Большая энциклопедия нефти и газа. Советские бумажные конденсаторы

Особенности конденсаторов разных типов. Применение. Типовые схемы (10+)

Электрический конденсатор. Принцип работы, применение, классификация - Виды конденсаторов. Типовые схемы

Воздушные конденсаторы

Диэлектриком в таких конденсаторах выступает воздух. Достоинства: простота изготовления переменных конденсаторов, предназначенных для механической регулировки емкости, рассчитанных на постоянные механические воздействия. Недостатки: нестабильность, зависимость от температуры и влажности среды, ненадежность, большие габариты, маленькая емкость на единицу объема, относительно низкая электрическая прочность, ограниченная пробоем воздуха между пластинами. Такие конденсаторы бывают обычно только переменные. Применять эту технологию в других случаях признано нецелесообразным.

Бумажные конденсаторы

Диэлектриком является бумага, пропитанная трансформаторным маслом. Достоинства: высокая надежность и электрическая прочность. Для конденсаторов, рассчитанных на высокое напряжение - достаточная высокая емкость на единицу объема, низкий ток утечки. Многие силовые конденсаторы делают именно по такой технологии: складывают две пластины с бумагой между ними, сворачивают в рулон, помещают рулон в банку, банку заполняют трансформаторным маслом и запаивают. Недостатки: большой вес, большая собственная индуктивность и собственное сопротивление.

Электролитические (оксидные) конденсаторы

Диэлектриком является слой оксидов на поверхности активного металла (обычно, алюминия). Конденсатор производится путем помещения ленты из активного металла в электролит. На поверхности металла сразу образуется пленка прочного окисла. Она изолирует металл от электролита. Особенностью большинства электролитических конденсаторов является полярность. Они держат расчетное напряжение при одной полярности, но быстро разрушаются при другой полярности напряжения. Это вызвано особенностями химических процессов между металлом пластины и электролитом. Для пленки оксида характерно постепенно разрушаться, трескаться. При правильной полярности такие микротрещины моментально затягиваются новым оксидом. При неправленой полярности сразу начинает восстанавливаться металл. Трещина расползается по всей пластине. Существуют специальные приемы борьбы с этим эффектом, так что в продаже есть неполярные электролитические конденсаторы, но они дороже полярных. Достоинства: высокая емкость на единицу объема, единицу массы. Недостатки: полярность, низкая надежность и электрическая прочность, высокие потери, токи утечки, шумы, нестабильность, быстрый износ, потеря свойств со временем, высокие внутренние индуктивность и сопротивление.

Слюдяные конденсаторы

Диэлектрик - слюда. Такие конденсаторы используют тот факт, что слюда сама способна накапливать энергию. Ее диэлектрическая проницаемость намного больше единицы, так что при меньших габаритах удается накопить больше энергии. Достоинства: высокая емкость на единицу объема, единицу массы, высокая электрическая прочность. Недостатки: нелинейность, нестабильность параметров, зависимость емкости от силы тока, высокая цена. Слюда вообще ведет себя в электрическом поле странно.

Керамические конденсаторы

Конденсаторы на основе керамики. Достоинства: низкие шумы, высокая температурная и временная стабильность, надежность, низкие потери, электрическая прочность. Недостатки: плохие массогабаритные характеристики.

Пленочные конденсаторы

Конденсаторы на основе разнородных синтетических пленок. Такие конденсаторы могут обладать самыми разными свойствами в зависимости от применяемых пленок. Их чаше всего используют электрических схемах.

Полипропиленовые, тефлоновые, ... конденсаторы

Диэлектриком является полипропилен, тефлон или другие специальные полимеры высокой электрической прочности и сопротивления. Такие конденсаторы имеют очень высокое сопротивление диэлектрика. Саморазряд в них идет очень медленно. Они имеют очень маленький уровень шума.

Конденсаторы классифицируются по точности маркировки. Есть серии конденсаторов с маркировкой емкостью с точностью 30%, 20%, 10%, 5%, 1% и т. д.

Реактивное сопротивление конденсатора

Конденсатор не обладает классическим омическим сопротивлением. Если к конденсатору приложить фиксированное напряжение, что ток через него течь не будет (за исключением совсем небольшого тока утечки). Но если к конденсатору приложено переменное напряжение, то за счет периодической зарядки и разрядки пластин, в цепи появится ток.

При чем ток через конденсатор не зависит от напряжения в текущий момент, а зависит от скорости изменения напряжения, то есть от производной функции зависимости напряжения от времени. Так, если на конденсатор подано синусоидальное напряжение, то ток будет иметь форму косинуса. Именно благодаря такому фазовому сдвигу на конденсаторе не рассеивается тепловая энергия.

Кстати отсутствие рассеивания тепловой энергии на конденсаторе является некоторой иллюзией. Во-первых, через конденсатор протекает ток, этот ток протекает также через цепи питания, провода и нагревает их. Во-вторых, у самого конденсатора есть внутреннее сопротивление пластин и выводов. На нем тоже выделяется тепло. У всех конденсаторов есть ограничения по максимальному току, особенно это характерно для электролитических конденсаторов, которые обладают большой емкостью и большим сопротивлением пластин (помните, что в электролитических конденсаторах одной из пластин является электролит, который ток проводит довольно плохо). Превышение этого тока приводит к нагреву конденсатора, снижению надежности, старению, пробою или отгоранию проводников.

Если рассматривать синусоидальное напряжение и оперировать понятиями действующего напряжения и тока, то можно написать формулу, напоминающую закон Ома для резисторов. [Действующий ток через конденсатор ] = [Действующее напряжение на конденсаторе ] / [Z ], где [Z ] = 1 / (2 * ПИ * [Частота напряжения ] * [Емкость конденсатора ]). Эта формула полезна при расчете конденсаторных делителей переменного напряжения и фильтров высших и низших частот.

Особенности применения конденсаторов в схемах

Конденсаторы можно соединять последовательно и параллельно.

[Емкость параллельно соединенных конденсаторов ] = [Емкость C1 ] + [Емкость C2 ]

[Емкость последовательно соединенных конденсаторов ] = 1 / (1 / [Емкость C1 ] + 1 / [Емкость C2 ])

На рисунке приведены типовые схемы на конденсаторах. (А) - Емкостный делитель переменного напряжения. [Напряжение на нижнем конденсаторе ] = [Входное напряжение ] * [Емкость верхнего конденсатора ] / ([
Как рассчитать пуш-пульный импульсный преобразователь напряжения. Как подавить п...

Корректор коэффициента мощности. Схема. Расчет. Принцип действия....
Схема корректора коэффициента мощности...

Катушка индуктивности. Изготовление. Намотка. Изготовить. Намотать. Мо...
Изготовление катушки индуктивности. Экранирование обмоток...


Как проектировать понижающий импульсный преобразователь напряжения. Шаг 3. Как п...


Конденсаторы представляют собой электронные компоненты, используемые для хранения электрического заряда. Конденсаторы могут иметь различную форму, но всегда похожи друг на друга внутри.

Конденсатор, как правило, состоит из двух электропроводящих пластин (электродов), которые изолированы друг от друга диэлектриком.
Величина (емкость) накопленного заряда определяется поверхностью электродов и расстояния между ними. Большая площадь и меньшее расстояние обеспечивает более высокую емкость.

Для расчета емкости мы используем следующее соотношение:

С = e х A / d

  • C = емкость в фарадах
  • A = площадь в м2
  • d = расстояние между электродами
  • е = диэлектрическая проницаемость диэлектрика

Единицей измерения емкости является фарад. Один фарад — это такая емкость, при которой заряд в 1 кулон создает напряжение между обкладками в 1 вольт.

Обозначение конденсатора на схемах:

Для того, чтобы лучше понять взаимосвязь между параметрами конденсатора, рассмотрим следующую упрощенную эквивалентную схему:


  • Rs — последовательное сопротивление выводов и электродов, электролита, а также потери в диэлектрике.
  • Ls — индуктивность выводов и электрод.
  • C – емкость.
  • Rр — сопротивление изоляции в диэлектрике.

Виды конденсаторов

Постоянные конденсаторы

Бумажные конденсаторы (KLMP, KSMP) в большинстве заменены пластиковыми. Несмотря на высокую диэлектрическую проницаемость бумажных конденсаторов они крупнее и дороже, чем пластиковые.

Преимущества бумажных конденсаторов — устойчивость к импульсному напряжению, низкое содержание углерода (приблизительно 3%, для сравнения у пластиковых 40…70%) приводит к хорошему самовосстановлению и небольшой риск возгорания. В настоящее время бумажные конденсаторы используются исключительно для подавления помех.

Конденсаторы полистирольные и полиэфирные (KSF, MKSE, MKSF, MKSP) конденсаторы изготавливаются из металлизированной полиэфирной пленки.

Слюдяные конденсаторы (КСО) многослойные, построены так же, как и керамические конденсаторы, электрод может быть выполнен из серебра. Слюда является минералом, добываемым в шахтах Индии, где его качество особенно высоко.

Этот материал очень твердый и прочный, отличается тем, что он разделяется на тонкие пластины, которые могут быть оснащены электродами.
Электрические свойства, например, сопротивление изоляции, потери и стабильность вполне сопоставимы с лучшими искусственными диэлектриками и керамикой.

Слюдяные конденсаторы, тем не менее, являются относительно крупными и дорогими, в результате чего в значительной степени подлежат замене полипропиленовыми конденсаторами. Слюдяные конденсаторы часто используется в высокочастотных схемах, которые требуют не только низкие потери, но и высокую стабильность частоты и температуры. Они изготавливаются емкостью от 1 пФ и до 0,1 мкФ.

Керамические конденсаторы (KCP, КФП, КЧР, KFR) производятся из одной или нескольких керамических пластин с нанесением металлического напыления (электроды). Керамический конденсатор с одним слоем диэлектрика называется «однослойным». Когда конденсатор состоит из нескольких слоев диэлектрика, его называют многослойный. Керамические конденсаторы изготавливаются емкостью от 0,5 пФ и до нескольких сотен микрофарад. Конденсаторы емкостью больше чем 10 мкФ достаточно редки из-за высокой цены.

Электролитические конденсаторы (KEN, KEO, SME, T, UL, KERMS) имеют алюминиевые или танталовые электроды. Поверхность анода (положительный полюс) покрыт очень тонким слоем оксида, который действует в качестве диэлектрика. Для того чтобы уменьшить расстояние между оксидным слоем и катодом (отрицательный полюс) используют электролит с низким сопротивлением.

Алюминиевые влажные электролитические конденсаторы . Они содержат электролит, состоящий из борной кислоты, этиленгликоля, соли и растворителя. Электроды вытравливаются в кислотной ванне, чтобы получить пористую поверхность. Таким образом, поверхность возрастает до 300 раз.

Танталовые конденсаторы . Они имеют в качестве диэлектрика оксид тантала с превосходными электрическими свойствами. Анод конденсатора выполнен путем спеканием порошка тантала. Около 50% объема состоит из пор, в результате чего внутренняя поверхность в 100 раз больше, чем внешняя.

После нанесения покрытия на слой оксида тантала, образующегося в кислотной ванне, конденсатор погружают в раствор диоксида марганца, заполняющий все поры. Контакт с катодом, который состоит из электропроводной серебряной краски, получается путем покрытия слоем углерода в виде графита.

Переменные конденсаторы

Эти конденсаторы имеют переменную емкость с воздушным диэлектриком (AM, FM) или керамические оборотные конденсаторы.
Воздушный конденсатор выполнен из двух параллельных сборок пластин (ротора и статора), которые изменяют свое положение из-за чего меняется и емкость такого конденсатора.

Параметры конденсаторов

  • Номинальная емкость — значение емкости. Фактическая емкость на практике равна номинальной емкости с учетом допусков связанных с изменением диэлектрической проницаемости диэлектрика вследствие изменения окружающей температуры. Значения допусков зависят от типа диэлектрика.
  • Номинальное напряжение — максимально допустимое напряжение, которое может быть на конденсаторе. Это напряжение, как правило, является суммой постоянного напряжения и пикового значения переменного напряжения.
  • Сопротивление изоляции конденсатора — это электрическое сопротивление конденсатора постоянному току определенного напряжения. Оно характеризует качество диэлектрика и качество его изготовления.

— это электрический (электронный) компонент, построенный из двух проводников (обкладок), разделенные между собой слоем диэлектрика. Различают много видов конденсаторов и в основном они делятся по материалу самих обкладок и по виду используемого диэлектрика между ними.

Виды конденсаторов

Бумажные и металлобумажные конденсаторы

У бумажного конденсатора диэлектриком, разделяющим фольгированные обкладки, является специальная конденсаторная бумага. В электронике бумажные конденсаторы могут применяться как в цепях низкой частоты, так и в высокочастотных цепях.

Хорошим качеством электрической изоляции и повышенной удельной емкостью обладают герметичные металлобумажные конденсаторы, у которых вместо фольги (как в бумажных конденсаторах) используется вакуумное напыление металла на бумажный диэлектрик.

Бумажный конденсатор не имеет большую механическую прочность, поэтому его начинку помещают в металлический корпус, служащий механической основой его конструкции.

Электролитические конденсаторы

В электролитических конденсаторах, в отличии от бумажных, диэлектриком является тонкий слой оксида металла, образованный электрохимическим способом на положительной обложке из того же металла.


Вторую обложку представляет собой жидкий или сухой электролит. Материалом, создающим металлический электрод в электролитическом конденсаторе, может быть, в частности, алюминий и тантал. Традиционно, на техническом жаргоне «электролитом» называют алюминиевые конденсаторы с жидким электролитом.

Но, на самом деле, к электролитическим так же относятся и танталовые конденсаторы с твердым электролитом (реже встречаются с жидким электролитом). Почти все электролитические конденсаторы поляризованы, и поэтому они могут работать только в цепях с постоянным напряжением с соблюдением полярности.

В случае инверсии полярности, может произойти необратимая химическая реакция внутри конденсатора, ведущая к разрушению конденсатора, вплоть до его взрыва по причине выделяемого внутри него газа.

К электролитическим конденсаторам так же относится, так называемые, суперконденсаторы (ионисторы) обладающие электроемкостью, доходящей порой до нескольких тысяч Фарад.

Алюминиевые электролитические конденсаторы

В качестве положительного электрода используется алюминий. Диэлектрик представляет собой тонкий слой триоксида алюминия (Al 2 O 3),

Свойства:

  • они работают корректно только на малых частотах
  • имеют большую емкость

Характеризуются высоким соотношением емкости к размеру: электролитические конденсаторы обычно имеют большие размеры, но конденсаторы другого типа, одинаковой емкости и напряжением пробоя были бы гораздо больше по размеру.

Характеризуются высокими токами утечки,
имеют умеренно низкое сопротивление и индуктивность.

Танталовые электролитические конденсаторы

Это вид электролитического конденсатора, в которых металлический электрод выполнен из тантала, а диэлектрический слой образован из пентаоксида тантала (Ta 2 O 5).

Свойства:

  • высокая устойчивость к внешнему воздействию,
  • компактный размер: для небольших (от нескольких сотен микрофарад), размер сопоставим или меньше, чем у алюминиевых конденсаторов с таким же максимальным напряжением пробоя,
  • меньший ток утечки по сравнению с алюминиевыми конденсаторами.

Полимерные конденсаторы

В отличие от обычных электролитических конденсаторов, современные твердотельные конденсаторы вместо оксидной пленки, используемой в качестве разделителя обкладок, имеют диэлектрик из полимера. Такой вид конденсатора не подвержен раздуванию и утечки заряда.

Физические свойства полимера способствуют тому, что такие конденсаторы отличаются большим импульсным током, низким эквивалентным сопротивлением и стабильным температурным коэффициентом даже при низких температурах.

Полимерные конденсаторы могут заменять электролитические или танталовые конденсаторы во многих схемах, например, в фильтрах для импульсных блоков питания, или в преобразователях DC-DC.

Пленочные конденсаторы

В данном виде конденсатора диэлектриком является пленка из пластика, например, полиэстер (KT, MKT, MFT), полипропилен (KP, MKP, MFP) или поликарбонат (KC, MKC).

Электроды могут быть напыленными на эту пленку (MKT, MKP, MKC) или изготовлены в виде отдельной металлической фольги, сматывающейся в рулон или спрессованной вместе с пленкой диэлектрика (KT, KP, KC). Современным материалом для пленки конденсаторов является полифениленсульфид (PPS).

Общие свойства пленочных конденсаторов (для всех видов диэлектриков):

  • работают исправно при большом токе
  • имеют высокую прочность на растяжение
  • имеют относительно небольшую емкость
  • минимальный ток утечки
  • используется в резонансных цепях и в RC-снабберах

Отдельные виды пленки отличаются:

  • температурными свойствами (в том числе со знаком температурного коэффициента емкости, который является отрицательным для полипропилена и полистирола, и положительным для полиэстера и поликарбоната)
  • максимальной рабочей температурой (от 125 °C, для полиэстера и поликарбоната, до 100 °C для полипропилена и 70 °С для полистирола)
  • устойчивостью к электрическому пробою, и следовательно максимальным напряжением, которое можно приложить к определенной толщине пленки без пробоя.

Конденсаторы керамические

Этот вид конденсаторов изготавливают в виде одной пластины или пачки пластин из специального керамического материала. Металлические электроды напыляют на пластины и соединяют с выводами конденсатора. Используемые керамические материалы могут иметь очень разные свойства.

Разнообразие включает в себя, прежде всего, широкий диапазон значений относительной электрической проницаемости (до десятков тысяч, и такая величина имеется только у керамических материалов)

Столь высокое значение проницаемости позволяет производить керамические конденсаторы (многослойные) небольших размеров, емкость которых может конкурировать с емкостью электролитических конденсаторов, и при этом работающих с любой поляризацией и характеризующихся меньшими утечками.

Керамические материалы характеризуются сложной и нелинейной зависимостью параметров от температуры, частоты, напряжения. В виду малого размера корпуса — данный вид конденсаторов имеет особую .

Конденсаторы с воздушным диэлектриком

Здесь диэлектриком является воздух. Такие конденсаторы отлично работают на высоких частотах, и часто выполняются как конденсаторы переменной емкости (для настройки).

В этих конденсаторах в качестве диэлектрика применяется конденсаторная бумага толщиной от 6 до 10 мкм с невысокой диэлектрической проницаемостью (e примерно 2...3), поэтому габариты этих конденсаторов большие. Обычно бумажные конденсаторы изготавливают из двух длинных, свернутых в рулон лент фольги, изолированных конденсаторной бумагой, т. е. конденсаторы имеют рулонную конструкцию.

Чтобы избавиться от воздушных потерь конденсаторы пропитывают воском или маслом. Из-за больших диэлектрических потерь и большой величины собственной индуктивности эти конденсаторы нельзя применять на высоких частотах. В соответствии с принятой маркировкой эти конденсаторы обозначаются К40 или К41.

Поскольку бумага толщиной несколько микрон может содержать частицы металла (10-1000 частиц на квадратный метр) используют два слоя бумаги, что позволяет избежать токопроводящих дорожек. Но, чем тоньше бумага – тем больше диэлектрическая прочность. В итоге золотая середина 15-25 мкм, что позволяет использовать напряжение 150-3000 В.

Разновидностью бумажных конденсаторов являются металлобумажные (типа К42), у которых в качестве обкладок вместо фольги используют тонкую металлическую пленку, нанесенную на конденсаторную бумагу, благодаря чему уменьшаются габариты конденсатора.

Эта конструкция характерна для бумажных пленочных низкочастотных конденсаторов, обладающих большой емкостью. Бумажный конденсатор образуется путем свертывания в рулон бумажной ленты 1 толщиной около 5-6 мкм и ленты из металлической фольги 2 толщиной около 10-20 мкм. В металлобумажных конденсаторах вместо фольги применяется тонкая металлическая пленка толщиной менее 1 мкм, нанесенная на бумажную ленту.

Рулон из чередующихся слоев металла и бумаги не обладает механической жесткостью и прочностью, поэтому он размещается в металлическом корпусе, являющемся механической основой конструкции.

Емкость таких конденсаторов

где b - ширина ленты, l - длина ленты, d - толщина бумаги.

Емкость бумажных конденсаторов достигает 10 мкф, а металлобумажных 30 мкф.

Вид в разрезе для рулонного конденсатора

Если сделать смещенные обкладки друг относительно друга и потом пропаять торцы – то получится как бы коаксиальный конденсатор, что позволит значительно повысить его частотные свойства.

19. Конденсаторы с полимерной изоляцией (в сравнении с бумажными конденсаторами).

Основной недостаток бумажных конденсаторов - большой объем.

Используются другие типы изоляторов

Полистирольные конденсаторы Е = 2,5, ТКЕ = -120. Ppm/ 0 C

Максимальная рабочая температура +85 °C

Имеют отличную стабильность, высокую влагостойкость и малый отрицательный температурный коэффициент, позволяющий применять их для компенсации позитивного температурного коэффициента других компонентов. Идеальны для маломощных высокочастотных и прецизионных аналоговых задач. Сравнительно большие по размеру.

Поликарбонатные плёночные конденсаторы

Е = 2,5, ТКЕ = +80. Ppm/ 0 C

Максимальная рабочая температура +125 °C

Имеют лучшее сопротивление изоляции, тангенс угла потерь и диэлектрическую адсорбцию в сравнении с полистирольными конденсаторами. Обладают лучшей влагостойкостью. Выдерживают полное рабочее напряжение на всём температурном диапазоне (от −55 °C до 125 °C) Полипропиленовые конденсаторы

Е = 2,2, ТКЕ = -50. Ppm/ 0 C

Максимальная рабочая температура +100 °C

Чрезвычайно низкий тангенс угла потерь, более высокая диэлектрическая прочность, чем у поликарбонатных и ПЭТ конденсаторов. Низкая гигроскопичность и высокое сопротивление изоляции. Могут использовать полоски фольги, металлизированную плёнку или их комбинации. Плёнка совместима с технологией самолечения, повышающей надёжность. Могут работать на высоких частотах, в том числе при большой мощности, например, для индукционного нагрева (часто вместе с водяным охлаждением), благодаря очень низким диэлектрическим потерям. При более высоких ёмкостях и рабочем напряжении, например от 1 до 100 мкФ и напряжением до 440 вольт переменного тока, могут применяться как пусковые для работы с некоторыми типами однофазных электрических моторов. Более чувствительны к повреждениям от кратковременных перенапряжений или переполюсовке чем пропитанные маслом бумажные конденсаторы.

Полисульфоновые плёночные конденсаторы

Е = 2,2, ТКЕ = +70. Ppm/ 0 C

Максимальная рабочая температура +100 °C

Аналогичны поликарбонатным. Могут выдерживать полное номинальное напряжение на сравнительно высоких температурах. Поглощение влаги около 0.2%, что ограничивает их стабильность. Малая доступность и высокая стоимость.

Тефлоновые конденсаторы

Е = 2,6, ТКЕ = -60. Ppm/ 0 C

Максимальная рабочая температура +200 °C

Очень низкие диэлектрические потери. Рабочая температура до 250 °C, огромное сопротивление изоляции, хорошая стабильность. Используются в критичных задачах. Большой размер из-за низкой диэлектрической постоянной, более высокая цена в сравнении с другими конденсаторами.

Бумажные конденсаторы являются наиболее распространённой разновидностью конденсаторов постоянной ёмкости, содержат одну или несколько секций из двух металлических лент (как правило, из алюминиевой фольги), служащих обкладками. Последние разделены двумя или более лентами конденсаторной бумаги, являющейся диэлектриком. Секции помещают в цилиндрический или прямоугольный корпус. В корпусе вмонтированы элементы герметизации (проходные стеклянные или керамические изоляторы, резиновые шайбы или детали из эпоксидных композиций), через которые проходят внешние проволочные или лепестковые токоотводы.

Бумажные конденсаторы преимущественно применяют в цепях постоянного тока. В последнее время их начали применять в импульсных режимах при ограниченной частоте следования импульсов, при небольших напряжениях, когда мощность потерь невелика и при повышенных частотах (до 1 мгц).

По конструкции различают бумажные конденсаторы цилиндрической (БМ, БМТ, КБГ-М, КБГ-И, К40П-1, К40П-2, К40У-9 и др.) и прямоугольной (КБГ-МП, КБГ-МН, БГТ, К40У-9 и др.) формы. Они характеризуются широким интервалом ёмкостей (от тысячных долей до десятков микрафарад), номинальных напряжений и диапазоном рабочих температур (от -60 до +125). В зависимости от номинального напряжения их подразделяют на низковольтные (К40) - до 1600 В и высоковольтные (К41) - от 1600 и выше.

Бумажные конденсаторы применяют в схемах, рассчитанных на длительную работу при заданном напряжении, допускающих невысокую точность и стабильность ёмкости. Кроме того, их можно использовать в качестве блокировочных, развязывающих, разделительных и фильтрующих элементов в цепях с постоянным и переменным напряжением и в импульсных режимах.

Конденсатор КБГ - Конденсатор Бумажный Герметизированный. Конденсаторы КБГ изготовляют в нескольких конструктивных вариантах (рисунок 1): КБГ-И - Конденсатор Бумажный Герметизированный в цилиндрическом керамическом корпусе. КБГ-М - Конденсатор Бумажный Герметизированный в Металлическом цилиндрическом корпусе. Он имеет разновидности КБГ-М1 и КБГ-М2 (конденсатор КБГ-М2 в качестве переходного применять не следует, так как у него одна из обкладок соединена с корпусом). КБГ-МП - Конденсатор Бумажный Герметизированный в Металлическом Прямоугольном корпусе плоский со стеклянными или керамическими изоляторами. Изготавливают с двумя и тремя выводами. В зависимости от расположения выводов конденсаторы КБГ-МП разделены на три варианта: В - с выводами сверху, Б - сбоку, Н - снизу.

Конденсаторы КБГ-МП выпускают также сдвоенными блоками в одном корпусе с теми же вариантами крепления и расположения выводов. Кроме того, их выпускают следующих конструкций: с одним и двумя изолированными выводами на корпус; с тремя изолированными выводами и выводом на корпус, выводы могут быть расположены сверху, сбоку и снизу корпуса.

КБГ-МП - Конденсатор Бумажный Герметический в Металлическом прямоугольном корпусе Нормальный со стеклянными или керамическими изоляторами, выпускают в нескольких вариантах с различными способами крепления корпуса и расположения выводов.

Для работы при повышенной температуре выпускают конденсаторы БГТ - Бумажные Герметизированные Термостойкие в корпусах двух размеров, а также в виде сдвоенных блоков в одном корпусе с общим выводом, соединенным с корпусом.

Наряду с герметизированными бумажными конденсаторами выпускают также конденсаторы уплотненной конструкции. Кроме устаревших типов КБ (в картонных корпусах, залитых битумом) и БПП (в прямоугольном металлическом корпусе открытого типа) выпускают новые типы малогабаритных конденсаторов БМ и БМТ. У этих конденсаторов в качестве корпуса использована алюминиевая трубка.

Конденсаторы БМ и БМТ имеются двух разновидностей: БМ-1, БМТ-1 и БМ-2, БМТ-2. БМ-1 и БМТ-1 изготовляют с вкладными контактными узлами, а БМ-2 и БМТ-2 (рисунок 2) с паяными контактными узлами. Размеры их не превышают: диаметр 5 - 7,5 мм, длина 11 - 14.5 мм.


Конденсаторы БМ-1 КБГ-М, КБГ-МН, КБГ-МП в цепях с очень низкими напряжениями применять не рекомендуется. В таких цепях применяют только конденсаторы, в которых выводы припаяиы или привалены к обкладкам (например, БМ-2).

Конденсатор БГМ - Бумажный Герметизированный Малогабаритный имеет разновидность БГМ-1 с одним изолированным выводом и БГМ-2 с двумя изолированными выводами (рисунок 3). Размеры БГМ: диаметр 6 - 11 мм, длина 18 мм.

Из новых типов бумажных конденсаторов следует выделить К40П (К40П-1, К40П-2, К40П-3) и К40У-9.

Конденсатор К40П-1 - Малогабаритный Опрессованный в пластмассовом корпусе с проволочными торцевыми выводами. Конденсатор К40П-2 заключен в металлический корпус, герметизированный; выпускается двух видов К40П-2а и К40П-26. Разница между ними заключается в том, что у конденсаторов К40П-2а одна из обкладок соединена с корпусом, а другая имеет изолированный от корпуса проволочный вывод. У конденсатора К40П-2б оба вывода изолированы. Его размеры: диаметр 6 и 11 мм в зависимости от емкости, длина 19 мм.

Конденсаторы К40У-9 (рисунок 4) разработаны для более тяжелых условий эксплуатации (высокаи влажность, верхний предел температуры до +125°С): это цилиндрические герметизированные конденсаторы в стальных корпусах со стеклоопрессованными изоляторами.

Список использованной литературы

1. Бодиловский В.Г. Справочник молодого радиста. Издание четвертое, переработанное и дополненное. Москва: Издательство «Высшая школа», 1983. - Серия «Профтехобразование».
2. Конденсаторы. Справочник. Михайлов И.В., Пропошин А.И., 1965 год (Массовая радиобиблиотека №0573).