой бумаге или кальке и шаблон готов для изготовления печатной платы.

Безотказная работа емкостных датчиков для сенсорной системы управления подачи воды в биде подтверждена на практике в течении трех лет постоянной эксплуатации. Сбоев в работе не зафиксировано.

Однако хочу заметить, что схема чувствительна к мощным импульсным помехам. Мне приходило письмо о помощи в настройке. Оказалось, что во время отладки схемы рядом находился паяльник с тиристорным регулятором температуры. После выключения паяльника схема заработала.

Еще был такой случай. Емкостной датчик был установлен в светильник, который подключался в одну розетку с холодильником. При его включении свет включался и при повторном выключался. Вопрос был решен подключением светильника в другую розетку.

Приходило письмо об успешном применении описанной схемы емкостного датчика для регулировки уровня воды в накопительном баке из пластика. В нижней и верхней части было приклеено силиконом по датчику, которые управляли включением и выключением электрического насоса.

Cтраница 1


Датчики касания используются просто для обнаружения факта контакта с объектом. Датчиком касания может служить простейший микровыключатель. Датчики механических напряжений используются для измерения величины силы, возникающей в месте контакта. Обычно в качестве сенсоров, измеряющих усилия, применяют тензодатчики.  

В токарных станках датчики касания применяются для контроля размеров заготовки, обработанной детали и режущей кромки инструмента. Вопросы диагностирования роботов (применяются антропоморфные и портальные роботы, встроенные в токарный станок, и внешние, работающие в цилиндрической системе координат) рассмотрены в гл.  


Для измерения износа прямыми методами применяют датчики касания, которые регистрируют либо размерный износ, либо, при их перемещении, износ по задней поверхности. Конструкция датчика приведена на рис. 4.8, а. Корпус 4 закрепляется на подвижном узле / станка. В обмотке электромагнита создается переменное магнитное поле, вызывающее колебания наконечника. При касании наконечником блока его колебания нарушаются, что регистрируется электронной системой 8 с усилителем 7, а координаты соответствуют измеряемому размеру. Датчик защищают от стружки. Его применяют на станках с ЧПУ и в ГПС не только для измерения износа, но и для определения фактических координат вершины лезвия инструмента с целью автоматической корректировки управляющих программ.  


Принцип работы проволочного тактильного датчика (датчика касания) показан на рис. 5.26. Робот автоматически по координатам двух базовых точек А и В, определяемых тактильным датчиком на угловом соединении, по скорректированной программе отыскивает требуемое место начала сварки (точку С), если отклонение стыкового соединения от исходного положения вызвано его параллельным смещением. В случае, если смещение стыкового соединения от исходного положения вызвано его параллельным смещением с разворотом относительно точки сварки, то для корректировки программы позиционирования роботом горелки в начальную точку сварки необходимо определить датчиком координаты как минимум трех базовых точек на элементах соединения.  


Нулевые головки обычно конструируются на базе датчиков касания, в качестве которых широко используются электро -, радио - и виброконтактные датчики. Эти головки, называемые еще головками касания, делятся на два класса: с изменяющимся и фиксированным нулевым положением измерительного наконечника.  

Рассмотрим особенности укзззнных выше устройств при использовании их в качестве датчика касания в специфических условиях цеха ртутного электролиза.  


Очувствление схватов и других исполнительных органов манипулятора выполняют датчики захватного усилия 6 и датчики касания 7 при взаимодействии ПР с внешней средой.  

Сварочная часть ПР включает: сварочный выпрямитель; сварочную горелку; кронштейны крепления; механизм подачи сварочной проволоки; датчик касания заготовки для сварки; устройство управлением датчика касания; необходимое количество кабелей; баллон с инертным газом, редуктор с расходомером и подогревателем газа; шланги и рукава.  

Датчик касания для Arduino

Модуль представляет собой сенсорную кнопку, на его выходе формируется цифровой сигнал, напряжение которого соответствует уровням логических единицы и нуля. Относится к емкостным датчикам касания. С такого рода устройствами ввода данных мы сталкиваемся при работе с дисплеем планшета, айфона или тачскрин монитора. Если на мониторе мы нажимаем на иконку стилусом или пальцем, то здесь для этого используется область поверхности платы размером с иконку Windows касание которой производится только пальцем, стилус исключается. Основа модуля микросхема TTP223-BA6 . Есть индикатор питания.

Управление ритмом воспроизведения мелодии

При установке в прибор сенсорную область поверхности платы модуля закрывают тонким слоем стеклотекстолита, пластмассы, стекла иди дерева. К преимуществам емкостной сенсорной кнопки относится большой срок службы и возможность герметизации передней панели прибора, антивандальные свойства. Это позволяет использовать датчик касания в работающих на открытом воздухе приборах в условиях прямого попадания капель воды. Например, кнопка дверного звонка или бытовые приборы. Интересно применение в оборудовании умный дом - замена выключателей освещения.

Характеристики

Напряжение питания 2,5 - 5,5 В
Время отклика на касание в различных режимах потребления тока
низкое 220 мс
обычное 60 мс
Выходной сигнал
Напряжение
высокий лог. уровень 0,8 Х напряжение питания
низкий лог. уровень 0,3 Х напряжение питания
Ток при питании 3 В и логических уровнях, мА
низкий 8
высокий -4
Размеры платы 28 x 24 x 8 мм

Контакты и сигнал

Нет касания - выходной сигнал имеет низкий логический уровень, касание - на выходе датчика логическая единица.

Почему это работает или немного теории

Тело человека, как и все что нас окружает, обладает электрическими характеристиками. При срабатывании датчика прикосновения проявляются наши емкость, сопротивление, индуктивность. На нижней стороне платы модуля расположен участок фольги соединенный с входом микросхемы. Между пальцем оператора и фольгой на нижней стороне расположен слой диэлектрика - материал несущей основы печатной платы модуля. В момент касания происходит заряд тела человека микроскопическим током, протекающим через конденсатор, образованный участком фольги и пальцем человека. При упрощенном рассмотрении ток протекает через два последовательно соединенных конденсатора: фольга, палец находящихся на противоположных поверхностях платы и тело человека. Поэтому если поверхность платы закрыть тонким слоем изолятора, то это приведет к увеличению толщины слоя диэлектрика конденсатора фольга-палец и не нарушит работу модуля.
Микросхема TTP223-BA6 фиксирует ничтожный импульс микротока и регистрирует прикосновение. Благодаря свойствам микросхемы работать с такими токами никакого вреда такая технология не наносит. Когда мы касаемся корпуса работающего телевизора или монитора через нас проходят микротоки большей величины.

Режим пониженного потребления

После подачи питания датчик касания находится в режиме пониженного энергопотребления. После срабатывания на 12 секунд модуль переходит в обычный режим. Если далее касание не произошло, то модуль вернется в режим пониженного потребления тока. Скорость реакции модуля на касание в различных режимах приведена в характеристиках выше.

Работа совместно с Arduino UNO

Загрузите в Arduino UNO следующую программу.

#define ctsPin 2 // Контакт подключения линии сигнала датчика касания
int ledPin = 13; // Контакт для светодиода

Void setup() {
Serial.begin(9600);
pinMode(ledPin, OUTPUT);
pinMode(ctsPin, INPUT);
}

Void loop() {
int ctsValue = digitalRead(ctsPin);
if (ctsValue == HIGH){
digitalWrite(ledPin, HIGH);
Serial.println("TOUCHED");
}
else{
digitalWrite(ledPin,LOW);
Serial.println("not touched");
}
delay(500);
}

Соедините датчик касания и Arduino UNO как показано на рисунке. Схему можно дополнить включающимся при касании датчика светодиодом, подключенным через резистор 430 Ом к контакту 13. Сенсорные кнопки часто оснащают индикатором касания. Так удобней работать оператору. При нажатии на механическую кнопку мы чувствуем щелчок независимо от реакции системы. Здесь новизна технологии немного удивляет из-за нашей моторики сложившейся годами. Индикатор нажатия избавляет нас от излишнего ощущения новизны.