Монтаж сильфонных компенсаторов на теплосети. Сильфонные компенсаторы для тепловых сетей

, Тепловые сети, в т.ч. системы ГВС .

Эффект от внедрения:
- для объекта уменьшение потребления холодной воды и топлива, а также электроэнергии, снижение затрат, связанных с техническим обслуживанием и ремонтом компенсаторов;
- для муниципального образования снижение потребления топлива и тарифов для населения, повышение надежности теплоснабжения.

Применение сильфонных компенсаторов для компенсации температурных деформаций, снятия вибрационных нагрузок, герметизации трубопроводов, предотвращения разрушения и деформации трубопроводов теплопроводов позволяет снизить потери тепловой энергии, затраты при строительстве и эксплуатации тепловых сетей и повысить их надежность.

Прямолинейный участок трубопровода между неподвижными опорами при изменении температурного режима тепловой сети получает некоторое приращение своей длины за счет температурного расширения материалы трубопровода. Возникающие при этом напряжения, растяжения или сжатия могут привести к изгибу труб или их разрушению. Гофры сильфонного компенсатора установленного на этом участке компенсатора, упруго деформируясь, воспринимают в пределах компенсирующей способности изменения длины участка трубопровода, вызванное температурным расширением.

Для компенсации температурных деформаций трубопроводов в тепловых сетях г. Санкт-Петербурга до начала 1980-х гг. применялись сальниковые, П-, S- и Г-образные компенсаторы, а во многих регионах России они применяются до сих пор. Каждому из этих компенсаторов свойственны отдельные серьезные недостатки.

Наиболее сложными в эксплуатации и монтаже являются сальниковые компенсаторы. Они требуют постоянного обслуживания, связанного с периодической подтяжкой уплотнения и заменой уплотнительного материала. При подземной прокладке теплопроводов установка сальниковых компенсаторов требует строительства дорогостоящих камер.

Длительная практика эксплуатации сальниковых компенсаторов показала, что даже при наличии регулярного их обслуживания имеют место протечки теплоносителя. При большой протяженности тепловых сетей суммарная величина затрат на пополнение и нагрев теплоносителя может достигать достаточно больших значений.

Для П-образных компенсаторов характерны большие габариты, увеличение зон отчуждения дорогостоящей городской земли, необходимость строительства дополнительных направляющих опор, а при подземной прокладке - специальных камер (что довольно затруднительно в городских условиях). Да и стоимость П-образных компенсаторов, особенно больших диаметров, достаточно высока.

В целях повышения надежности теплоснабжения, снижения капитальных вложений, потерь, связанных с утечками, и эксплуатационных расходов в начале 1980-х гг. специалисты ведущих Ленинградских проектных институтов рассмотрели возможность применения сильфонных компенсаторов в тепловых сетях вместо П-образных и сальниковых компенсаторов и с 1981 г. в ГУП «ТЭК СПб» при проведении капитального ремонта и строительства тепловых сетей началась установка осевых сильфонных компенсаторов. Годовой экономический эффект, проявляющийся в снижении сметной стоимости строительства, экономии материалов, в сокращении трудозатрат при строительстве и тепловых потерь при эксплуатации теплопровода, при замене 1 шт. П-образного компенсатора на осевой сильфонный составил: для DN 500 - 6,65 тыс. руб., для DN 700 - 12,07 тыс. руб. (в ценах 1986 года).

Удельная годовая экономическая эффективность от замены сальникового компенсатора на сильфонный в процессе эксплуатации составила (в ценах 2006 г.) [источник: www.kompensator.ru]:

Диаметр компенсатора, мм Холодная вода Топливо Электроэнергия Обслуживание и ремонт, тыс. руб. Итого, тыс.руб.
м3 тыс. руб. тут тыс. руб. кВт-ч тыс. руб.
до 300 77,5 1,05 0,7 0,90 105,9 0,10 2,71 4,76
от 300 до 600 186,8 2,52 1,6 2,17 255,4 0,24 6,30 11,23
от 600 до 1200 355,7 4,80 3,0 4,12 486,1 0,45 9,90 19,27

Компенсаторы сильфонные в зависимости от вида выполняют роль неподвижных опор, позволяют устанавливать компенсатор без дополнительных крепежных элементов или применяются в трубопроводах для компенсации температурного расширения, предотвращения разрушения трубопровода при деформации, герметизации трубопроводов, компенсации несоосностей, возникших вследствие монтажных работ.

Конструкция сильфонных компенсаторов

Сильфонные компенсаторы имеют малые габариты, могут устанавливаться в любом месте трубопровода при любом способе его прокладки, не требуют строительства специальных камер и обслуживания в течение всего срока эксплуатации. Срок их службы, как правило, соответствует сроку службы трубопроводов. Применение сильфонных компенсаторов обеспечивает надежную и эффективную защиту трубопроводов от статических и динамических нагрузок, возникающих при деформациях, вибрации и гидроударе. Благодаря использованию при изготовлении сильфонов высококачественных нержавеющих сталей, сильфонные компенсаторы способны работать в самых жестких условиях с температурами рабочих сред от «абсолютного нуля» до 1000°С и воспринимать рабочие давления от вакуума до 100 атм., в зависимости от конструкции и условий работы.

В зависимости от назначения и условий применения используются различные конструктивные исполнения компенсаторов, представляющие собой различные комбинации сильфонов, присоединительной и ограничительной арматуры, направляющих патрубков и защитных кожухов.

Основной частью сильфонного компенсатора является сильфон - упругая гофрированная металлическая оболочка, обладающая способностью растягиваться, изгибаться либо сдвигаться под действием перепада температур, давления и другого рода изменений. Между собой они различаются по таким параметрам как размеры, давление и типы смещений в трубе (осевые, сдвиговые и угловые). На основании данного критерия компенсаторы выделяют осевые, сдвиговые, угловые (поворотные) и универсальные.

Сильфоны современных компенсаторов состоят из нескольких тонких слоев нержавеющей стали, которые формируются при помощи гидравлической или обычной прессовки. Многослойные компенсаторы нейтрализуют воздействие высокого давления и различного рода вибраций, не вызывая при этом реакционных сил, которые в свою очередь провоцируются деформацией).

СКУ (СКФ) предназначены для компенсации температурных изменений длины трубопровода, снятия вибрационных нагрузок, герметизации трубопроводов, предотвращения разрушения и деформациитрубопроводов. Для сильфонных узлов возможна подземная безканальная укладка, изоляция сильфонных устройств СКУ (СКФ). Основным элементом компенсационного устройства является осевой сильфонный компенсатор, установленный в защитный кожух, который обеспечивает защиту сильфона от поперечных усилий, изгибающих и крутящих моментов, а также от механических повреждений и попадания грунта между гофрами. Компенсационные сильфонные устройства имеют малые габариты, могут устанавливаться в любом месте трубопровода при любом способе его прокладки, не требуют строительства специальных камер и обслуживания в течении всего срока эксплуатации. Срок их службы, как правило, соответствует сроку службы трубопроводов. Применение СКУ (СКФ) обеспечивает надежную и эффективную защиту трубопроводов от статических и динамических нагрузок, возникающих при деформациях, вибрации и гидроударах. Благодаря использованию при изготовлении сильфонных узлов из высококачественной нержавеющей стали, СКУ (СКФ) способны работать в самых жестких условиях.

Компенсация температурных деформаций для труб в ППУ-изоляции

В последние годы в России для бесканальной прокладки теплопроводов стали широко применяться стальные трубы с тепловой изоляцией из пенополиуретана в полиэтиленовой оболочке по ГОСТ 30732.

В Западной Европе и в некоторых регионах России для компенсации температурных деформаций теплопроводов при бесканальной прокладке не применяют осевые сильфонные компенсаторы. В этих случаях используется способ частичной разгрузки температурных деформаций теплопровода с помощью стартовых компенсаторов за счет предварительного нагрева теплопровода во время его монтажа до температуры, равной 50% от максимальной.

Суть этого способа заключается в следующем. Между двумя неподвижными опорами теплопровода устанавливается стартовый сильфонный компенсатор, после чего теплопровод заполняется теплоносителем и нагревается до температуры, равной 50% от максимальной рабочей. При этом стартовый компенсатор должен сжаться на полную величину рабочего хода. После выдержки при указанной температуре (как правило, в течение суток) кожухи стартового компенсатора завариваются между собой. После этого соединяются проводники СОДК и на стартовые компенсаторы наносится тепло-гидроизоляция. И так на всем теплопроводе между каждой парой неподвижных опор.

При этом сильфон стартового компенсатора исключается из дальнейшей работы теплопровода, и теплопровод остается в эксплуатации в напряженном состоянии.

Кроме того, использование предварительно нагретых во время монтажа теплопроводов имеет еще несколько неудобств:

  • окончательный монтаж теплопровода (заварку кожухов всех стартовых компенсаторов и их последующую тепло-гидроизоляцию) приходится производить во время отопительного сезона;
  • при выполнении ремонта теплопровода необходимо на данном участке теплотрассы заменять и стартовый сильфонный компенсатор и выполнить в дальнейшем вышеизложенные требования по его монтажу и изоляции.

Применение при бесканальной прокладке предварительно нагретых во время монтажа теплопроводов с использованием стартовых компенсаторов возможно в регионах с мягкими климатическими условиями, когда перепады температур теплоносителя относительно средней температуры незначительны и стабильны.

В пиковые же режимы отопления, а также при остывании теплоносителя и его сливе, что довольно часто происходит во многих регионах России, температурные напряжения на трубопровод и неподвижные опоры резко возрастают.

Учитывая проблемы применения стартовых компенсаторов, а также особенности климатических условий регионов и соответствующие режимы отопления, при бесканальной прокладке предварительно изолированных труб уже более 15 лет применяются предварительно изолированные осевые сильфонные компенсационные устройства различных конструкций.


Для того чтобы добавить описание энергосберегающей технологии в Каталог, заполните опросник и вышлите его на c пометкой «в Каталог» .

Цель установки это поглощение теплового расширения трубы. Обычно температура рабочей среды (жидкости) является основным источником изменения размеров трубопровода, однако в некоторых случаях температура окружающей среды может вызвать тепловое движение трубопровода, т.е. его удлинение или сжатие.

Схемы установки осевых сильфонных компенсаторов

Компенсатор в середине прямого участка трубопровода. Компенсатор в крайнем положении прямого участка трубопровода.
Компенсатор на прямом участке Z-образного участка трубопровода.
Компенсатор на Т-образном участке трубопровода.

Определение точек установки компенсаторов и направляющие опор для трубы

Для осуществления правильной работы трубопровода следует разделение систему трубопровода на отдельные участки, с целью установки на них сильфонных компенсаторов. Основная задача здесь - контроль расширения трубопровода между неподвижными опорами.

Неподвижные опоры предназначены для приема всех сил, действующих на трубопроводе.

Направляющие (скользящие) опоры для труб обеспечивают выравнивание движения сильфона компенсатора и предотвращают смещение трубопровода со своей оси. При отсутствии направляющих опор сильфонный компенсатор, имеющий высокую гибкость в сочетании с внутренним давлением, может потерять свою устойчивость и произойдет авария.

Рекомендация при установке трубопровода с компенсатором

Основная рекомендация состоит в том, чтобы установить осевой сильфонный компенсатор устанавить рядом с неподвижной опорой. Обычно осевой сильфонный компенсатор устанавлиают на растоянии не более 2Ду от неподвижной опоры.

Расстояния между скользящими напрвляющими опорами трубопровода

Первая скользящая опора должна быть расположена не более 4 диаметров труб от сильфонного компенсатора. Расстояние между первой и второй направляющей 14 диаметра труб.

L 1 = 4Ду (максимум)

L 2 = 14Ду (максимум)

L 3 см.график. - Максимальное расстояние между осями направляющих опор

Правильное расположение компенсаторов КСО, неподвижных и направляющих опор и влияние направляющих (скользящих) на устойчивость трубопровода показано на рисунке ниже.

Так же вы можете посмотреть компесаторы ксо, в зависимости от их условного диаметра.

Правила установки и обслуживания Компенсаторов КСО:

1. Компенсатор КСО устанавливают на прямолинейном участке трубопровода, ограниченном двумя неподвижными опорами. Изгибы трубопровода на этом участке категорически не допускаются. Не используйте компенсаторы КСО для компенсирования удлинений больших, чем в таблице технических данных: осевой ход нельзя превышать ни при каких рабочих условиях.

Трубы с длинами, для которых недостаточно одного сильфонного компенсатора КСО, необходимо разделить на отдельные участки приемлемой длины. При этом каждый участок ограничивается неподвижными опорами и в отношении температурных удлинений рассматривается как отдельный трубопровод. На компенсируемом участке не должно быть врезок. Исключение: радиаторные стояки системы отопления. Другие случаи рассматриваются индивидуально.

2. Неподвижные, направляющие и скользящие опоры должны быть сконструированы и установлены так, чтобы они могли выдерживать распорные усилия и усилия жёсткости компенсаторов КСО, а также вес трубопровода с водой и влияние врезок.

3. Компенсаторы КСО тепловых удлинений трубопроводов нельзя использовать в качестве демпфера колебаний.

4. С компенсаторами КСО надо обращаться осторожно, чтобы не повредить их при ударе и не оцарапать об острые предметы.

5. Осевые компенсаторы должны испытывать нагрузки только в продольном направлении, не допускается напряжение кручения и воздействие изгибающего момента.

6. Не допускается попадание сыпучих и твёрдых веществ в гофры компенсатора КСО; также запрещено покрывать сильфон компенсатора тепловой изоляцией. Убедитесь также, что посторонние предметы не попали между гофрами, если перед установкой компенсаторы КСО хранились какое-то время!

7. Перед вваркой компенсаторов КСО в трубную систему гофры (если они есть) компенсатора КСО должны быть надлежащим образом защищены от искр сварки (если компенсатор не оснащен наружным кожухом, его сильфон необходимо обмотать защитным материалом) для предотвращения попадания частиц раскаленного металла.

8. Кабель электросварки не должен контактировать с сильфоном компенсатора КСО.

9. Компенсаторы КСО могут быть снабжены внутренней гильзой и поэтому должны быть установлены направляющей стрелкой по направлению движения воды в трубе.

10. Компенсаторы КСО нельзя подвергать воздействию сильных электрических токов При сварных работах в сети трубопроводов и при сварке относящихся к этой сети деталей необходимо следить за тем, чтобы обратный ток к массе не проходил через компенсатор КСО. Эти компенсаторы нельзя использовать в качестве защитного или обратного трубопровода (это необходимо учитывать при выполнении мероприятий по выравниванию потенциалов).

11. Расстояние от компенсатора КСО до ближайшей (1-й) направляющей опоры должно быть 4Ду, между 1-ой и 2-ой направляющими опорами — 14Ду, остальные скользящие и направляющие опоры должны быть установлены в соответствии с нормативами. В случае горизонтальной установки вес трубы должен быть распределён на неподвижные и направляющие опоры и не должен воздействовать на компенсатор КСО.

12. При установке муфтовых резьбовых компенсаторов КСО в системах водоснабжения необходимо затягивать их гаечным ключом. Не перетягивайте! Это грозит выходом компенсатора КСО из строя. О допустимом усилии проконсультируйтесь в нашем техотделе.

13. Если компенсатор КСО устанавливается на вертикальном или горизонтальном стояке, необходимо, чтобы вес трубы не воздействовал на компенсатор КСО (не сжиимал, не растягивал и не сгибал его). Для этого необходимо предварительно смонтировать трубопровод, неподвижные и направляющие опоры и лишь после этого врезать компенсатор КСО. Если трубопровод загрязнен, то перед монтажом компенсаторов его необходимо промыть.

14. В трубопроводной системе с компенсаторами КСО недопустимы гидроудары!

Осевые сильфонные компенсаторы КСО представляют собой механически нагруженные детали. Срок их службы зависит от числа циклов срабатывания под нагрузкой. Компенсаторы КСО должны быть доступны для контроля и замены.

Порядок проведения монтажных работ трубопровода с компенсаторами КСО:

1. Монтаж трубопровода, неподвижных и направляющих опор.

2. В случае, если трубопровод был загрязнён, требуется промывка трубопровода.

3. Вырезка участка трубопровода на месте установки компенсатора, строго по его размерам (вырезка «катушки»).

4. Установка компенсатора («врезка»).

Компенсаторы КСО, запроектированные в соответствии с типовыми схемами, могут быть установлены используя предварительное растяжение или сжатие. Компенсаторы КСО нельзя деформировать — изгибать, растягивать или сжимать, пытаясь подогнать их при монтаже («врезке») под ненадлежащее пространство.

Не допускается чрезмерное сдавливание, растягивание или сгибание компенсатора в момент монтажа (трубопроводом, не зафиксированным неподвижными и направляющими опорами)!

Узнавайте цены по телефону у наших специалистов

Существует множество типов устройств, которые отличаются по параметрам и конструктивным элементам. Особенность указанных моделей заключается в том, что они способны выдержать большую температуру. Для того чтобы детально разобраться в указанном вопросе, рекомендуется ознакомиться с типами компенсаторов.

Виды устройств

По конструкции выделяют осевые и фланцевые сильфонные компенсаторы для ГОСТ Р 50671-94. Существуют модели низкого и высокого давления. Фланцевые устройства делятся на сдвиговые и угловые модели. В отдельную категорию выделены карданные и блочные модификации.

Устройства низкого давления

Модели низкого давления активно применяются в Сталь в данном случае используется разных маркировок. Если рассматривать модификации серии ОФН, у них имеется широкий выход. Показатель осевого хода в среднем составляет 80 мм. Коэффициент жесткости у них невысокий. Максимальная допустимая температура компенсаторов указанного типа находится на уровне -10 градусов.

Также надо отметить, что существуют модификации с отверстиями. Они подходят для труб диаметром от 3 см. Коэффициент жесткости у них в среднем равняется 300 Н. Масса обычной модели составляет 10 кг. Если рассматривать компенсатор КСО, у него предусмотрено четыре отверстия. Выход в данном случае имеется шириною в 80 мм. Предельное давление составляет 1.2 бара.

Модели высокого давления

Сильфонные компенсаторы для тепловых сетей высокого давления производятся только из закаленной стали. Минимальная допустимая температура компенсаторов равняется не более -20 градусов. Также стоит отметить, что существуют модификации с высоким осевым ходом. Большинство устройств делается с широким выходом. Отверстия могут располагаться на большом расстоянии от арматуры.

В среднем ширина входного отверстия равняется 70 мм. Показатель жесткости у моделей стартует от 400 Н. При этом параметр давления на выходе равняется примерно 2.5 бара. Если рассматривать компенсатор КСО, у него предусмотрено пять отверстий. Параметр осевого хода располагается на уровне 40 мм. Масса модели составляет ровно 10 кг. Сталь в данном случае применяется с маркировкой 12Х. Максимальная допустимая температура указанного компенсатора составляет 430 градусов.

Осевые модели

Компенсатор сильфонный (осевой) делается с длинным держателем. Стойки у модификаций производятся с широким выходом. Модели замечательно подходят для Сталь в устройствах применяется разных типов. Современные модели производятся с отверстиями. Показатель предельного давления у компенсаторов равняется не менее 4 бар. Вход, как правило, предусмотрен на 55 мм. Коэффициент жесткости в среднем равняется 340 Н. Также стоит отметить, что у моделей высокая допустимая температура. Если говорить про минусы, то внимания заслуживает тот факт, что устройства много весят. Также социалисты отметают, что модели не могут использоваться для алюминиевых труб.

Сила сжатия в данном случае сильно большая. Если рассматривать компенсатор сильфонный (осевой) серии РК, у него предусмотрен выход на 56 мм. В данном случае масса изделия равняется 12 кг. Дополнительно специалисты указываются на низкую проводимость устройства. Минимальная допустимая температура компенсатора располагается на отметке -20 градусов. Устройство замечательно подходит для теплоизоляционных труб. Крепление устройства производится при помощи жгута. Зажим в данном случае подбирается на два винта. Отверстия в представленной модификации отсутствуют. Входное отверстие используется на 28 мм. Параметр жесткости устройства равняется 300 Н. Освевой ход для 1000 циклов составляет примерно 400 мм. Максимальная допустимая температура у компенсаторов этого типа - 340 градусов. Однако в данном случае все зависит от производителя и маркировки используемой стали.

Назначение фланцевых устройств

Фланцевые сильфонные компенсаторы для тепловых сетей подходят для труб разного диаметра. Наиболее часто устройства используются для соединения стальных трубок. Многие модификации производятся из стали серии 17 ГС. Большинство устройств обладает широким выходом. Максимальная допустимая температура компенсаторов равняется 340 градусов.

Также надо отметить, что существуют модели с узкими каналами. Арматуры у них всегда делаются из стали. Некоторые устройства производятся с уплотнителями. Выход у них, как правило, устанавливается диаметром от 50 мм. Осевой ход для 50 циклов равняется не более 80 мм. Масса обычной модели составляет приблизительно 8 кг. Минимальная допустимая температура компенсаторов располагается на уровне -20 градусов.

Сдвиговые устройства

Сдвиговые сильфонные компенсаторы для тепловых сетей обладают подвижными наконечниками. Модификации производятся разных размеров. Современные модели делаются с широким держателем. Также надо отметить, с узким выходом. В среднем диаметр трубки равняется 80 мм. Осевой ход при 100 циклах достигает максимум 20 мм. Масса обычной модели колеблется в районе 8 кг. Предельное давление при этом составляет около 3.3 бара. Существуют модификации с наконечниками и без них. Также надо отметить, что на рынке представлены компактные модификации. Если рассматривать модель СКУ ППУ, у нее имеется выход с трубкой. Сталь, как правило, применяется серии 17Г. Максимальная допустимая температура у компенсаторов этого типа составляет 450 градусов.

Угловые модели

Угловые сильфонные компенсаторы для тепловых сетей в последнее время считаются очень популярными. У них используется одна стойка. Сталь применяется разных серий. Стандартные модели делаются с короткими держателями. Также надо отметить, что есть модификации с широким выходом для теплоизоляционных труб. Входное отверстие у таких моделей равняется примерно 65 мм. Осевой ход при 50 циклах составляет не более 80 мм. Масса обычной модели равняется примерно 7 кг.

Также надо отметить, что существуют устройства с отверстиями. Предельное давление у них достигает 3.5 бар. Минимальная допустимая температура у компенсаторов этого типа стартует от -20 градусов. Еще есть модификации с короткими трубками, которые мало весят. Если рассматривать сильфонный компенсатор ППУ, у него имеется пять отверстий. При этом масса модификации составляет ровно 10 кг. Коэффициент жесткости в устройстве достигается 322 Н.

Назначение карданных устройств

Карданные модели замечательно подходят для тепловых сетей. При этом трубы фиксируются очень быстро. Некоторые модификации делаются с короткой стойкой. Держатели у них крепятся по сторонам. Также надо отметить, что есть устройства с широким выходом. Отверстия у них располагаются на стойке. Масса стандартного устройства составляет 7 кг. Коэффициент жесткости зависит от многих факторов. Также надо отметить, что есть большие модификации, которые делаются из стали. У них применяется выход диаметром от 80 мм. Сталь может применяться серии 17Г.

Теплоизолированные модификации

Теплоизолированные модели пользуются большим спросом. У них применяется очень жесткая стойка. Также надо отметить, что есть модели с короткими стойками. При этом трубки устанавливаются с широким выходом. Масса равняется 12 кг. Также надо отметить, что выход используется диаметром от 60 мм. Данные устройства отлично подходят для теплоизоляционных изогнутых труб.

Держатели применяются разной формы. Коэффициент жесткости у модификаций стартует от 400 Н. Изоляция сильфонных компенсаторов выполнена с уплотнителем. Некоторые модели способны похвастаться своей прочностью. Минимальная допустимая температура стандартного компенсатора составляет -10 градусов. Отверстия в данном случае находятся на стойке. Наиболее распространенными считаются устройства с одним выходом. Максимальная допустимая температура у компенсаторов этого типа равняется 340 градусов. Также есть модели с высоким коэффициентом жесткости. В среднем масса у таких изделий составляет 15 кг. Сталь при этом применяется серии 18Г.

Блочные модели

Блочные модификации являются очень распространенными и соответствуют стандартам СНИП (тепловые сети). Сталь у них применяется серии 09ГС. Также есть модификации с удлинителями. Устройства часто применяются для изогнутых труб. Осевой ход при 50 циклах в среднем равняется 70 мм. Масса стандартной модели составляет 9 кг. Выход в устройствах стартует от 70 мм. Обычная модель делается с одной трубкой.

Есть модификации с длинной стойкой. Существуют устройства с 4 и 8 отверстиями. Минимальная допустимая температура у компенсаторов этого равняется 60 мм. Если рассматривать компенсаторы в у них применяется четыре отверстия. Масса устройства составляет 9 кг. Коэффициент жесткости у представленной модификации располагается на уровне 430 Н.

Стартовые модификации

Стартовые устройства выделяются наличием широкого выхода. У моделей стойки деются разной толщины. Также надо отметить, что производятся модификации с жесткими фиксаторами. Большинство моделей делаются малого размера. В среднем стандартная модификация весит не более 8 кг. Также надо отметить, что сталь, как правило, применяется серии 17Г. Диаметр входного отверстия у моделей не превышает 65 мм. Коэффициент жесткости стартует от 300 Н. Осевой ход у большинства устройства не превышает 20 мм.

Поворотные модели

Поворотные модели, которые соответствуют принятым стандартам СНИП (тепловые сети), хорошо подходят для соединения изогнутых труб. У моделей производятся стойки разной длины. Существуют модификации на 4 и 8 отверстий. Если рассматривать устройства серии РК, у них имеется длинная трубка. Коэффициент жесткости не превышает 340 Н. Осевой ход при 50 циклов равняется 50 мм. Выходное отверстие в устройстве составляет 45 мм. Всего у модели имеется четыре отверстия. Минимальная допустимая температура компенсатора составляет -10 градусов.

Также есть модификации с узким выходом. У них имеется две стойки. Фиксация устройства осуществляется на винтах. Модели неплохо подходят для изогнутых труб. Также стоит отметить, что существуют компенсаторы на широких подставках. В среднем диаметр выхода равняется 60 мм. При этом коэффициент жесткости стартует от 320 Н. Специалисты говорят о том, что модели очень просты в установке. Дополнительно важно учитывать высокий параметр допустимой температуры.

Сильфонный компенсатор представляет одну из разновидностей устройств, препятствующих возникновению повышенного механического напряжения элементов трубопроводов вследствие температурных изменений их линейных размеров, вибраций и гидроударов. Компенсатор является неотъемлемой частью трубопроводных систем, транспортирующих среду с повышенной температурой и давлением. Выбор мест установки компенсаторов и их типов производится на стадии проектирования сети, по результатам расчета режимов ее работы.

В основе конструкции находится сильфон – тонкостенная гофрированная оболочка, способная выдерживать многократные осевые и угловые деформации.

Интересный факт. Возникновению термина «Сильфон» мы обязаны Уэстону Фултону, метеорологу университета Теннесси. В 1902 году, сконструировав термодинамический прибор, он использовал в нем известную ныне конструкцию, назвав ее «Sylphon», в честь древнескандинавской богини погоды. После этого возникло множество патентов на изобретения, использующие сильфон в самых разных областях техники.

Принцип действия

Работа трубопроводов систем теплоснабжения сопряжена с температурными колебаниями, обусловленными внешними погодными условиями и изменением режима тепловой сети. В результате колебания температуры, стальные трубы изменяют линейные размеры в осевом направлении (в длину) и в поперечном (в ширину).

Вследствие того, что трубопровод является жесткой сварной конструкцией, тепловое расширение и сжатие отдельных его участков вызывает возникновение значительных механических усилий по всей его длине. В зависимости от пространственной конфигурации сети, в отдельных местах труба может испытывать нагрузку на сжатие, растяжение, изгиб, сдвиг или кручение.

Кроме температурного фактора воздействия, трубопроводы испытывают вибрационные нагрузки, вызываемые работой турбинного, насосного и другого оборудования, имеющего вращающиеся элементы. При отсутствии компенсирования этих явлений, деформация отдельных участков может переходить из упругой области в пластичную зону. В результате этого, в наиболее нагруженных участках накапливаются усталостные изменения структуры металла, что приводит к быстрому его разрушению и разгерметизации трубопровода.

Сильфонный компенсатор, врезанный в трубопровод, способен испытывать значительные упругие деформации благодаря гофрированной конструкции. Усилия, вызывающие расширение и сжатие сильфона, значительно меньше, чем у основной трубы, по этой причине, наибольшие линейные перемещения происходят именно в компенсаторе. Трубы системы, установленные на скользящие опоры, свободно перемещаются по ним в осевом направлении, деформируя компенсатор. Это защищает трубопровод от опасных перегрузок.

На рисунке 1 продемонстрированы различные виды деформации сильфонного элемента компенсатора, имеющие место при воздействии усилий, возникающих в трубных системах.

а – Исходное состояние элемента в ненагруженном положении,

б – Уменьшение длины элемента в результате приложения внешнего сжимающего усилия,

в – Удлинение сильфона вследствие усилия, направленного на растяжение,

г – Поворот оси сильфона на некоторый угол, вызванный нагрузкой на изгиб,

д – Сдвиговая деформация, вызванная параллельным смещением осей стыкуемых труб.

Технические параметры

К основным техническим характеристикам данного вида компенсаторов относятся:

Рабочий ход, то есть рабочая величина осевой или угловой упругой деформации.

Внутренний диаметр или условный проход.

Максимальное рабочее давление.

Допустимая температура эксплуатации.

Среда, для работы с которой предназначено устройство.

Скорость перемещения среды в трубной системе.

Способ соединения с трубопроводом (фланцевый или под приварку).

Основные преимущества

Широкое применение этих устройств обусловлено целым рядом их преимуществ:

Небольшие габаритные размеры, позволяющие монтировать их на любых участках трубопроводов, независимо от варианта прокладки.

Простое обслуживание, отсутствие необходимости оборудовать специальные камеры.

Продолжительный срок службы, равный периоду эксплуатации трубопровода.

Область применения

Сильфонные компенсаторы используются в таких областях, как энергетика, металлургия, нефтепереработка, коммунальное хозяйство. Их применение преследует следующие цели:

Компенсирование температурных расширений элементов трубопроводов.

Предотвращение механического разрушения труб вследствие деформации.

Компенсирование ошибок, допущенных в процессе монтажа и приведших к несоосности трубных систем.

Нейтрализация вибрационных нагрузок, источником которых служит работающее оборудование и поток транспортируемого энергоносителя.

Обеспечение герметичности транспортных трубопроводов.

Выполнение соединений труб различного типа и диаметра

Технология изготовления

Самой ответственной частью конструкции компенсатора является сильфон. Материалом для его изготовления служит нержавеющая сталь, придающая изделию высокую коррозионную и температурную стойкость. Сначала тонкие листы стали свариваются продольно, затем на полученном цилиндре формируются гофры. Для обеспечения максимальной гибкости, стенки сильфона делают многослойными. Такая конструкция увеличивает сопротивление давлению, сохраняя при этом легкость деформирования.

Остальные элементы конструкции компенсатора, присоединительная и ограничительная арматура, выполняются из углеродистых сталей.

Разновидности

В зависимости от вида нагрузки, возникающей в месте установки компенсатора, выбирается его вид, рассчитанный на определенный характер деформации упругого элемента. Различают сильфонные компенсаторы следующих видов:

Осевой.

Угловой.

Карданный.

Разгруженный сдвиговый.

Стартовый.

Осевой компенсатор (КСО) устанавливается на прямолинейные участки трубопроводов между двумя неподвижными опорами, промежуточными или концевыми. Он предназначен для компенсирования деформации в осевом направлении.

Осевой компенсатор обладает высокой надежностью. Все виды отказов данного устройства связаны с неправильным его применением или ошибками, допущенными при монтаже:

Нарушение инструкции при размещении компенсатора.

Использование компенсатора в условиях появления несоосности, и как следствие, возникновение повышенных поперечных нагрузок.

Попадание посторонних предметов или грунта в пространство между гофрами.

Низкое качество направляющих опор трубопровода, вызывающее просадку и возникновение осевых сдвигов.

Коррозия сильфонных оболочек, вызванная повышенным содержанием хлоридов в перекачиваемой среде.

Угловой компенсатор используются для осуществления поворотных перемещений осей трубопроводов. Как правило, он устанавливается в местах изгиба трубопровода или соединения разных трубопроводов под углом. Благодаря характеру деформации компенсатора, его также называют поворотным.

Данный вид компенсаторов оборудуется шарниром (фото 3), позволяющим совершать перемещения только в одной плоскости. Такой шарнир служит защитой сильфона от скручивания. Конструкция углового компенсатора не позволяет ему совершать осевые перемещения.

Карданный компенсатор совершает угловые перемещения в любой плоскости.

В его конструкцию входят два шарнира в перпендикулярных плоскостях. Этот компенсатор также способен деформироваться в осевом направлении, что обуславливает его широкое применение.

Сдвиговый компенсатор устанавливается в тех местах трубопроводов, где возможно возникновение усилий, направленных на взаимный сдвиг осей отдельных участков трассы. Одно из типовых применений этого вида компенсаторов – в местах ввода трубопроводов в здания. Эта мера позволяет избежать повреждения труб в результате неизбежной осадки строительных конструкций. С помощью данного компенсатора также возможно соединение участков сети, построенных с взаимным отклонением осей, то есть, компенсирование ошибок монтажа труб.

Чаще всего, устройства этого типа имеют два сильфонных элемента, разделенных промежуточной трубой, поэтому называются двухсекционными.

Стартовый компенсатор по конструкции является осевым. Отличие заключается в том, что сильфон покрыт снаружи кожухом, состоящим из двух половин. При осевой деформации, части кожуха движутся друг относительно друга.

Монтаж стартового компенсатора в предизолированный ППУ трубопровод происходит следующим образом. Ненагруженный компенсатор врезается в трубу. Труба заполняется водой, имеющей температуру 50% от рабочей величины. При этом, температурное расширение труб вызывает осевое сжатие сильфона компенсатора. Температуру воды поддерживают постоянной в течение суток. После этого, две половины кожуха деформированного компенсатора сваривают между собой. Затем соединяют проводники сигнальной системы изолированных труб, после чего корпус стартового компенсатора покрывается изоляцией. Такая процедура проделывается на всех прямолинейных участках между опорами.

При применении стартового компенсатора теплотрасса эксплуатируется в состоянии предварительного напряжения. Такой способ монтажа имеет ряд недостатков:

Монтаж может быть закончен только после начала отопительного сезона.

При производстве ремонта трубопровода, стартовый компенсатор необходимо менять.

Заключение

Использование компенсаторов является основным решением в мировой практике проектирования различных трубных систем. Сильфонные компенсаторы занимают одно из ведущих мест в ряду устройств аналогичного назначения. Их применение относится к наиболее эффективным методам борьбы с последствиями деформации в трубопроводных системах.

1.1. Изделия допускается применять в районах строительства с расчетной наружной температурой для проектирования систем отопления не ниже минус 40°С. Сейсмичность районов строительствам не более девяти баллов по шкале Рихтера.

1.2. Изделия допускается применять при содержании хлоридов в сетевой воде не более 250 мг/кг.

1.3. Изделия должны устанавливаться на прямолинейных участках трубопроводов, ограниченных неподвижными опорами. Между неподвижными опорами допускается размещать только одно изделие.

Допускается отклонение от прямолинейности в плане и профиле с обязательной установкой направляющих опор в тех же местах не менее двух перед каждым компенсирующим устройством.

1.4. Способ присоединения к трубопроводу - сварка.

1.5. При любых способах прокладки трубопроводов, кроме подземного бесканального, установку компенсирующих устройств следует предусматривать, как правило, у одной из неподвижных опор.

1.6. На бесканальных подземных тепловых сетях размещение изделия должно осуществляться в середине участка трубопровода, ограниченного неподвижными опорами.

1.7. До и после компенсирующего устройства необходимо устанавливать направляющие опоры, исключающие перемещение трубопроводов в радиальном направлении.

При бесканальной прокладке трубопровода установка направляющих опор не требуется.

Примеры схем размещения сильфонного компенсирующего устройства, направляющих и неподвижных опор приведены на рисунке:

6.8. На участках трубопроводов с сильфонными компенсирующими устройствами не допускается применение подвесных опор.

6.9. При выборе неподвижных опор должны учитываться следующие факторы:

Распорное усилие компенсатора;

Усилие жесткости компенсатора;

Трение в направляющих и скользящих опорах;

Величина центробежной силы, возникающей при перегибе трубопровода.

Расчет нагрузок на концевые и промежуточные неподвижные опоры при различных способах установки сильфонных компенсирующих устройств выполняется на этапе проектирования тепловой сети и приводится в специальной литературе.

6.10. Максимальное расстояние между неподвижными опорами трубопровода определяется по формуле:

где 0,9- коэффициент запаса, учитывающий неточности расчета и погреш-

ности монтажа;

Компенсирующая способность компенсатора, мм

a - средний коэффициент линейного расширения трубной стали при на

греве от 0°С до t°С, мм/м°С;

t - расчетная температура сетевой воды в подающем трубопроводе, °С;

t РО -расчетная температура наружного воздуха для проектирования систем

отопления, принимаемая равной средней температуре воздуха наибо-

лее холодной пятидневки по главе СНиП «Строительная климатология

и геофизика», °С.

1.8. Изделия не требуют обслуживания в процессе эксплуатации и относятся к классу неремонтируемых изделий, для них не требуется сооружения специальных камер, а при наземной прокладке - площадок для обслуживания.

Указания по монтажу.

2.1. Монтаж изделий производится в соответствии с проектом трубопровода, выполненным проектной организацией.

2.2. Перед монтажом изделия должны быть проверены на соответствие их технических характеристик проекту тепловой сети, а также на отсутствие механических повреждений.

2.3. При перемещении компенсирующих устройств в период монтажа должны быть приняты меры, предохраняющие изделие от толчков, ударов и исключающие загрязнение или затопление грунтовыми водами его внутренней полости.

2.4. При выполнении сварочных работе торцы изоляции компенсирующего устройства следует защищать жестяными разъемными экранами толщиной 0,8…1 мм для предупреждения ее возгорания.

Монтаж изделий разрешается производить при температуре воздуха не ниже минус 30°С.

2.5. Перед приваркой изделия к трубопроводу проверяются отклонения соединений изделия с трубопроводом, которые не должны превышать следующих значений: допуск соосности патрубков - 2 мм;

допуск параллельности торцов присоединительных патрубков и присоединяемых труб - 3 мм.

Максимальный сварочный зазор между патрубком и трубопроводом - 2 мм.

2.6. Изделие следует устанавливать на теплопроводах так, чтобы направление стрелки (при ее наличии) на корпусе компенсирующего устройства совпадало с направлением движения теплоносителя.

2.7. Изделия монтируются на трубопроводе с предварительной растяжкой.

Длина компенсатора при монтаже Lмонт., мм определяется по формуле:

L строит. - строительная длина компенсатора в состоянии поставки, мм;

Компенсирующая способность компенсатора, мм;

A - коэффициент линейного расширения трубной стали, приме-

няемый 0,012 мм/м °С;

t наим . - наименьшая температура воздуха при эксплуатации, °С;

L - длина участка компенсатора между неподвижными опорами,

на котором монтируется компенсатор, м.

Установку монтажной длины компенсирующего устройства производит монтажная организация.

Участки трубопровода до и после компенсирующего устройства должны быть смонтированы и закреплены в неподвижных опорах таким образом, чтобы расстояние между концами труб в месте установки изделия соответствовало монтажной длине L монт. при температуре окружающего воздуха момента закрепления трубопровода во второй неподвижной опоре; температура окружающего воздуха и расстояние между концами закрепленных труб должны быть зафиксированы актом;

Компенсирующее устройство приваривается к одному из участков трубопровода;

На свободный присоединительный патрубок изделия и свободный конец трубопровода устанавливается универсальное монтажное приспособление, с помощью которого компенсатор изделия растягивают до стыка с трубопроводом, и стык заваривают;

С изделия снимают монтажное приспособление.

При растяжении компенсатора необходимо обеспечить одинаковые перемещения присоединительных патрубков относительно торцов изделия.

При невозможности установки изделия в середине прямолинейного участка теплопровода между неподвижными опорами допускается его установка в любом месте прямолинейного участка теплопровода. Для этого при растяжении компенсатора необходимо обеспечить перемещения присоединительных патрубков относительно торцов компенсирующего устройства обратно пропорциональными длинами участков теплопровода между изделием и неподвижными опорами.

2.9. Соединение проводников-индикаторов изделия с общей сигнальной системой необходимо производить после окончания сварочных работ перед изоляцией стыков присоединительных патрубков с теплопроводом. Проводники-индикаторы нигде не должны касаться металла труб.

сильфонное компенсирующее устройство
концевая неподвижная опора