Статическое давление воды. Единицы измерения давления

В текущей жидкости различают статическое давление и динамическое давление . Причиной статического давления, как и в случае неподвижной жидкости, является сжатие жидкости. Статическое давление проявляется в напоре на стенку трубы, по которой течёт жидкость.

Динамическое давление обусловливается скоростью течения жидкости. Чтобы обнаружить это давление, надо затормозить жидкость, и тогда оно, как и. статическое давление, проявится в виде напора.

Сумма статического и динамического давлений называется полным давлением.

В покоящейся жидкости динамическое давление равно нулю, следовательно, статическое давление равно полному давлению и может быть измерено любым манометром.

Измерение давления в движущейся жидкости сопряжено с целым рядом трудностей. Дело в том, что манометр, погружённый в движущуюся жидкость, изменяет скорость движения жидкости в том месте, где он находится. При этом, конечно, изменяется и величина измеряемого давления. Чтобы манометр, погружённый в жидкость, совсем не изменял скорости жидкости, он должен двигаться вместе с жидкостью. Однако измерять таким путём давление внутри жидкости крайне неудобно. Это затруднение обходят, придавая трубке, соединённой с манометром, обтекаемую форму, при которой она почти не изменяет скорости движения жидкости. Практически для измерения давлений внутри движущейся жидкости или газа применяют узкие манометрические трубки.

Статическое давление измеряется с помощью манометрической трубки, плоскость отверстия которой расположена параллельно линиям тока. Если жидкость в трубе находится под давлением, то в манометрической трубке жидкость поднимается на некоторую высоту, соответствующую статическому давлению в данном месте трубы.

Полное давление измеряют трубкой, плоскость отверстия которой расположена перпендикулярно линиям тока. Такой прибор называется трубкой Пито. Попав в отверстие трубки Пито, жидкость останавливается. Высота столба жидкости (h полн) в манометрической трубке будет соответствовать полному давлению жидкости в данном месте трубы.

В дальнейшем нас будет интересовать только статическое давление, которое мы будем называть просто давлением внутри движущейся жидкости или газа.?

Если измерить статическое давление в движущейся жидкости в различных частях трубы переменного сечения, то окажется, что в узкой части трубы оно меньше, чем в широкой её части.

Но скорости течения жидкости обратно пропорциональны площадям сечения трубы; следовательно, давление в движущейся жидкости зависит от скорости её течения.

В местах, где жидкость движется быстрее (узкие места трубы), давление меньше, чем там, где эта жидкость движется медленнее (широкие места трубы) .

Этот факт можно объяснить на основе общих законов механики.

Допустим, что жидкость переходит из широкой части трубки в узкую. При этом частицы жидкости увеличивают скорости, т. е. движутся с ускорениями в направлении движения. Пренебрегая трением, на основе второго закона Ньютона можно утверждать, что равнодействующая сил, действующих на каждую частицу жидкости, также направлена в сторону движения жидкости. Но эта равнодействующая сила создаётся силами давления , которые действуют на каждую данную частицу со стороны окружающих её частиц жидкости, и направлена вперёд, по направлению движения жидкости. Значит, сзади на частицу действует большее давление, чем спереди. Следовательно, как показывает и опыт, давление в широкой части трубки больше, чем в узкой.

Если жидкость течёт из узкой в широкую часть трубки, то, очевидно, в этом случае частицы жидкости тормозятся. Равнодействующая сил, действующих на каждую частицу жидкости со стороны окружающих её частиц, направлена в сторону, противоположную движению. Эта равнодействующая определяется разностью давлений в узком и широком каналах. Следовательно, частица жидкости, переходя из узкой в широкую часть трубки, движется из мест с меньшим давлением в места с большим давлением.

Итак, при стационарном движении в местах сужения каналов давление жидкости понижено, в местах расширения – повышено.

Скорости течения жидкости принято изображать густотой расположения линий тока. Поэтому в тех частях стационарного потока жидкости, где давление меньше, линии тока должны быть расположены гуще, и, наоборот, где давление больше, линии тока расположены реже. То же относится и к изображению потока газа.

Самолет, находящийся в неподвижном или подвижном относительно него воздушном потоке, испытывает со стороны последнего давление, в первом случае (когда воздушный поток неподвижен) - это статическое давление и во втором случае (когда воздушный поток подвижен) - это динамическое давление, оно чаще называется скоростным напором. Статическое давление в струйке аналогично давлению покоящейся жидкости (вода, газ). Например: вода в трубе, она может находиться в состоянии покоя или движения, в обоих случаях стенки трубы испытывают давление со стороны воды. В случае движения воды давление будет несколько меньше, так как появился скоростной напор.

Согласно закону сохранения энергии, энергия струйки воздушного потока в различных сечениях струйки воздуха есть сумма кинетической энергии потока, потенциальной энергии сил давления, внутренней энергии потока и энергии положения тела. Эта сумма - величина постоянная:

Е кин +Е р +Е вн +Е п =сопst (1.10)

Кинетическая энергия (Е кин) - способность движущегося воздушного потока совершать работу. Она равна

где m - масса воздуха, кгс с 2 м; V -скорость воздушного потока, м/с. Если вместо массы m подставить массовую плотность воздуха р , то получим формулу для определения скоростного напора q (в кгс/м 2)

Потенциальная энергия Е р - способность воздушного потока совершать работу под действием статических сил давления. Она равна (в кгс-м)

E p =PFS, (1.13)

где Р - давление воздуха, кгс/м 2 ; F - площадь поперечного сечения струйки воздушного потока, м 2 ; S - путь, пройденный 1 кг воздуха через данное сечение, м; произведение SF называется удельным объемом и обозначается v , подставляя значение удельного объема воздуха в формулу (1.13), получим

E p =Pv. (1.14)

Внутренняя энергия Е вн - это способность газа совершать работу при изменении его температуры:

где Cv - теплоемкость воздуха при неизменном объеме, кал/кг-град; Т - температура по шкале Кельвина, К; А - термический эквивалент механической работы (кал-кг-м).

Из уравнения видно, что внутренняя энергия воздушного потока прямо пропорциональна его температуре.



Энергия положенияEn - способность воздуха совершать работу при изменении положения центра тяжести данной массы воздуха при подъеме на определенную высоту и равна

En=mh (1.16)

где h - изменение высоты, м.

Ввиду мизерно малых значений разноса центров тяжести масс воздуха по высоте в струйке воздушного потока этой энергией в аэродинамике пренебрегают.

Рассматривая во взаимосвязи все виды энергии применительно к определенным условиям, можно сформулировать закон Бернулли, который устанавливает связь между статическим давлением в струйке воздушного потока и скоростным напором.

Рассмотрим трубу (Рис. 10) переменного диаметра (1, 2, 3), в которой движется воздушный поток. Для измерения давления в рассматриваемых сечениях используют манометры. Анализируя показания манометров, можно сделать заключение, что наименьшее динамическое давление показывает манометр сечения 3-3. Значит, при сужении трубы увеличивается скорость воздушного потока и давление падает.

Рис. 10 Объяснение закона Бернулли

Причиной падения давления является то, что воздушный поток не производит никакой работы (трение не учитываем) и поэтому полная энергия воздушного потока остается постоянной. Если считать температуру, плотность и объем воздушного потока в различных сечениях постоянными (T 1 =T 2 =T 3 ;р 1 =р 2 =р 3 , V1=V2=V3), то внутреннюю энергию можно не рассматривать.

Значит, в данном случае возможен переход кинетической энергии воздушного потока в потенциальную и наоборот.

Когда скорость воздушного потока увеличивается, то увеличивается и скоростной напор и соответственно кинетическая энергия данного воздушного потока.

Подставим значения из формул (1.11), (1.12), (1.13), (1.14), (1.15) в формулу (1.10), учитывая, что внутренней энергией и энергией положения мы пренебрегаем, преобразуя уравнение (1.10), получим

(1.17)

Это уравнение для любого сечения струйки воздуха пишется следующим образом:

Такой вид уравнения является самым простым математическим уравнением Бернулли и показывает, что сумма статического и динамического давлений для любого сечения струйки установившегося воздушного потока есть величина постоянная. Сжимаемость в данном случае не учитывается. При учете сжимаемости вносятся соответствующие поправки.

Для наглядности закона Бернулли можно провести опыт. Взять два листка бумаги, держа параллельно друг другу на небольшом расстоянии, подуть в промежуток между ними.

Рис. 11 Измерение скорости воздушного потока

Листы сближаются. Причиной их сближения является то, что с внешней стороны листов давление атмосферное, а в промежутке между ними вследствие наличия скоростного напора воздуха давление уменьшилось и стало меньше атмосферного. Под действием разности давлений листки бумаги прогибаются вовнутрь.

Рабочее давление в системе отопления - важнейший параметр, от которого зависит функционирование всей сети. Отклонения в ту или иную сторону от предусмотренных проектом значений не только снижают эффективность отопительного контура, но и ощутимо сказываются на работе оборудования, а в особых случаях могут даже вывести его из строя.

Конечно, определенный перепад давления в системе отопления обусловлен принципом ее устройства, а именно разницей давления в подающем и обратном трубопроводах. Но при наличии более значительных скачков следует принимать незамедлительные меры.

  1. Статическое давление. Эта составляющая зависит от высоты столба воды либо другого теплоносителя в трубе или емкости. Статическое давление существует даже в том случае, если рабочая среда находится в покое.
  2. Динамическое давление. Представляет собой силу, которая воздействует на внутренние поверхности системы при движении воды или другой среды.

Выделяют понятие предельного рабочего давления. Это максимально допустимая величина, превышение которой чревато разрушением отдельных элементов сети.

Какое давление в системе следует считать оптимальным?

Таблица предельного давление в системе отопления.

При проектировании отопления давление теплоносителя в системе рассчитывают исходя из этажности здания, общей длины трубопроводов и количества радиаторов. Как правило, для частных домов и коттеджей оптимальные значения давления среды в отопительном контуре находятся в диапазоне от 1,5 до 2 атм.

Для многоквартирных домов высотой до пяти этажей, подключенных к системе центрального отопления, давление в сети поддерживают на уровне 2-4 атм. Для девяти- и десятиэтажных домов нормальным считается давление в 5-7 атм, а в более высоких постройках - в 7-10 атм. Максимальное давление регистрируется в теплотрассах, по которым теплоноситель транспортируется от котельных к потребителям. Здесь оно достигает 12 атм.

Для потребителей, расположенных на разной высоте и на различном расстоянии от котельной, напор в сети приходится корректировать. Для его понижения применяют регуляторы давления, для повышения - насосные станции. Следует, однако, учитывать, что неисправный регулятор может стать причиной повышения давления на отдельных участках системы. В некоторых случаях при падении температуры эти приборы могут полностью перекрывать запорную арматуру на подающем трубопроводе, идущем от котельной установки.

Во избежание подобных ситуаций настройки регуляторов корректируют таким образом, чтобы полное перекрытие клапанов было невозможно.

Автономные системы отопления

Расширительный бак в автономной системе отопления.

При отсутствии централизованного теплоснабжения в домах устраивают автономные отопительные системы, в которых теплоноситель подогревается индивидуальным котлом небольшой мощности. Если система сообщается с атмосферой через расширительный бачок и теплоноситель в ней циркулирует за счет естественной конвекции, она называется открытой. Если сообщения с атмосферой нет, а рабочая среда циркулирует благодаря насосу, систему называют закрытой. Как уже было сказано, для нормального функционирования таких систем давление воды в них должно составлять примерно 1,5-2 атм. Такой низкий показатель обусловлен сравнительно малой протяженностью трубопроводов, а также небольшим количеством приборов и арматуры, результатом чего становится сравнительно малое гидравлическое сопротивление. Кроме того, из-за небольшой высоты таких домов статическое давление на нижних участках контура редко превышает 0,5 атм.

На этапе запуска автономной системы ее заполняют холодным теплоносителем, выдерживая минимальное давление в закрытых системах отопления 1,5 атм. Не стоит бить тревогу, если через некоторое время после заполнения давление в контуре понизится. Потери давления в данном случае обусловлены выходом из воды воздуха, который растворился в ней при заполнении трубопроводов. Контур следует развоздушить и полностью заполнить теплоносителем, доводя его давление до 1,5 атм.

После разогрева теплоносителя в системе отопления его давление несколько увеличится, достигнув при этом расчетных рабочих значений.

Меры предосторожности

Прибор для измерения давления.

Поскольку при проектировании автономных систем отопления в целях экономии запас прочности закладывают небольшой, даже невысокий скачок давления до 3 атм может вызвать разгерметизацию отдельных элементов или их соединений. Для того чтобы сгладить перепады давления вследствие нестабильной работы насоса или изменения температуры теплоносителя, в закрытой системе отопления устанавливают расширительный бачок. В отличие от аналогичного устройства в системе открытого типа, он не имеет сообщения с атмосферой. Одна или несколько его стенок делаются из упругого материала, благодаря чему бачок выполняет функцию демпфера при скачках давления или гидроударах.

Наличие расширительного бачка не всегда гарантирует поддержание давления в оптимальных пределах. В ряде случаев оно может превысить максимально допустимые значения:

  • при неверном подборе емкости расширительного бачка;
  • при сбоях в работе циркуляционного насоса;
  • при перегреве теплоносителя, что бывает следствием нарушений в работе автоматики котла;
  • вследствие неполного открытия запорной арматуры после проведения ремонта или профилактических работ;
  • из-за появления воздушной пробки (это явление может провоцировать как рост давления, так и его падение);
  • при снижении пропускной способности грязевого фильтра по причине его чрезмерной засоренности.

Поэтому во избежание аварийных ситуаций при устройстве отопительных систем закрытого типа обязательной является установка предохранительного клапана, который сбросит излишки теплоносителя в случае превышения допустимого давления.

Что делать, если падает давление в системе отопления

Давление в расширительном баке.

При эксплуатации автономных отопительных систем наиболее частыми являются такие аварийные ситуации, при которых давление плавно или резко снижается. Они могут быть вызваны двумя причинами:

  • разгерметизацией элементов системы или их соединений;
  • неполадками в котле.

В первом случае следует обнаружить место утечки и восстановить его герметичность. Сделать это можно двумя способами:

  1. Визуальным осмотром. Этот метод применяется в тех случаях, когда отопительный контур проложен открытым способом (не путать с системой открытого типа), то есть все его трубопроводы, арматура и приборы находятся на виду. Прежде всего внимательно осматривают пол под трубами и радиаторами, стараясь обнаружить лужицы воды или следы от них. Кроме того, место утечки можно зафиксировать по следам коррозии: на радиаторах или в местах соединений элементов системы при нарушении герметичности образуются характерные ржавые потеки.
  2. С помощью специального оборудования. Если визуальный осмотр радиаторов ничего не дал, а трубы проложены скрытым способом и не могут быть осмотрены, следует обратиться к помощи специалистов. Они располагают специальным оборудованием, которое поможет обнаружить утечку и устранить ее, если владелец дома не имеет возможности сделать это самостоятельно. Локализация точки разгерметизации осуществляется достаточно просто: вода из отопительного контура сливается (для таких случаев в нижней точке контура на этапе монтажа врезают сливной кран), затем в него с помощью компрессора закачивается воздух. Место утечки определяется по характерному звуку, который издает просачивающийся воздух. Перед запуском компрессора с помощью запорной арматуры следует изолировать котел и радиаторы.

Если проблемное место представляет собой одно из соединений, его дополнительно уплотняют паклей или ФУМ-лентой, а затем подтягивают. Лопнувший трубопровод вырезают и приваривают на его место новый. Узлы, не подлежащие ремонту, просто меняют.

Если герметичность трубопроводов и других элементов не вызывает сомнений, а давление в закрытой системе отопления все-таки падает, следует поискать причины этого явления в котле. Проводить диагностику самостоятельно не следует, это работа для специалиста, имеющего соответствующее образование. Чаще всего в котле обнаруживаются следующие дефекты:

Устройство системы отопления с манометром.

  • появление микротрещин в теплообменнике из-за гидроударов;
  • заводской брак;
  • выход из строя подпиточного крана.

Весьма распространенной причиной, по которой падает давление в системе, является неправильный подбор емкости расширительного бачка.

Хотя в предыдущем разделе говорилось, что это может стать причиной роста давления, никакого противоречия тут нет. Когда растет давление в системе отопления, срабатывает предохранительный клапан. При этом теплоноситель сбрасывается и его объем в контуре уменьшается. В результате со временем давление будет снижаться.

Контроль давления

Для визуального контроля давления в сети отопления чаще всего применяют стрелочные манометры с трубкой Бредана. В отличие от цифровых приборов, такие манометры не требуют подключения электрического питания. В автоматизированных системах используют электроконтактные датчики. На отводе к контрольно-измерительному прибору следует обязательно устанавливать трехходовой кран. Он позволяет изолировать манометр от сети при проведении обслуживания или ремонта, а также используется для удаления воздушной пробки или сброса прибора на ноль.

Инструкции и правила, регламентирующие эксплуатацию отопительных систем, как автономных, так и централизованных, рекомендуют устанавливать манометры в таких точках:

  1. Перед котельной установкой (или котлом) и на выходе из нее. В этой точке определяется давление в котле.
  2. Перед циркуляционным насосом и после него.
  3. На вводе магистрали отопления в здание или сооружение.
  4. Перед регулятором давления и после него.
  5. На входе и выходе фильтра грубой очистки (грязевика) для контроля уровня его загрязненности.

Все контрольно-измерительные приборы должны проходить регулярную поверку, подтверждающую точность выполняемых ими измерений.

ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ г. СЕМЕЙ

Методическое пособие по теме:

Исследование реологических свойств биологических жидкостей.

Методы исследования кровообращения.

Реография.

Составитель: Преподаватель

Ковалева Л.В.

Основные вопросы темы:

  1. Уравнение Бернулли. Статическое и динамическое давления.
  2. Реологические свойства крови. Вязкость.
  3. Формула Ньютона.
  4. Число Рейнольдса.
  5. Ньютоновская и Неньютоновская жидкость
  6. Ламинарное течение.
  7. Турбулентное течение.
  8. Определение вязкости крови с помощью медицинского вискозиметра.
  9. Закон Пуазейля.
  10. Определение скорости кровотока.
  11. Полное сопротивление тканей организма. Физические основы реографии. Реоэнцефалография
  12. Физические основы баллистокардиографии.

Уравнение Бернулли. Статическое и динамическое давления.

Идеальной называется несжимаемая и не имеющая внутреннего трения, или вязкости; стационарным или установившимся называется течение, при котором скорости частиц жидкости в каждой точке потока со временем не изменяются. Установившееся течение характеризуют линиями тока - воображаемыми линиями, совпадающими с траекториями частиц. Часть потока жидкости, ограниченная со всех сторон линиями тока, образует трубку тока или струю. Выделим трубку тока настолько узкую, что скорости частиц V в любом ее сечении S, перпендикулярном оси трубки, можно считать одинаковыми по всему сечению. Тогда объем жидкости, протекающий через любое сечение трубки в единицу времени остается постоянным, так как движение частиц в жидкости происходит только вдоль оси трубки: . Это соотношение назы­вается условием неразрывности струи. Отсюда следует, что и для реальной жидкости при установившемся течении по трубе переменного сечения количество Qжидкости, проте­кающее в единицу времени через любое сечение трубы, остается по­стоянным (Q = const) и средние скорости течения в различных сече­ниях трубы обратно пропорциональны площадям этих сечений: и т. д.

Выделим в потоке идеальной жидкости трубку тока, а в ней - достаточно малый объем жидкости массой , который при тече­нии жидкости перемещается из положения А в положение В.

Из-за малости объема можно считать, что все частицы жидкости в нем находятся в равных условиях: в положе­нии А имеют давление скорость и находятся на высоте h 1 от нуле­вого уровня; в положении В - соот­ветственно . Сечения трубки тока соответственно S 1 и S 2 .

Жидкость, находящаяся под дав­лением, обладает внутренней потен­циальной энергией (энергией давле­ния), за счет которой она может совершать работу. Этаэнергия W p измеряется произведением давления на объем V жидкости: . В данном случае перемещение массы жидкости происходит под действием разности сил давления в се­чениях Si и S 2 . Совершаемая при этом работа А р равняется разности по­тенциальных энергий давления в точках . Эта работа расходуется на работу по преодолению действия силы тяжес­ти и на изменение кинетической энергии массы


Жидкости:

Следовательно, А р = A h + A D

Перегруппировав члены уравнения, получим

Положения А и В выбраны произвольно, поэтому можно утверждать, что в любом месте вдоль трубки тока сохраняется условие

разделив это уравнение на , получим

где - плотность жидкости.

Это и есть уравнение Бернулли. Все члены уравнения, как легко убедиться, имеют размерность давления и называются: статистическим: гидростатическим: - динамическим. Тогда уравнение Бернулли можно сформулировать так:

при стационарном течении идеальной жидкости полное давление равное сумме статического, гидростатического и динамического давлений, остается величиной постоянной в любом поперечном сечении потока.

Для горизонтальной трубки тока гидростатическое давление ос­тается постоянным и может быть отнесено в правую часть уравнения, которое при этом принимает вид

статистическое давление обусловливает потенциальную энергию жидкос­ти (энергию давления), динамическое давление - кинетическую.

Из этого уравнения следует вывод, называемый правилом Бернулли:

статическое давление невязкой жидкости при течении по горизон­тальной трубе возрастает там, где скорость ее уменьшается, и на­оборот.

Виды давления

Статическое давление

Статическое давление - это давление неподвижной жидкости. Статическое давление = уровень выше соответствующей точки измерения + начальное давление в расширительном баке.

Динамическое давление

Динамическое давление - это давление движущегося потока жидкости.

Давление нагнетания насоса

Рабочее давление

Давление, имеющееся в системе при работе насоса .

Допустимое рабочее давление

Максимальное значение рабочего давления, допускаемого из условий безопасности работы насоса и системы.

Давление - физическая величина, характеризующая интенсивность нормальных (перпендикулярных к поверхности) сил, с которыми одно тело действует на поверхность другого (например, фундамент здания на грунт, жидкость на стенки сосуда, газ в цилиндре двигателя на поршень и т. п.). Если силы распределены вдоль поверхности равномерно, то Давление р на любую часть поверхности равно р = f/s , где S - площадь этой части, F - сумма приложенных перпендикулярно к ней сил. При неравномерном распределении сил это равенство определяет среднее давление на данную площадку, а в пределе, при стремлении величины S к нулю, - давление в данной точке. В случае равномерного распределения сил давление во всех точках поверхности одинаково, а в случае неравномерного - изменяется от точки к точке.

Для непрерывной среды аналогично вводится понятие давление в каждой точке среды, играющее важную роль в механике жидкостей и газов. Давление в любой точке покоящейся жидкости по всем направлениям одинаково; это справедливо и для движущейся жидкости или газа, если их можно считать идеальными (лишёнными трения). В вязкой жидкости под давление в данной точке понимают среднее значение давление по трём взаимно перпендикулярным направлениям.

Давление играет важную роль в физических, химических, механических, биологических и др. явлениях.

Потеря давления

Потеря давления - снижение давления между входом и выходом элемента конструкции. К подобным элементам относятся трубопроводы и арматура . Потери возникают по причине завихрений и трения. Каждый трубопровод и арматура в зависимости от материала и степени шероховатости поверхности характеризуется собственным коэффициентом потерь . За соответствующей информацией следует обратиться к их изготовителям.

Единицы измерения давления

Давление является интенсивной физической величиной. Давление в системе СИ измеряется в паскалях; применяются также следующие единицы:

Давление

мм вод. ст.

мм рт. ст.

кг/см 2

кг/м 2

м вод. ст.

1 мм вод. ст.

1 мм рт. ст.

1 бар