Что такое частотно-регулируемый привод? Частотно-регулируемый электропривод насосных установок.

Частотно регулируемый привод

Частотно-регулируемый привод (частотно-управляемый привод, ЧУП, Variable Frequency Drive, VFD) - система управления скоростью вращения асинхронного (синхронного) электродвигателя . Состоит из собственно электродвигателя и частотного преобразователя.

Частотный преобразователь (преобразователь частоты) - это устройство состоящее из выпрямителя (моста постоянного тока), преобразующего переменный ток промышленной частоты в постоянный и инвертора (преобразователя) (иногда с ШИМ), преобразующего постоянный ток в переменный требуемых частоты и амплитуды. Выходные тиристоры (GTO) или дроссель, а для уменьшения электромагнитных помех - EMC -фильтр.

Применение

ЧРП применяются в конвейерных системах, резательных автоматах, управлении приводами мешалок, насосов, вентиляторов, компрессоров и т.п. ЧРП нашёл место в бытовых кондиционерах. Всё большую популярность ЧРП приобретает в городском электротранспорте, особенно в троллейбусах . Применение позволяет:

  • повысить точность регулирования
  • снизить расход электроэнергии в случае переменной нагрузки.

Применение преобразователей частоты на насосных станциях

Классический метод управления подачей насосных установок предполагает дросселирование напорных линий и регулирование количества работающих агрегатов, по какому-либо техническому параметру (например, давлению в трубопроводе). Насосные агрегаты в этом случае выбираются исходя из неких расчётных характеристик (как правило, в большую сторону) и постоянно функционируют в заданном режиме с постоянной частотой вращения, не учитывая при этом колебания расходов и напоров, вызванных переменным водопотреблением. Т.е. простыми словами, даже когда не требуется значительных усилий, насосы продолжают работу в заданном рабочем темпе, при этом расходуя значительное количество электроэнергии. Так, к примеру, происходит в ночное время суток, когда потребление воды резко падает.

Рождение регулируемого электропривода позволило пойти от обратного в технологии системы подачи: теперь не насосная установка диктует условия, а непосредственно сами характеристики трубопроводов . Широкое применение в мировой практике получил частотно регулируемый электропривод с асинхронным электродвигателем общепромышленного применения. Частотное регулирование скорости вращения вала асинхронного двигателя, осуществляется с помощью электронного устройства, которое принято называть частотный преобразователь. Вышеуказанный эффект достигается путём изменения частоты и амплитуды трёхфазного напряжения, поступающего на электродвигатель. Таким образом, меняя параметры питающего напряжения (частотное управление), можно делать скорость вращения двигателя как ниже, так и выше номинальной.

Метод преобразования частоты основывается на следующем принципе. Как правило, частота промышленной сети составляет 50 Гц. Для примера возьмём насос с двухполюсным электродвигателем. При такой частоте сети скорость вращения двигателя составляет 3000 (50 Гц х 60 сек) оборотов в минуту и даёт на выходе насосного агрегата номинальный напор и производительность (т.к. это его номинальные параметры, согласно паспорту). Если с помощью частотного преобразователя, понизить частоту подаваемого на него переменного напряжения, то соответственно понизятся скорость вращения двигателя, а, следовательно, измениться напор и производительность насосного агрегата. Информация о давлении в сети поступает в блок частотного преобразователя при помощи специального датчика давления, установленного в трубопроводе, на основании этих данных преобразователь соответствующим образом меняет частоту, подаваемую на двигатель.

Современный преобразователь частоты имеет компактное исполнение, пыле и влагозащищённый корпус, удобный интерфейс , что позволяет применять его в самых сложных условиях и проблемных средах. Диапазон мощности весьма широк и составляет от 0,4 до 500 кВт и более при стандартном питании 220/380 В и 50-60 Гц. Практика показывает, что применение частотных преобразователей на насосных станциях позволяет:

Экономить электроэнергию, настроив работу электропривода в зависимости от реального водопотребления (эффект экономии 20-50%);

Снизить расход воды, за счёт сокращения утечек при превышении давления в магистрали, когда расход водопотребления в действительности мал (в среднем на 5%);

Уменьшить расходы на профилактический и капитальный ремонт сооружений и оборудования (всей инфраструктуры подачи воды), в результате пресечения аварийных ситуаций, вызванных в частности гидравлическим ударом , который нередко случается в случае использования нерегулируемого электропривода (доказано, что ресурс службы оборудования повышается минимум в 1,5 раза);

Достичь определённой экономии тепла в системах горячего водоснабжения за счёт снижения потерь воды, несущей тепло;

Увеличить напор выше обычного в случае необходимости;

Комплексно автоматизировать систему водоснабжения, тем самым снижая фонд заработной платы обслуживающего и дежурного персонала, и исключить влияние «человеческого фактора» на работу системы, что тоже немаловажно. По оценкам уже реализованных объектов, срок окупаемости проекта по внедрению преобразователей частоты составляет 1-2 года.

Потери энергии при торможении двигателя

Во многих установках на регулируемый электропривод возлагаются задачи не только плавного регулирования момента и скорости вращения электродвигателя, но и задачи замедления и торможения элементов установки. Классическим решением такой задачи является система привода с асинхронным двигателем с преобразователем частоты, оснащённым тормозным переключателем с тормозным резистором.

При этом в режиме замедления/торможения электродвигатель работает как генератор, преобразуя механическую энергию в электрическую, которая в итоге рассеивается на тормозном резисторе. Типичными установками, в которых циклы разгона чередуются с циклами замедления являются подъёмники, лифты, центрифуги, намоточные машины и т.п.

Однако, в настоящий момент уже существуют преобразователи частоты со встроенным рекуператором, которые позволяют возвращать энергию, полученную от двигателя, работающего в режиме торможения, обратно в сеть. Интересно также, что для некоторого ряда мощностей стоимость установки преобразователя частоты с тормозными резисторами часто сопоставима со стоимостью установки преобразователя частоты со встроенным рекуператором, даже без учёта сэкономленной электроэнергии.

В этом случае, установка начинает "приносить деньги" фактически сразу после ввода в эксплуатацию.

Производители

  • НТЦ "Приводная техника", торговая марка "Моментум" (г. Челябинск)

См. также

Внешние ссылки

Wikimedia Foundation . 2010 .

Частотно регулируемый привод (частотно управляемый привод, ЧУП, Variable Frequency Drive, VFD) система управления скоростью вращения асинхронного (синхронного) электродвигателя. Состоит из собственно электродвигателя и частотного преобразователя … Википедия

Привод: В механике Привод (тоже самое силовой привод) совокупность устройств, предназначенных для приведения в действие машин. Состоит из двигателя, трансмиссии и системы управления. Различают привод групповой (для нескольких машин) и… … Википедия

- (сокращённо электропривод) это электромеханическая система для приведения в движение исполнительных механизмов рабочих машин и управления этим движением в целях осуществления технологического процесса. Современный электропривод … … Википедия

Частотно регулируемый привод (частотно управляемый привод, ЧУП, Variable Frequency Drive, VFD) система управления скоростью вращения асинхронного (синхронного) электродвигателя. Состоит из собственно электродвигателя и частотного преобразователя … Википедия

У этого термина существуют и другие значения, см. Преобразователь частоты. Эту статью следует викифицировать. Пожалуйста, оформите её согласно правилам оформления статей … Википедия

Для улучшения этой статьи желательно?: Проставить интервики в рамках проекта Интервики. Найти и оформить в виде сносок ссылки на авторитетные источники, подтверждающие написанное … Википедия

Эту статью следует викифицировать. Пожалуйста, оформите её согласно правилам оформления статей … Википедия

Режимы работы центробежных насосов энергетически наиболее эффективно регулировать путем изменения частоты вращения их рабочих колес. Частота вращения рабочих колес может быть изменена, если в качестве приводного двигателя используются регулируемый электропривод.
Устройство и характеристики газовых турбин и двигателей внутреннего сгорания таковы, что они могут обеспечить изменение частоты вращения в необходимом диапазоне.

Процесс регулирования частоты вращения любого механизма удобно анализировать с помощью механических характеристик агрегата.

Рассмотрим механические характеристики насосного агрегата, состоящего из насоса и электродвигателя. На рис. 1 представлены механические характеристики центробежного насоса, оборудованного обратным затвором (кривая 1) и электродвигателя с короткозамкнутым ротором (кривая 2).

Рис. 1. Механические характеристики насосного агрегата

Разница значений вращающего момента электродвигателя и момента сопротивления насоса называется динамическим моментом. Если вращающий момент двигателя больше момента сопротивления насоса, динамический момент считается положительным, если меньше - отрицательным.

Под воздействием положительного динамического момента насосный агрегат начинает работать с ускорением, т.е. разгоняется. Если динамический момент отрицательный, насосный агрегат работает с замедлением, т.е. тормозится.

При равенстве этих моментов имеет место установившийся режим работы, т.е. насосный агрегат работает с постоянной частотой вращения. Эта частота вращения и соответствующий ей момент определяются пересечением механических характеристик электродвигателя и насоса (точка а на рис. 1).

Если в процессе регулирования тем или иным способом изменить механическую характеристику, например сделать ее более мягкой за счет введения дополнительного резистора в роторную цепь электродвигателя (кривая 3 на рис. 1), момент вращения электродвигателя станет меньше момента сопротивления.

Под воздействием отрицательного динамического момента насосный агрегат начинает работать с замедлением, т.е. тормозится до тех пор, пока вращающий момент и момент сопротивления опять не уравновесятся (точка б на рис. 1). Этой точке соответствует своя частота вращения и свое значение момента.

Таким образом, процесс регулирования частоты вращения насосного агрегата непрерывно сопровождается изменениями вращающего момента электродвигателя и момента сопротивления насоса.

Регулирование частоты вращения насоса может осуществляться или изменением частоты вращения электродвигателя, жестко соединенного с насосом, или изменением передаточного отношения трансмиссии, соединяющей насос с электродвигателем, который работает с постоянной скоростью.

Регулирование частоты вращения электродвигателей

В насосных установках используются преимущественно двигатели переменного тока. Частота вращения электродвигателя переменного тока зависит от частоты питающего тока f, числа пар полюсов р и скольжения s. Изменив один или несколько из этих параметров можно изменить частоту вращения электродвигателя и сочлененного с ним насоса.

Основным элементом частотного электропривода является . В преобразователе постоянная частота питающей сети f1 преобразуется в переменную f 2. Пропорционально частоте f 2 изменяется частота вращения электродвигателя, подключенного к выходу преобразователя.

С помощью частотного преобразователя практически неизменные сетевые параметры напряжение U1 и частота f1 преобразуются в изменяемые параметры U2 и f 2, требуемые для системы управления. Для обеспечения устойчивой работы электродвигателя, ограничения его перегрузки по току и магнитному потоку, поддержания высоких энергетических показателей в частотном преобразователе должно поддерживаться определенное соотношение между его входными и выходными параметрами, зависящее от вида механической характеристики насоса. Эти соотношения получаются из уравнения закона частотного регулирования.

Для насосов должно соблюдаться соотношение:

U1/f1 = U2/f2 = const

На рис. 2 представлены механические характеристики асинхронного электродвигателя при частотном регулировании. При уменьшении частоты f2 механическая характеристика не только меняет свое положение в координатах n - М, но несколько изменяет свою форму. В частности, снижается максимальный момент электродвигателя. Обусловлено это тем, что при соблюдении соотношения U1/f1 = U2/f2 = const и изменении частоты f1 не учитывается влияние активного сопротивления статора на величину вращающего момента двигателя.

Рис. 2. Механические характеристики частотного электропривода при максимальных (1) и пониженных (2) частотах

При частотном регулировании с учетом этого влияния максимальный момент остается неизменным, форма механической характеристики сохраняется, меняется только ее положение.

Частотные преобразователи с имеют высокие энергетические характеристики за счет того, что на выходе преобразователя обеспечивается форма кривых тока и напряжения, приближающаяся к синусоидальной. В последнее время наибольшее распространение получили частотные преобразователи на IGBT-модулях (биполярных транзисторах с изолированным затвором).

IGBT-модуль является высокоэффективным ключевым элементом. Он обладает малым падением напряжения, высокой скоростью и малой мощностью переключения. Преобразователь частоты на IGBT-модулях с ШИМ и векторным алгоритмом управления асинхронным электродвигателем имеет преимущества по сравнению с другими типами преобразователей. Он характеризуется высоким значением коэффициента мощности во всем диапазоне изменения выходной частоты.

Принципиальная схема преобразователя представлена на рис. 3.


Рис. 3. Схема частотного преобразователя на IGBT-модулях: 1 - блок вентиляторов; 2 - источник питания; 3 - выпрямитель неуправляемый; 4 - панель управления; 5 - плата пульта управления; 6 - ШИМ; 7 - блок преобразования напряжения; 8 - плата системы регулирования; 9 - драйверы; 10 - предохранители блока инвертора; 11 - датчики тока; 12 - асинхронный короткозамкнутый двигатель; Q1, Q2, Q3 - выключатели силовой цепи, цепи управления и блока вентиляторов; K1, К2 - контакторы заряда конденсаторов и силовой цепи; С - блок конденсаторов; Rl, R2, R3 - резисторы ограничения тока заряда конденсаторов, разряда конденсаторов и узла слива; VT - силовые ключи инвертора (IGBT-модули)

На выходе частотного преобразователя формируется кривая напряжения (тока), несколько отличающаяся от синусоиды, содержащая высшие гармонические составляющие. Их наличие влечет за собой увеличение потерь в электродвигателе. По этой причине при работе электропривода на частотах вращения, близких к номинальной, происходит перегрузка электродвигателя.

При работе на пониженных частотах вращения ухудшаются условия охлаждения самовентилируемых электродвигателей, применяемых в приводе насосов. В обычном диапазоне регулирования насосных агрегатов (1:2 или 1:3) это ухудшение условий вентиляции компенсируется существенным снижением нагрузки за счет уменьшения подачи и напора насоса.

При работе на частотах, близких к номинальному значению (50 Гц), ухудшение условий охлаждения в сочетании с появлением гармоник высших порядков требует снижения допустимой механической мощности на 8 - 15%. Из-за этого максимальный момент электродвигателя снижается на 1 - 2%, его КПД - на 1 - 4%, cosφ - на 5 - 7%.

Во избежание перегрузки электродвигателя необходимо или ограничить верхнее значение его частоты вращения, или оснастить привод более мощным электродвигателем. Последняя мера обязательна тогда, когда предусматривается работа насосного агрегата с частотой f 2 > 50 Гц. Ограничение верхнего значения частоты вращения двигателя осуществляется ограничением частоты f 2 до 48 Гц. Увеличение номинальной мощности приводного электродвигателя осуществляется с округлением до ближайшего стандартного значения.

Групповое управление регулируемыми электроприводами агрегатов

Многие насосные установки состоят из нескольких агрегатов. Как правило, регулируемым электроприводом оборудуются не все агрегаты. Из двух-трех установленных агрегатов регулируемым электроприводом достаточно оснастить один. Если один преобразователь постоянно подключен к одному из агрегатов, имеет место неравномерное расходование их моторесурса, поскольку агрегат, оснащенный регулируемым приводом, используется в работе значительно большее время.

Для равномерного распределения нагрузки между всеми агрегатами, установленными на станции, разработаны станции группового управления, с помощью которых агрегаты могут поочередно подключаться к преобразователю. Станции управления изготавливаются обычно для низковольтных (380 В) агрегатов.

Обычно низковольтные станции управления предназначены для управления двумя-тремя агрегатами. В состав низковольтных станций управления входят автоматические выключатели, обеспечивающие защиту от межфазных коротких замыканий и замыканий на землю, тепловые реле для защиты агрегатов от перегрузки, а также аппаратура управления (ключи, и пр.).

Схема коммутации станции управления содержит в своем составе необходимые блокировки, позволяющие произвести подключение преобразователя частоты к любому выбранному агрегату и осуществить замену работающих агрегатов без нарушения технологического режима работы насосной или воздуходувной установки.

Станции управления, как правило, наряду с силовыми элементами (автоматическими выключателями, контакторами и т.п.) содержат в своем составе управляющие и регулирующие устройства (микропроцессорные контроллеры и пр.).

По требованию заказчика станции комплектуются устройствами автоматического включения резервного питания (АВР), коммерческого учета потребляемой электроэнергии, управления запорной аппаратурой.

При необходимости в состав станции управления вводятся дополнительные аппараты, обеспечивающие использование наряду с частотным преобразователем устройства плавного пуска агрегатов.

Автоматизированные станции управления обеспечивают:

    поддержание заданного значения технологического параметра (давления, уровня, температуры и др.);

    контроль режимов работы электродвигателей регулируемых и нерегулируемых агрегатов (контроль потребляемого тока, мощности) и их защиту;

    автоматическое включение в работу резервного агрегата при аварии основного;

    переключение агрегатов непосредственно на сеть при выходе из строя частотного преобразователя;

    автоматическое включение резервного (АВР) электрического ввода;

    автоматическое повторное включение (АПВ) станции после пропажи и глубоких посадок напряжения в питающей электрической сети;

    автоматическое изменение режима работы станции с остановкой и запуском агрегатов в работу в заданное время;

    автоматическое включение в работу дополнительно нерегулируемого агрегата, если регулируемый агрегат, выйдя на номинальную частоту вращения, не обеспечивал требуемой подачи воды;

    автоматическое чередование работающих агрегатов через заданные промежутки времени для обеспечения равномерного расходования моторесурса;

    оперативное управление режимом работы насосной (воздуходувной) установки с панели управления или с диспетчерского пульта.

Рис. 4. Станция группового управления частотно-регулируемыми электроприводами насосов

Эффективность применения частотно-регулируемого электропривода в насосных установках

Применение частотно-регулиремого привода позволяет существенно экономить электроэнергию, т. к. дает возможность использовать крупные насосные агрегаты в режиме малых подач. Благодаря этому можно, увеличив единичную мощность агрегатов, уменьшить их общее число, и следовательно, уменьшить габаритные размеры зданий, упростить гидравлическую схему станции, уменьшить число трубопроводной арматуры.

Таким образом, применение регулируемого электропривода в насосных установках позволяет наряду с экономией электроэнергии и воды уменьшить число насосных агрегатов, упростить гидравлическую схему станции, уменьшить строительные объемы здания насосной станции. В связи с этим возникают вторичные экономические эффекты: уменьшаются расходы на отопление, освещение и ремонт здания, приведенные затраты в зависимости от назначения станций и других конкретных условий могут быть сокращены на 20 - 50%.

В технической документации на преобразователи частоты указывается, что применение регулируемого электропривода в насосных установках позволяет экономить до 50% энергии, расходуемой на перекачку чистых и сточных вод, а сроки окупаемости составляют три - девять месяцев.

Вместе с тем расчеты и анализ эффективности регулируемого электропривода в действующих насосных установках показывает, что в небольших насосных установках с агрегатами мощностью до 75 кВт, особенно тогда, когда они работают с большой статической составляющей напора, оказывается нецелесообразным применение регулируемых электроприводов. В этих случаях можно использовать более простые системы регулирования с применением дросселирования, изменения числа работающих насосных агрегатов.

Применение регулируемого электропривода в системах автоматизации насосных установок, с одной стороны, уменьшает потребление энергии, с другой - требует дополнительных капитальных затрат, поэтому целесообразность применения регулируемого электропривода в насосных установок определяется сравнением приведенных затрат двух вариантов: базового и нового. За новый вариант принимается насосная установка, оснащенная регулируемым электроприводом, а за базовый - установка, агрегаты которой работают с постоянной частотой вращения.

Производим и продаем частотные преобразователи:
Цены на преобразователи частоты(21.01.16г.):
Частотники одна фаза в три:
Модель Мощность Цена
CFM110 0.25кВт 2300грн
CFM110 0.37кВт 2400грн
CFM110 0.55кВт 2500грн
CFM210 1,0 кВт 3200грн
CFM210 1,5 кВт 3400грн
CFM210 2,2 кВт 4000грн
CFM210 3,3 кВт 4300грн
AFM210 7,5 кВт 9900грн (единственный на рынке частотник 220 в 380 мощностью 7,5кВт)

Частотники 380В три фазы в три:
CFM310 4.0 кВт 6800грн
CFM310 5.5 кВт 7500грн
CFM310 7.5 кВт 8500грн
Контакты для заказов частотных преобразователей:
+38 050 4571330
chastotnik@сайт

Современный частотно регулируемый электропривод состоит из асинхронного или синхронного электрического двигателя и преобразователя частоты (см. рис.1.).

Электрический двигатель преобразует электрическую энергию в

механическую энергию и приводит в движение исполнительный орган технологического механизма.

Преобразователь частоты управляет электрическим двигателем и представляет собой электронное статическое устройство. На выходе преобразователя формируется электрическое напряжение с переменными амплитудой и частотой.

Название «частотно регулируемый электропривод» обусловлено тем, что регулирование скорости вращения двигателя осуществляется изменением частоты напряжения питания, подаваемого на двигатель от преобразователя частоты.

На протяжении последних 10 -15 лет в мире наблюдается широкое и успешное внедрение частотно регулируемого электропривода для решения различных технологических задач во многие отрасли экономики. Это объясняется в первую очередь разработкой и созданием преобразователей частоты на принципиально новой элементной базе, главным образом на биполярных транзисторах с изолированным затвором IGBT.

В настоящей статье коротко описаны известные сегодня типы преобразователей частоты, применяемые в частотно регулируемом электроприводе, реализованные в них методы управления, их особенности и характеристики.

При дальнейших рассуждениях будем говорить о трехфазном частотно регулируемом электроприводе, так как он имеет наибольшее промышленное применение.

О методах управления

В синхронном электрическом двигателе частота вращения ротора в

установившемся режиме равна частоте вращения магнитного поля статора.

В асинхронном электрическом двигателе частота вращения ротора

установившемся режиме отличается от частоты вращения на величину скольжения.

Частота вращения магнитного поля зависит от частоты напряжения питания.

При питании обмотки статора электрического двигателя трехфазным напряжением с частотой создается вращающееся магнитное поле. Скорость вращения этого поля определяется по известной формуле

где - число пар полюсов статора.

Переход от скорости вращения поля, измеряемой в радианах, к частоте вращения, выраженной в оборотах в минуту, осуществляется по следующей формуле

где 60 - коэффициент пересчета размерности.

Подставив в это уравнение скорость вращения поля, получим, что

Таким образом, частота вращения ротора синхронного и асинхронного двигателей зависит от частоты напряжения питания.

На этой зависимости и основан метод частотного регулирования.

Изменяя с помощью преобразователя частоту на входе двигателя, мы регулируем частоту вращения ротора.

В наиболее распространенном частотно регулируемом приводе на основе асинхронных двигателей с короткозамкнутым ротором применяются скалярное и векторное частотное управление.

При скалярном управлении по определенному закону изменяют амплитуду и частоту приложенного к двигателю напряжения. Изменение частоты питающего напряжения приводит к отклонению от расчетных значений максимального и пускового моментов двигателя, к. п.д., коэффициента мощности. Поэтому для поддержания требуемых рабочих характеристик двигателя необходимо с изменением частоты одновременно соответственно изменять и амплитуду напряжения.

В существующих преобразователях частоты при скалярном управлении чаще всего поддерживается постоянным отношение максимального момента двигателя к моменту сопротивления на валу. То есть при изменении частоты амплитуда напряжения изменяется таким образом, что отношение максимального момента двигателя к текущему моменту нагрузки остается неизменным. Это отношение называется перегрузочная способность двигателя.

При постоянстве перегрузочной способности номинальные коэффициент мощности и к. п.д. двигателя на всем диапазоне регулирования частоты вращения практически не изменяются.

Максимальный момент, развиваемый двигателем, определяется следующей зависимостью

где - постоянный коэффициент.

Поэтому зависимость напряжения питания от частоты определяется характером нагрузки на валу электрического двигателя.

Для постоянного момента нагрузки поддерживается отношение U/f = const, и, по сути, обеспечивается постоянство максимального момента двигателя. Характер зависимости напряжения питания от частоты для случая с постоянным моментом нагрузки изображен на рис. 2. Угол наклона прямой на графике зависит от величин момента сопротивления и максимального крутящего момента двигателя.

Вместе с тем на малых частотах, начиная с некоторого значения частоты, максимальный момент двигателя начинает падать. Для компенсации этого и для увеличения пускового момента используется повышение уровня напряжения питания.

В случае вентиляторной нагрузки реализуется зависимость U/f2 = const. Характер зависимости напряжения питания от частоты для этого случая показан на рис.3. При регулировании в области малых частот максимальный момент также уменьшается, но для данного типа нагрузки это некритично.

Используя зависимость максимального крутящего момента от напряжения и частоты, можно построить график U от f для любого типа нагрузки.

Важным достоинством скалярного метода является возможность одновременного управления группой электродвигателей.

Скалярное управление достаточно для большинства практических случаев применения частотно регулируемого электропривода с диапазоном регулирования частоты вращения двигателя до 1:40.

Векторное управление позволяет существенно увеличить диапазон управления, точность регулирования, повысить быстродействие электропривода. Этот метод обеспечивает непосредственное управление вращающим моментом двигателя.

Вращающий момент определяется током статора, который создает возбуждающее магнитное поле. При непосредственном управлении моментом

необходимо изменять кроме амплитуды и фазу статорного тока, то есть вектор тока. Этим и обусловлен термин «векторное управление».

Для управления вектором тока, а, следовательно, положением магнитного потока статора относительно вращающегося ротора требуется знать точное положение ротора в любой момент времени. Задача решается либо с помощью выносного датчика положения ротора, либо определением положения ротора путем вычислений по другим параметрам двигателя. В качестве этих параметров используются токи и напряжения статорных обмоток.

Менее дорогим является частотно регулируемый электропривод с векторным управлением без датчика обратной связи скорости, однако векторное управление при этом требует большого объема и высокой скорости вычислений от преобразователя частоты.

Кроме того, для непосредственного управления моментом при малых, близких к нулевым скоростям вращения работа частотно регулируемого электропривода без обратной связи по скорости невозможна.

Векторное управление с датчиком обратной связи скорости обеспечивает диапазон регулирования до 1:1000 и выше, точность регулирования по скорости - сотые доли процента, точность по моменту - единицы процентов.

В синхронном частотно регулируемом приводе применяются те же методы управления, что и в асинхронном.

Однако в чистом виде частотное регулирование частоты вращения синхронных двигателей применяется только при малых мощностях, когда нагрузочные моменты невелики, и мала инерция приводного механизма. При больших мощностях этим условиям полностью отвечает лишь привод с вентиляторной нагрузкой. В случаях с другими типами нагрузки двигатель может выпасть из синхронизма.

Для синхронных электроприводов большой мощности применяется метод частотного управления с самосинхронизацией, который исключает выпадение двигателя из синхронизма. Особенность метода состоит в том, что управление преобразователем частоты осуществляется в строгом соответствии с положением ротора двигателя.

Преобразователь частоты - это устройство, предназначенное для преобразования переменного тока (напряжения) одной частоты в переменный ток (напряжение) другой частоты.

Выходная частота в современных преобразователях может изменяться в широком диапазоне и быть как выше, так и ниже частоты питающей сети.

Схема любого преобразователя частоты состоит из силовой и управляющей частей. Силовая часть преобразователей обычно выполнена на тиристорах или транзисторах, которые работают в режиме электронных ключей. Управляющая часть выполняется на цифровых микропроцессорах и обеспечивает управление силовыми
электронными ключами, а также решение большого количества вспомогательных задач (контроль, диагностика, защита).

Преобразователи частоты,

применяемые в регулируемом

электроприводе, в зависимости от структуры и принципа работы силовой разделяются на два класса:

1. Преобразователи частоты с явно выраженным промежуточным звеном постоянного тока.

2. Преобразователи частоты с непосредственной связью (без промежуточного звена постоянного тока).

Каждый из существующих классов преобразователей имеет свои достоинства и недостатки, которые определяют область рационального применения каждого из них.

Исторически первыми появились преобразователи с непосредственной связью

(рис. 4.), в которых силовая часть представляет собой управляемый выпрямитель и выполнена на не запираемых тиристорах. Система управления поочередно отпирает группы тиристотров и подключает статорные обмотки двигателя к питающей сети.

Таким образом, выходное напряжение преобразователя формируется из «вырезанных» участков синусоид входного напряжения. На рис.5. показан пример формирования выходного напряжения для одной из фаз нагрузки. На входе преобразователя действует трехфазное синусоидальное напряжение иа, ив, ис. Выходное напряжение ивь1х имеет несинусоидальную «пилообразную» форму, которую условно можно аппроксимировать синусоидой (утолщенная линия). Из рисунка видно, что частота выходного напряжения не может быть равна или выше частоты питающей сети. Она находится в диапазоне от 0 до 30 Гц. Как следствие малый диапазон управления частоты вращения двигателя (не более 1: 10). Это ограничение не позволяет применять такие преобразователи в современных частотно регулируемых приводах с широким диапазоном регулирования технологических параметров.

Использование не запираемых тиристоров требует относительно сложных систем управления, которые увеличивают стоимость преобразователя.

«Резаная» синусоида на выходе преобразователя является источником высших гармоник, которые вызывают дополнительные потери в электрическом двигателе, перегрев электрической машины, снижение момента, очень сильные помехи в питающей сети. Применение компенсирующих устройств приводит к повышению стоимости, массы, габаритов, понижению к. п.д. системы в целом.

Наряду с перечисленными недостатками преобразователей с непосредственной связью, они имеют определенные достоинства. К ним относятся:

Практически самый высокий КПД относительно других преобразователей (98,5% и выше),

Способность работать с большими напряжениями и токами, что делает возможным их использование в мощных высоковольтных приводах,

Относительная дешевизна, несмотря на увеличение абсолютной стоимости за счет схем управления и дополнительного оборудования.

Подобные схемы преобразователей используются в старых приводах и новые конструкции их практически не разрабатываются.

Наиболее широкое применение в современных частотно регулируемых приводах находят преобразователи с явно выраженным звеном постоянного тока (рис. 6.).

В преобразователях этого класса используется двойное преобразование электрической энергии: входное синусоидальное напряжение с постоянной амплитудой и частотой выпрямляется в выпрямителе (В), фильтруется фильтром (Ф), сглаживается, а затем вновь преобразуется инвертором (И) в переменное напряжение изменяемой частоты и амплитуды. Двойное преобразование энергии приводит к снижению к. п.д. и к некоторому ухудшению массогабаритных показателей по отношению к преобразователям с непосредственной связью.

Для формирования синусоидального переменного напряжения используются автономные инверторы напряжения и автономные инверторы тока.

В качестве электронных ключей в инверторах применяются запираемые тиристоры GTO и их усовершенствованные модификации GCT, IGCT, SGCT, и биполярные транзисторы с изолированным затвором IGBT.

Главным достоинством тиристорных преобразователей частоты, как и в схеме с непосредственной связью, является способность работать с большими токами и напряжениями, выдерживая при этом продолжительную нагрузку и импульсные воздействия.

Они имеют более высокий КПД (до 98%) по отношению к преобразователям на IGBT транзисторах (95 - 98%).

Преобразователи частоты на тиристорах в настоящее время занимают доминирующее положение в высоковольтном приводе в диапазоне мощностей от сотен киловатт и до десятков мегаватт с выходным напряжением 3 - 10 кВ и выше. Однако их цена на один кВт выходной мощности самая большая в классе высоковольтных преобразователей.

До недавнего прошлого преобразователи частоты на GTO составляли основную долю и в низковольтном частотно регулируемом приводе. Но с появлением IGBT транзисторов произошел «естественный отбор» и сегодня преобразователи на их базе общепризнанные лидеры в области низковольтного частотно регулируемого привода.

Тиристор является полууправляемым приборам: для его включения достаточно подать короткий импульс на управляющий вывод, но для выключения необходимо либо приложить к нему обратное напряжение, либо снизить коммутируемый ток до нуля. Для
этого в тиристорном преобразователе частоты требуется сложная и громоздкая система управления.

Биполярные транзисторы с изолированным затвором IGBT отличают от тиристоров полная управляемость, простая неэнергоемкая система управления, самая высокая рабочая частота

Вследствие этого преобразователи частоты на IGBT позволяют расширить диапазон управления скорости вращения двигателя, повысить быстродействие привода в целом.

Для асинхронного электропривода с векторным управлением преобразователи на IGBT позволяют работать на низких скоростях без датчика обратной связи.

Применение IGBT с более высокой частотой переключения в совокупности с микропроцессорной системой управления в преобразователях частоты снижает уровень высших гармоник, характерных для тиристорных преобразователей. Как следствие меньшие добавочные потери в обмотках и магнитопроводе электродвигателя, уменьшение нагрева электрической машины, снижение пульсаций момента и исключение так называемого «шагания» ротора в области малых частот. Снижаются потери в трансформаторах, конденсаторных батареях, увеличивается их срок службы и изоляции проводов, уменьшаются количество ложных срабатываний устройств защиты и погрешности индукционных измерительных приборов.

Преобразователи на транзисторах IGBT по сравнению с тиристорными преобразователями при одинаковой выходной мощности отличаются меньшими габаритами, массой, повышенной надежностью в силу модульного исполнения электронных ключей, лучшего теплоотвода с поверхности модуля и меньшего количества конструктивных элементов.

Они позволяют реализовать более полную защиту от бросков тока и от перенапряжения, что существенно снижает вероятность отказов и повреждений электропривода.

На настоящий момент низковольтные преобразователи на IGBT имеют более высокую цену на единицу выходной мощности, вследствие относительной сложности производства транзисторных модулей. Однако по соотношению цена/качество, исходя из перечисленных достоинств, они явно выигрывают у тиристорных преобразователей, кроме того, на протяжении последних лет наблюдается неуклонное снижение цен на IGBT модули.

Главным препятствием на пути их использования в высоковольтном приводе с прямым преобразованием частоты и при мощностях выше 1 - 2 МВт на настоящий момент являются технологические ограничения. Увеличение коммутируемого напряжения и рабочего тока приводит к увеличению размеров транзисторного модуля, а также требует более эффективного отвода тепла от кремниевого кристалла.

Новые технологии производства биполярных транзисторов направлены на преодоление этих ограничений, и перспективность применения IGBT очень высока также и в высоковольтном приводе. В настоящее время IGBT транзисторы применяются в высоковольтных преобразователях в виде последовательно соединенных нескольких

Структура и принцип работы низковольтного преобразователя частоты на GBT транзисторах

Типовая схема низковольтного преобразователя частоты представлена на рис. 7. В нижней части рисунка изображены графики напряжений и токов на выходе каждого элемента преобразователя.

Переменное напряжение питающей сети (ивх.) с постоянной амплитудой и частотой (UEx = const, f^ = const) поступает на управляемый или неуправляемый выпрямитель (1).

Для сглаживания пульсаций выпрямленного напряжения (ивыпр.) используется фильтр (2). Выпрямитель и емкостный фильтр (2) образуют звено постоянного тока.

С выхода фильтра постоянное напряжение ud поступает на вход автономного импульсного инвертора (3).

Автономный инвертор современных низковольтных преобразователей, как было отмечено, выполняется на основе силовых биполярных транзисторов с изолированным затвором IGBT. На рассматриваемом рисунке изображена схема преобразователя частоты с автономным инвертором напряжения как получившая наибольшее распространение.

ЗВЕ МО ПС хт<)A\U IQTOTOKAj

В инверторе осуществляется преобразование постоянного напряжения ud в трехфазное (или однофазное) импульсное напряжение ии изменяемой амплитуды и частоты. По сигналам системы управления каждая обмотка электрического двигателя подсоединяется через соответствующие силовые транзисторы инвертора к положительному и отрицательному полюсам звена постоянного тока.

Длительность подключения каждой обмотки в пределах периода следования импульсов модулируется по синусоидальному закону. Наибольшая ширина импульсов обеспечивается в середине полупериода, а к началу и концу полупериода уменьшается. Таким образом, система управления обеспечивает широтно-импульсную модуляцию (ШИМ) напряжения, прикладываемого к обмоткам двигателя. Амплитуда и частота напряжения определяются параметрами модулирующей синусоидальной функции.

При высокой несущей частоте ШИМ (2 ... 15 кГц) обмотки двигателя вследствие их высокой индуктивности работают как фильтр. Поэтому в них протекают практически синусоидальные токи.

В схемах преобразователей с управляемым выпрямителем (1) изменение амплитуды напряжения uH может достигаться регулированием величины постоянного напряжения ud, а изменение частоты - режимом работы инвертора.

При необходимости на выходе автономного инвертора устанавливается фильтр (4) для сглаживания пульсаций тока. (В схемах преобразователей на IGBT в силу низкого уровня высших гармоник в выходном напряжении потребность в фильтре практически отсутствует.)

Таким образом, на выходе преобразователя частоты формируется трехфазное (или однофазное) переменное напряжение изменяемой частоты и амплитуды (ивых = var, ^ых = var).

В последние годы многие фирмы большое внимание, которое диктуется потребностями рынка, уделяют разработке и созданию высоковольтных частотных преобразователей. Требуемая величина выходного напряжения преобразователя частоты для высоковольтного электропривода достигает 10 кВ и выше при мощности до нескольких десятков мегаватт.

Для таких напряжений и мощностей при прямом преобразовании частоты применяются весьма дорогие тиристорные силовые электронные ключи со сложными схемами управления. Подключение преобразователя к сети осуществляется либо через входной токоограничивающий реактор, либо через согласующий трансформатор.

Предельные напряжение и ток единичного электронного ключа ограничены, поэтому применяют специальные схемные решения для повышения выходного напряжения преобразователя. Кроме того, это позволяет уменьшить общую стоимость высоковольтных преобразователей частоты за счет использования низковольтных электронных ключей.

В преобразователях частоты различных фирм производителей используются следующие схемные решения.

В схеме преобразователя (рис. 8.) осуществляется двойная трансформация напряжения с помощью понижающего (Т1) и повышающего (Т2) высоковольтных трансформаторов.

Двойная трансформация позволяет использовать для регулирования частоты Рис 9. относительно дешевый

низковольтный преобразователь частоты, структура которого представлена на рис. 7.

Преобразователи отличают относительная дешевизна и простота практической реализации. Вследствие этого они наиболее часто применяются для управления высоковольтными электродвигателями в диапазоне мощностей до 1 - 1,5 МВт. При большей мощности электропривода трансформатор Т2 вносит существенные искажения в процесс управления электродвигателем. Основными недостатками двухтрансформаторных преобразователей являются высокие массогабаритные характеристики, меньшие по отношению к другим схемам КПД (93 - 96%) и надежность.

Преобразователи, выполненные по этой схеме, имеют ограниченный диапазон регулирования частоты вращения двигателя как сверху, так и снизу от номинальной частоты.

При снижении частоты на выходе преобразователя увеличивается насыщение сердечника и нарушается расчетный режим работы выходного трансформатора Т2. Поэтому, как показывает практика, диапазон регулирования ограничен в пределах Пном>П>0,5Пном. Для расширения диапазона регулирования используют трансформаторы с увеличенным сечением магнитопровода, но это увеличивает стоимость, массу и габариты.

При увеличении выходной частоты растут потери в сердечнике трансформатора Т2 на перемагничивание и вихревые токи.

В приводах мощностью более 1 МВт и напряжении низковольтной части 0,4 - 0,6 кВ сечение кабеля между преобразователем частоты и низковольтной обмоткой трансформаторов должно быть рассчитано на токи до килоампер, что увеличивает массу преобразователя.

Для повышения рабочего напряжения преобразователя частоты электронные ключи соединяют последовательно (см. рис.9.).

Число элементов в каждом плече определяется величиной рабочего напряжения и типом элемента.

Основная проблема для этой схемы состоит в строгом согласовании работы электронных ключей.

Полупроводниковые элементы, изготовленные даже в одной партии, имеют разброс параметров, поэтому очень остро стоит задача согласования их работы по времени. Если один из элементов откроется с задержкой или закроется раньше остальных, то к нему будет приложено полное напряжение плеча, и он выйдет из строя.

Для снижения уровня высших гармоник и улучшения электромагнитной совместимости используют многопульсные схемы преобразователей. Согласование преобразователя с питающей сетью осуществляется с помощью многообмоточных согласующих трансформаторов Т.

На рис.9. изображена 6-ти пульсная схема с двухобмоточным согласующим трансформатором. На практике существуют 12-ти, 18-ти, 24-х пульсные схемы

преобразователей. Число вторичных обмоток трансформаторов в этих схемах равно 2, 3, 4 соответственно.

Схема является наиболее распространенной для высоковольтных преобразователей большой мощности. Преобразователи имеют одни из лучших удельные массогабаритные показатели, диапазон изменения выходной частоты от 0 до 250-300 Гц, КПД преобразователей достигает 97,5%.

3. Схема преобразователя с многообмоточным трансформатором

Силовая схема преобразователя (рис.10.) состоит из многообмоточного трансформатора и электронных инверторных ячеек. Количество вторичных обмоток трансформаторов в известных схемах достигает 18. Вторичные обмотки электрически сдвинуты относительно друг друга.

Это позволяет использовать низковольтные инверторные ячейки. Ячейка выполняется по схеме: неуправляемый трехфазный выпрямитель, емкостной фильтр, однофазный инвертор на IGBT транзисторах.

Выходы ячеек соединяются последовательно. В приведенном примере каждая фаза питания электродвигателя содержит три ячейки.

По своим характеристикам преобразователи находятся ближе к схеме с последовательным включением электронных ключей.

На сегодняшний момент на российском рынке представлены десятки марок низковольтных преобразователей частоты иностранных и российских производителей. Среди них можно отметить ведущие европейские компании: Siemens, ABB, SEW Eurodrive, Control Techniques (корпорация Emerson), Schneider Electric, Danfoss, K.E.B., Lenze, Allen-Breadly (корпорация Rockwell Automation), Bosch Rexroth. Продукция этих производителей широко представлена, существует разветвленная дилерская сеть. Пока менее известна продукция таких компаний из Европы, как Emotron, Vacon, SSD Drives (корпорация Parker), Elettronica Santerno. Присутствуют и продукты американских производителей – корпорации General Electric, AC Technology International (входит в концерн Lenze) и WEG (Бразилия).

Серьезную конкуренцию европейским и американским производителям составляют компании из Азии. Прежде всего, это компании из Японии: Mitsubishi Electric, Omron-Yaskawa, Panasonic, Hitachi, Toshiba, Fuji Electric. Широко представлены корейские и тайваньские марки – LG Industrial Systems, HYUNDAI Electronics, Delta Electronics, Tecorp, Long Shenq Electronic, Mecapion.

Среди отечественных производителей наиболее известным является компания Веспер. Можно также отметить специализированные преобразователи марок АПЧ, ЭПВ (ОАО «Электроаппарат»), РЭН2К или РЭМС (МКЕ).

Большинство производителей предлагаeт преобразователи частоты, способные работать в разомкнутом и замкнутом контуре управления (векторное управление), с наборами программируемых входов и выходов, со встроенным ПИД-регулятором. Даже в самых дешевых корейских или тайваньских преобразователях частоты можно встретить так называемый бессенсорный, т.е. без датчика положения ротора, векторный режим работы. Диапазон регулирования может составлять 1:50.

Однако ведущие производители предлагают более совершенный режим векторного управления без датчика обратной связи, основанный на передовых алгоритмах управления. Одним из первопроходцев в этой области была компания ABB предложившая DTR (Direct torque control) – метод управления скоростью и моментом без датчика обратной связи. Английская компания Control Techniques реализовала режим управления потокосцеплением ротора (RFC) без использования датчика обратной связи, что позволяет управлять моментом с точностью достаточной для большинства задач, расширить диапазон регулирования до 100, обеспечить высокую точность поддержания скорости при низкой частоте вращения и достичь такого же тока перегрузки, как в режимах замкнутого контура.

Крупные производители предлагают многофункциональные приборы с целым набором опций (модули расширения, тормозные резисторы, встраиваемые контроллеры, фильтры, дроссели и т.д.) или комплектуют их системами ЧПУ или контроллерами движения.

Все чаще можно встретить применение привода в рекуперативном режиме, т.е. с возможностью возвращать энергию, выделяемую при торможении, обратно в сеть (лифты, эскалаторы, подъемные краны). Обычно для этого используется специализированный привод с управляемым выпрямителем. Ведущие компании, например, Control Techniques, предлагают рекуперацию как один из режимов работы преобразователя частоты Unidrive SP, тем самым получая существенную экономию энергии и высокий КПД системы.

Описанный ассортимент даёт возможность инженеру выбрать подходящий по цене преобразователь частоты с широким набором встроенных функций и программ. При этом ведущие европейские марки, например из Великобритании и Германии, успешно конкурируют по цене при большем функционале и качестве

Предлагаем вашему вниманию описание некоторых продуктов, доступных на российском рынке. Информацию о поставщиках вы можете найти на нашем сайте:

Компания Rockwell Automation, бессменный лидер на силовом электротехническом рынке, выпустила новую серию частотных электроприводов Allen-Bradley® PowerFlex® в диапазоне мощностей от 0.25kW до 6770kW. Новая высокоэффективная серия сочетает в себе компактное конструктивное исполнение, широкие функциональные возможности и отличные эксплуатационные характеристики. Применяется в пищевой, бумажной, текстильной промышленности, металлообработке, деревообработке, насосно-вентиляционном оборудовании и т.д. В палитре представлены два класса приводов – Компонентный и Архитектурный. Модели из Компонентного класса предназначены для решения стандартных задач регулирования, а приводы Архитектурного класса за счет гибкого изменения конфигурации могут быть легко адаптированы и встроены в системы управления различного силового оборудования. Все модели предлагают исключительные коммуникационные возможности, широкую гамму панелей оператора и средств программирования, что в значительной степени облегчает эксплуатацию и ускоряет запуск оборудования.

PowerFlex ® 4

Привод Powerflex 4 является наиболее компактным и недорогим представителем данного семейства. Являясь идеальным устройством регулирования скорости, данная модель обеспечивает универсальность применения с соблюдением требований производителей и конечных пользователей в отношении гибкости, компактности и простоты эксплуатации.

В приводе реализован вольт-частотный закон управления с возможностью компенсации скольжения. Прекрасным дополнением к данной модели является версия ультракомпактного приводы Power@Flex4M, c расширенным рабочим диапазоном мощностей до 2.2 kW при однофазном исполнении и до 11kW-для трехфазного напряжения 400VAC. Предлагаемая ценовая шкала на данную модель позволяет надеяться если не на хит сезона, то на достаточно широкую ее популярность.

PowerFlex ® 7000

Привода серии PowerFlex 7000 являются уже третьим поколением приводов среднего напряжения от Rockwell Automation. Предназначены для регулирования скорости, момента, направления вращения асинхронных и синхронных двигателей переменного тока. Уникальный дизайн серии PowerFlex 7000 представляет собой запатентованную разработку под маркой PowerCage силовых блоков, содержащих основные силовые компоненты приводы. Новый модульный дизайн прост и представлен небольшим количеством компонентов, что обеспечивает высокую надежность и облегчает эксплуатацию. К основным преимуществам приводов среднего напряжения можно отнести: уменьшение эксплуатационных расходов, возможность запуска больших двигателей от небольших источников питания и повышение качественных характеристик контролируемого технологического процесса и используемого оборудования.

В зависимости от выходной мощности поставляются привода трех типоразмеров:

Корпус А – Диапазон мощностей 150-900 кВт при питающем напряжении 2400-6600 В

Корпус В – Диапазон мощностей 150-4100 кВт при питающем напряжении 2400-6600В

Корпус С – Диапазон мощностей 2240-6770 кВт при питающем напряжении 4160-6600 В

Приводы PowerFlex 7000 могут поставляться с таких вариантами исполнения, как 6-пульсная или 18-пульсная схема или с ШИМ-преобразователем, что дает пользователю существенную гибкость в вопросе снижения влияния гармоник питающей сети. Кроме этого, он обеспечивает прямое бессенсорное векторное управление для улучшения регулирования в зоне низких скоростей, по сравнению с приводами, использующими метод регулирования U/f, а также возможность регулирования момента двигателя, как это осуществляется в приводах постоянного тока. В качестве панели оператора предлагается модуль с жидкокристаллическим дисплеем на 16 строк и 40 знаков.

Больший момент инерции без дополнительного редуктора

Малоинерционные сервомоторы от Beckhoff серии AM3000, которые производятся на основе новых материалов и технологии, используются, главным образом, в динамичных приложениях с высокими нагрузками, например, для привода осей металлообрабатывающих станков или устройств без редукторов. В сочетании с большой инерцией ротора, они предлагают те же преимущества, что и моторы серии AM3xxx, например, полюсную статорную обмотку, которая позволяет значительно уменьшить общие габариты мотора. Фланцы, соединители и валы моторов новой серии AM3500 совместимы с хорошо проверенными моторами AM3000. Новые модели AM3500 выпускаются с фланцами размеров 3 – 6 и имеют момент вращения от 1,9 до 15 Нм. Скорости вращения моторов составляют от 3000 до 6000 оборотов в минуту. Для систем обратной связи имеются координатные преобразователи или абсолютные датчики положения (одно- или многооборотные). Корпус относится к классу защиты IP 64; возможны опции с классом защиты IP 65/67. Эта серия моторов соответствует нормам безопасности CE, UL и CSA.

Новое поколение приводов

Линейка Emotron пополнилась приводами NGD: FDU2.0, VFX2.0 (мощностью от 0,75 кВт до 1,6 МВт) и VSC/VSA (0,18–7,5 кВт). Приводы с регулируемой скоростью FDU2.0 (для центробежных механизмов) и VFX2.0 (для поршневых) позволяют пользователю устанавливать эксплутационные параметры в необходимых единицах, имеют съемную панель управления с функцией копирования настроек, модели до 132 кВт имеют стандартное экономичное исполнение IP54 (модели от 160 до 800 кВт также могут быть установлены в специальные компактные корпуса IP54). Обмен данными в ходе процесса осуществляется с помощью Fieldbus (Profibus-DP, DeviceNet, Ethernet), через порты (RS-232, RS-485, Modbus RTU), а также аналоговые и цифровые выходы.

Малогабаритные векторные приводы VSA и VSC специально спроектированы для регулирования скорости трехфазных асинхронных двигателей небольшой мощности: модели с входным напряжением 220 В доступны в диапазоне от 0,18 до 2,2 кВт, а модели 380 В – от 0,75 до 7,5 кВт.

Cемейство ATV61-ATV71

Рынок преобразователей частоты в России развивается стремительными темпами. Не удивительно, что он привлекает многочисленных производителей, причем, как крупных, так и малоизвестных. В настоящий момент российский рынок очень сегментирован. Но вот парадокс: несмотря на то, что на рынке присутствует в настоящий момент более 30 брэндов, существенная доля рынка принадлежит 7 – 8 компаниям, а явных лидеров – не более двух. При этом великолепные технические характеристики оборудования еще не являются гарантией успеха. Лидирующие позиции в России смогли занять компании, инвестирующие существенные средства в развитие бизнеса и бизнес – инфраструктуры.

Компания Schneider Electric, интересы которой в России представляет ЗАО «Шнейдер Электрик», в 2007 году значительно расширилa продуктовое предложение. Теперь семейство ATV61-ATV71 пополнилось модификацией на напряжение 690 В, появилось множество версий со степенью защиты IP54. Появилась также специальная модель для лифтового и кранового привода ATV71*383 с уникальной технологией управления синхронным двигателем. К концу 2008 года в линейке Альтиваров появится аппарат мощностью 2400 кВт на 690В. Altivar 61 теперь может работать в схемах с повышающим трансформатором.

Новая экономичная серия Altivar 21 разработана специально для систем отопления, кондиционирования и вентиляции жилых и общественных зданий. Altivar 21 управляет двигателями 0.75 до 75 кВт на напряжения 380 В и 200 … 240 В.

Altivar 21 имеет множество прикладных функций:

– встроенный ПИ регулятор;

– «подхват налету»;

– функция «сон/пробуждение»;

– управление защитами и сигнализацией;

– устойчивость к сетевым помехам, работа при температуре до + 50°C и просадке напряжения -50%.

С новой безконденсаторной технологией Altivar 21 не требует устройств для снижения гармоник. Суммарный коэффициент – THDI 30%. Отказ от конденсаторов и применение более мощных полупроводников увеличили время наработки.

Лидерство Schneider Electric на рынке преобразовательной техники является результатом серьезной работы по повышению отказоустойчивости преобразователей. Параметр MTTF для некоторых моделей составляет до 640000 часов. Altivar работает при просадке напряжения до -50%, температуре до +50%, в химически агрессивных средах и при импульсных помехах в сети. Это серьезный аргумент для повторной покупки. Доверие покупателя к оборудованию и репутации фирмы трудно переоценить.

Приводоы от SICK

Современное производство требует автоматизации многих ручных операций по настройке различных параметров на различных станках и упаковочных машинах. Зачастую у оператора возникает необходимость в изменении геометрических параметров выпускаемого изделия или других подобных задач. В этом случае приводы позиционирования от SICK-Stegmann – идеальное недорогое устройство для подобной операции.

HIPERDRIVE® – приводы позиционирования етo результат интеграции бесщеточного двигателя постоянного тока, редуктора, абсолютного многооборотного энкодера, силовой и управляющей электроники в одном устройстве. Кроме всего прочего, приводы имеют сетевой интерфейс Profibus или DeviceNet. Данное устройство нацелено на выполнение задач позиционирования «точка – точка» и представляет собой устройствo типа «черный ящик», которым легко управлять.

В настоящее время для подобных задач используются сервоприводы. Но использование подобных систем имеет ряд недостатков. Прежде всего, это экономически не оправдано. Системы на основе сервоприводов, как правило, требуют также инвертора, тормоза, абсолютного энкодера.

Основные преимущества данных приводов:

– Высоко – интегрированное устройство

    Уменьшение размера привода

    Легкая сборка и настройка

Регулируемый электропривод предназначен для управления двигателем путем контроля параметров. Скорость прямо пропорциональна частоте. Поэтому, варьируя частотой, можно поддерживать скорость вращения вала мотора, заданную согласно технологии. Пошаговое описание рабочего процесса для частотно-регулируемого привода (ЧРП) выглядит примерно так.

  1. Шаг первый. Преобразование диодным силовым выпрямителем одно- или трехфазного входного тока в постоянный.
  2. Шаг второй. Контроль преобразователем частоты за крутящим моментом и скоростью вращения вала электродвигателя.
  3. Шаг третий. Управление выходным напряжением, поддерживание постоянного соотношения U/f.

Устройство, выполняющее на выходе системы обратную функцию генерации постоянного тока в переменный, именуется инвертором. Избавление от пульсаций на шине достигается путем добавления дросселя и конденсатора фильтра.

Как выбрать частотно-регулируемый электропривод

Преобладающее число частотных преобразователей изготавливаются со встроенным фильтром электромагнитной совместимости (ЭМС).

Различаются такие виды управления, как , бездатчиковое и датчиковое векторное, и др. Согласно заданным приоритетам в принятии управленческих решений, приводы выбираются по:

  • типу нагрузки;
  • напряжению и номиналу двигателя;
  • режиму управления;
  • регулировки;
  • ЭМС и т. д.

Если ЧРП предназначен для асинхронного двигателя с большим сроком эксплуатации, то рекомендуется выбирать частотный преобразователь с завышенным током на выходе.С помощью современных преобразователей частоты возможно управление с пульта, по интерфейсу или комбинированным методом.

Технические особенности применения частотного электропривода

  1. Для обеспечения высокой производительности можно свободно переключаться на любой режим в настройках.
  2. Практически все устройства обладают диагностическими функциями, что позволяет быстро устранить возникшую неполадку. Однако рекомендуется в первую очередь проверить настройки, исключить вероятность непроизвольных действий работников.
  3. Регулируемыйприводможетсинхронизировать конвейерные процессы, либо задавать определённое соотношение взаимозависимых величин. Сокращение оборудования ведёт к оптимизации технологии.
  4. В состоянии автонастройки параметры двигателя автоматически заносятся в память преобразователя частоты. Благодаря чему повышается точность вычисления момента, и улучшается компенсация скольжения.

Область применения

Производителями предлагается широкий ассортимент приводов, используемых в областях, где задействованы электродвигатели. Идеальное решение для всех видов нагрузки, и вентиляторов. Системы среднего класса используются на угольных электростанциях, в горнодобывающей промышленности, на мельницах, в жилищно-коммунальном хозяйстве и т. д. Диапазон номиналов выглядит таким образом: 3 кВ, 3.3 кВ, 4.16 кВ, 6 кВ, 6.6 кВ, 10 кВ и 11 кВ.

С появлением регулируемого электропривода контроль давления воды у конечного потребителя не вызывает проблем. Интерфейс с продуманной структурой сценариев отлично подходит для управления насосным оборудованием. Благодаря компактной конструкции, привод может быть установлен в шкаф различного исполнения. Продукты нового поколения обладают свойствами передовой техники:

  • высокая скорость и точность управления в векторном режиме;
  • существенная экономия электроэнергии;
  • быстрые динамические характеристики;
  • большой низкочастотный вращающий момент;
  • двойное торможение и т. д.

Назначение и технические показатели

Комплектные ЧРП напряжением до и выше 1 кВ (предназначенные для приема и преобразования энергии, защиты электрооборудования от токов КЗ, перегрузки) позволяют:

  • плавно запускать двигатель, а, следовательно, уменьшать его износ;
  • останавливать, поддерживать частоту вращения вала двигателя.

Комплектные ЧРП шкафного исполнения до 1кВ выполняют те же задачи по отношению к двигателям с мощностью 0,55 – 800 кВт. Привод нормально работает, когда напряжение в электросети находится в пределах от -15% до +10%. При безостановочной работе снижение мощности наступает, если напряжение составляет 85%-65%. Общий коэффициент мощности cosj = 0,99. Выходное напряжение автоматически регулируется посредством автоматического включение резерва (АВР).

Преимущества использования

С точки зрения оптимизации и потенциальные преимущества предоставляют возможность:

  • регулировать процесс с высокой точностью;
  • удалённо диагностировать привод;
  • учитывать моточасы;
  • следить за неисправностью и старением механизмов;
  • повышать ресурс машин;
  • значительно снижать акустический шум электродвигателя.

Заключение

Что такое ЧРП? Это мотор-контроллер, который управляет электродвигателем за счет регулировки частоты входной сети, и одновременно защищает агрегат от различных неисправностей (токовой перегрузки, токов КЗ).

Электрические приводы (выполняющие три функции, связанные со скоростью, управлением и торможением) являются незаменимым устройством для работы электродвигателей и других вращающихся машин. Системы активно применяются во многих сферах производства: в нефтегазовой отрасли, атомной энергетике, деревообработке и др.