Как и где происходит процесс фотосинтеза у растений? Влияние на скорость фотосинтеза различных факторов Факторы ограничивающие скорость фотосинтетических реакций.

Исследовательская работа

Тема: Влияние различных факторов на скорость фотосинтеза

Руководитель работы: Логвин Андрей Николаевич, учитель биологии

д.Шелоховская

2009

Введение - стр.3

Глава 1. Фотосинтез – стр.4

Глава 2. Абиотические факторы - свет и температура. Их роль для жизни растений – стр.5

2.1. Свет- стр.5

2.2. Температура - стр.6

2.3. Газовый состав воздуха - стр.7

Глава 3. Влияние различных факторов на скорость фотосинтеза – стр.983.1. Метод «крахмальной пробы» – стр.9

3.2. Зависимость фотосинтеза от интенсивности освещения – стр.10

3.3. Зависимость интенсивности фотосинтеза от температуры – стр.11

3.4. Зависимость интенсивности фотосинтеза от концентрации углекислого газа в атмосфере – стр.12

Заключение – стр.12

Источники информации – стр.13

Ведение

Жизнь на Земле зависит от Солнца. Приемником и накопителем энергии солнечных лучей на Земле являются зеленые листья растений как специализированные органы фотосинтеза. Фотосинтез - уникальный процесс создания органических веществ из неорганических. Это единственный на нашей планете процесс, связанный с превращением энергии солнечного света в энергию химических связей, заключенную в органических веществах. Таким способом поступившая из космоса энергия солнечных лучей, запасенная зелеными растениями в углеводах, жирах и белках, обеспечивает жизнедеятельность всего живого мира - от бактерий до человека.

Выдающийся русский ученый конца XIX - начала XX в. Климент Аркадьевич Тимирязев (1843-1920) роль зеленых растений на Земле назвал космической.

К.А. Тимирязев писал: «Все органические вещества, как бы они ни были разнообразны, где бы они ни встречались, в растении ли, в животном или человеке, прошли через лист, произошли от веществ, выработанных листом. Вне листа или, вернее, вне хлорофиллового зерна в природе не существует лаборатории, где бы выделялось органическое вещество. Во всех других органах и организмах оно превращается, преобразуется, только здесь оно образуется вновь из вещества неорганического».

Актуальность выбранной темы обусловлена тем что Все мы зависим от фотосинтезирующих растений и необходимо знать, какими способами можно повысить интенсивность фотосинтеза..

Объект исследования – комнатные растения

Предмет исследования – влияние различных факторов на скорость фотосинтеза.

Цели:

  1. Систематизация, углубление и закрепление знаний по фотосинтезу растений и абиотическим факторам окружающей среды.

2. Изучить зависимость скорости фотосинтеза от интенсивности освещения, температуры и концентрации углекислого газа в атмосфере.

Задачи:

  1. Изучить литературу по фотосинтезу растений, обобщить и углубить знания о влиянии абиотических факторов на фотосинтез растений.
  2. Изучить влияние различных факторов на скорость фотосинтеза.

Гипотеза исследования: Скорость фотосинтеза возрастает при увеличении интенсивности освещения, температуры и концентрации углекислого газа в атмосфере.

Методы исследования:

  1. Изучение и анализ литературы
  2. Наблюдение, сравнение, эксперимент.

Глава 1. Фотосинтез.

Процесс образования клетками зеленых растений и циано-бактериями органических веществ с участием света. В зеленых растениях происходит при участии пигментов (хлорофиллов и некоторых других), имеющихся в хлоропластах и хроматофорах клеток. Из веществ, бедных энергией (оксид углерода и вода), образуется углевод глюкоза и освобождается свободный кислород.

В основе фотосинтеза лежит окислительно-восстановитсльный процесс: электроны переносятся от донора-восстановителя (вода, водород и др.) к акцептору (оксид углерода, ацетат). Образуется восстановленное вещество (углевод глюкоза) и кислород, если окисляется вода. Различают две фазы фотосинтеза:

Световая (или светозависимая);

Темновая.

В световую фазу происходит накопление свободных атомов дорода, энергии (синтезируется АТФ). Темновая фаза фотосинтеза - ряд последовательных ферментативных реакций, и прежде всего реакций связывания углекислого газа (проникает в лист из атмосферы). В итоге образуются углеводы, сначала моносахариды (гексоза), затем - сахариды и полисахариды (крахмал). Синтез глюкозы идет с поглощением большого количества энергии (используется АТФ, синтезированная в световую фазу). Для удаления лишнего кислорода из диоксида углерода ис- пользуется водород, образовавшийся в световую фазу и находящийся в непрочном соединении с переносчиком водородм (НАДФ). Лишний кислород оказывается в связи с тем, что в диоксиде углерода число атомов кислорода вдвое больше, чем число атомов углерода, а в глюкозе число атомов углерода и кислорода равное.

Фотосинтез - единственный процесс в биосфере, ведущий к увеличению энергии биосферы за счет внешнего источника - Солнца и обеспечивающий существование как растений, так и всех гетеротрофных организмов.

В урожай переходит менее 1-2% солнечной энергии.

Потери: неполное поглощение света; лимитирование процесса на биохимических и физиологических уровнях.

Пути повышения эффективности фотосинтеза:

Обеспечение растений водой;

Обеспечение минеральными веществами и углекислым газом;

Создание благоприятной для фотосинтеза структуры посевов;

Селекция сортов с высокой эффективностью фотосинтеза.

Глава 2. Абиотические факторы - свет и температура.

Их роль для жизни растений.

Абиотическими факторами называются все элементы неживой природы, влияющие на организм. Среди них наиболее важными являются свет, температура, влажность, воздух, минеральные соли и др. Часто их объединяют в группы факторов: климатические, почвенные, орографические, геологические и др.

В природе трудно отделить действие одного абиотического фактора от другого, организмы всегда испытывают их совместное влияние. Однако для удобства изучения абиотические факторы обычно рассматриваются по отдельности.

2.1. Свет

Среди многочисленных факторов свет как носитель солнечной энергии является одним из основных. Без него невозможна фотосинтетическая деятельность зеленых растений. В то же время прямое воздействие света на протоплазму смертельно для организма. Поэтому многие морфологические и поведенческие свойства организмов обусловлены действием света.

Солнце излучает в космическое пространство громадное количество энергии, и хотя на долю Земли приходится лишь одна двухмиллионная часть солнечного излучения, его хватает на обогрев и освещение нашей планеты. Солнечное излучение - это электромагнитные волны самой разной длины, а также радиоволны длиной не более 1 см.

Среди солнечной энергии, проникающей в атмосферу Земли, имеются видимые лучи (их около 50%), теплые инфракрасные лучи (50%) и ультрафиолетовые лучи (около 1%). Для экологов важны качественные признаки света: длина волны (или цвет), интенсивность (действующая энергия в калориях) и продолжительность воздействии (длина дни).

Видимые лучи (мы называем их солнечным светом) состоят из лучей разной окраски и разной длины волн. Свет имеет очень большое значение в жизни всего органического мира, так как с ним связана активность животных и растений - только в условиях видимого света протекает фотосинтез.

В жизни организмов важны не только видимые лучи, но и другие виды лучистой энергии, достигающие земной поверхности: ультрафиолетовые и инфракрасные лучи, электромагнитные (особенно радиоволны) и даже гамма- и икс-излучение. К примеру, ультрафиолетовые лучи с длиной волны 0,38-0,40 мк обладают большой фотосинтезирующей активностью. Эти лучи, особенно когда они представлены в умеренных дозах, стимулируют рост и размножение клеток, способствуют синтезу высокоактивных биологических соединений, повышая в растениях содержание витаминов и антибиотиков, увеличивают устойчивость растительных клеток к различным заболеваниям.

Среди всех лучей солнечного света обычно выделяются лучи, так или иначе оказывающие влияние на растительные организмы, особенно на процесс фотосинтеза, ускоряя или замедляя его протекание. Эти лучи принято называть физиологически активной радиацией (сокращенно - ФАР). Наиболее активными среди ФАР являются: оранжево-красные (0,65-0,68 мк), сине-фиолетовые (0,40-0,50 мк) и близкие ультрафиолетовые (0,38-0,40 мк). Меньше всего поглощаются желто-зеленые лучи (0,50-0,58 мк) и почти не поглощаются инфракрасные. Лишь далекие инфракрасные лучи с длиной волны более 1,05 мк принимают участие в теплообмене растений и потому оказывают некоторое положительное воздействие, особенно в местах с низкими температурами.

Зеленым растениям свет нужен для образования хлорофилла, формирования гранальнои структуры хлоропластов; он регулирует работу устьичного аппарата, влияет на газообмен и транспира-цию, активизирует ряд ферментов, стимулирует биосинтез белков и нуклеиновых кислот. Свет влияет на деление и растяжение клеток, ростовые процессы и на развитие растений, определяет сроки цзетения и плодоношения, оказывает формообразующее воздействие. Но самое большое значение имеет свет в воздушном питании растений, в использовании ими солнечной энергии в процессе фотосинтеза.

2.2. Температура

Тепловой режим - одно из важнейших условий существования организмов, так как все физиологические процессы возможны лишь при определенных температурах. Приход тепла на земную поверхность обеспечивается солнечными лучами и распределяется по Земле в зависимости от высоты стояния Солнца над горизонтом и угла падения солнечных лучей. Поэтому тепловой режим неодинаков на разных широтах и на разной высоте над уровнем моря.

Температурный фактор характеризуется ярко выраженными сезонными и суточными колебаниями. Это действие фактора в ряде районов Земли имеет важное сигнальное значение в регуляции сроков активности организмов, обеспечивая их суточный и сезонный режим жизни.

В характеристике температурного фактора очень важны его крайние показатели, продолжительность их действия, а также то, как часто они повторяются. Изменение температуры в местах обитания, выходящее за пределы пороговой терпимости организмов, сопровождается их массовой гибелью.

Значение температуры для жизнедеятельности организмов проявляется в том, что она изменяет скорость физико-химических процессов в клетках. Температура влияет на анатомо-морфологические особенности организмов, оказывает воздействие на ход физиологических процессов, рост, развитие, поведение и во многих случаях определяет географическое распространение растений.

2.3. Газовый состав воздуха.

Кроме физических свойств воздушной среды, для существования наземных организмов чрезвычайно важны ее химические особенности. Газовый состав воздуха в приземном слое атмосферы довольно однороден в отношении содержания главных компонентов (азот - 78,1, кислород - 21,0, аргон -0,9, углекислый газ - 0,03% по объему) благодаря высокой диффузионной способности газов и постоянному перемешиванию конвекционными и ветровыми потоками. Однако различные примеси газообразных, капельно-жидких и твердых (пылевых) частиц, попадающих в атмосферу из локальных источников, могут иметь существенное экологическое значение.

Высокое содержание кислорода способствовало повышению обмена веществ у наземных организмов по сравнению с первично-водными. Кислород, из-за постоянно высокого его содержания в воздухе, не является фактором, лимитирующим жизнь в наземной среде. Лишь местами, в специфических условиях, создается временный его дефицит, например в скоплениях разлагающихся растительных остатков, запасах зерна, муки и т. п.

Содержание углекислого газа может изменяться в отдельных участках приземного слоя воздуха в довольно значительных пределах. Например, при отсутствии ветра в центре больших городов концентрация его возрастает в десятки раз. Закономерны суточные изменения содержания углекислоты в приземных слоях, связанные с ритмом фотосинтеза растений, и сезонные, обусловленные изменениями интенсивности дыхания живых организмов, преимущественно микроскопического населения почв. Повышенное насыщение воздуха углекислым газом возникает в зонах вулканической активности, возле термальных источников и других подземных выходов этого газа. В высоких концентрациях углекислый газ токсичен. В природе такие концентрации встречаются редко.

В природе основным источником углекислоты является так называемое почвенное дыхание. Углекислый газ диффундирует из почвы в атмосферу, особенно энергично во время дождя.

В современных условиях мощным источником поступления дополнительных количеств С0 2 в атмосферу стала деятельность человека по сжиганию ископаемых запасов топлива.

Низкое содержание углекислого газа тормозит процесс фотосинтеза. В условиях закрытого грунта можно повысить скорость фотосинтеза, увеличив концентрацию углекислого газа; этим пользуются в практике тепличного и оранжерейного хозяйства. Однако излишние количества С0 2 приводят к отравлению растений.

Азот воздуха для большинства обитателей наземной среды представляет инертный газ, но ряд микроорганизмов (клубеньковые бактерии, азотобактер, клостридии, сине-зеленые водоросли и др.) обладает способностью связывать его и вовлекать в биологический круговорот.

Местные примеси, поступающие в воздух, также могут существенно влиять на живые организмы. Это особенно относится к ядовитым газообразным веществам- метану, оксиду серы (IV), оксиду углерода (II), оксиду азота (IV), сероводороду, соединениям хлора, а также к частицам пыли, сажи и т. п., засоряющим воздух в промышленных районах. Основной современный источник химического и физического загрязнения атмосферы антропогенный: работа различных промышленных предприятий и транспорта, эрозия почв и т. п. Оксид серы (S0 2 ), например, ядовит для растений даже в концентрациях от одной пятидесятитысячной до одной миллионной от объема воздуха. Вокруг промышленных центров, загрязняющих атмосферу этим газом, погибает почти вся растительность. Некоторые виды растений особо чувствительны к S0 2 и служат чутким индикатором его накопления в воздухе. Например, лишайники погибают даже при следах оксида серы (IV) в окружающей атмосфере. Присутствие их в лесах вокруг крупных городов свидетельствует о высокой чистоте воздуха. Устойчивость растений к примесям в воздушной среде учитывают при подборе видов для озеленения населенных пунктов. Чувствительны к задымлению, например, обыкновенная ель и сосна, клен, липа, береза. Наиболее устойчивы туя, тополь канадский, клеи американский, бузина и некоторые другие.

Глава 3. Влияние различных факторов на скорость фотосинтеза.

Скорость процесса фотосинтеза зависит как от интенсивности света, так и от температуры. Лимитирующими факторами фотосинтеза могут быть также концентрация диоксида углерода, вода, элементы минерального питания, участвующие в построении фотосинтезирующего аппарата и являющиеся исходными компонентами для фотосинтеза органического вещества.

При определении интенсивности фотосинтеза используют две группы методов: 1) газометрические - регистрирующие количество поглощенного углекислого газа или выделенного кислорода; 2) методы учета количества образующегося при фотосинтезе органического вещества.

Простой и наглядный метод "крахмальной пробы". Метод основан на обнаружении и оценке количества накопленного при фотосинтезе крахмала с помощью раствора иода в йодистом калии.

3.1. Метод «крахмальной пробы»

Цель . Познакомиться с методом «крахмальной пробы».

Методика опыта.

Обильно полейте растение, поставьте в теплое темное место (в шкаф или ящик) или затемните отдельные листья темными пакетами из плотной черной бумаги. В темноте листья постепенно теряют крахмал, который гидролизует-ся до Сахаров и используется на дыхание, рост, отводится в другие органы.

Через 3 - 4 сут. проверьте обескрахмаливание листьев. Для этого вырежьте из затемненного листа кусочки, поме тите в пробирку с водой (2 - 3 мл) и прокипятите 3 мин, чтобы убить клетки и увеличить проницаемость цитоплазмы. Затем слейте воду и прокипятите несколько раз в этиловом спирте (по 2 - 3 мл), каждые 1-2 мин меняя раствор, пока кусочек ткани листа не обесцветится (кипятить надо на водяной бане, так как при пользовании спиртовкой спирт может вспыхнуть!). Слейте последнюю порцию спирта, добавьте немного воды для размягчения тканей листа (в спирте они становятся хрупкими), поместите кусочек ткани в чашку Петри и обработайте раствором иода. При полном обескрах-маливании синее окрашивание отсутствует и с такими листьями можно ставить опыт. При наличии даже небольшого количества крахмала работать с листом не следует, так как это затруднит наблюдение за образованием крахмала. Обескрахмаливание следует продлить еще на 1 - 2 сут.

Лишенные крахмала листья необходимо срезать с растения, обновить срез под водой и опустить черешок в пробирку с водой. Лучше работать со срезанными листьями, так как вновь образованный крахмал в этом случае не оттекает в другие органы.

Листья помещают в различные условия, предусмотренные задачами настоящей работы. Для накопления крахмала листья следует держать на расстоянии не менее 30-40 см от лампы 100 - 200 Вт и избегать перегрева с помощью вентилятора. Через 1 - 1,5 ч из листьев каждого варианта вырежьте три кусочка ткани одинаковой формы (круг, квадрат), обработайте так же, как и при проверке на полноту обескрахмаливания. В зависимости от условий опыта в листьях будет накапливаться различное количество крахмала, которое можно определить по степени его посинения. Так как накопление крахмала в отдельных участках листа может варьировать, из него берут не менее трех кусочков для анализа его содержания. Для оценки результатов пользуются усредненными значениями из трех повторностей.

Степень посинения листа оценивается в баллах:

темно-синий - 3;

средне-синий - 2;

слабо-синий - 1;

окраски нет - 0.

3.2. Зависимость фотосинтеза от интенсивности освещения.

Цель . Определить зависимости фотосинтеза от интенсивности освещения.

Методика опыта.

Листья пеларгонии, подготовленные к опыту, поместите: один в полную темноту; второй - на рассеянный дневной свет; третий - на яркий свет. Через указанное время определите в листьях наличие крахмала.

Сделайте вывод о влиянии интенсивности освещения на скорость фотосинтеза.

Ход работы.

Обильно полили герань, поставили в теплое темное место (в шкаф).

Через 3 суток проверили обескрахмаливание листьев. Для этого вырезали из затемненного листа кусочки, поместили в пробирку с водой (2 - 3 мл) и прокипятили 3 мин, чтобы убить клетки и увеличить проницаемость цитоплазмы. Затем слили воду и прокипятили на водяной бане несколько раз в этиловом спирте (по 2 - 3 мл), каждые 1-2 мин меняя раствор, пока кусочек ткани листа не обесцветился. Слили последнюю порцию спирта, добавили немного воды для размягчения тканей листа (в спирте они становятся хрупкими), поместили кусочек ткани в чашку Петри и обработали раствором иода.

Наблюдаем полное обескрахмаливание - синее окрашивание отсутствует.

Лишенные крахмала листья срезали с растения, обновили срез под водой и опустили черешок в пробирку с водой. Листья герани, подготовленные к опыту, поместили: один в полную темноту; второй - на рассеянный дневной свет; третий - на яркий свет.

Через 1 ч из листьев каждого варианта вырезали три кусочка ткани одинаковой формы, обработали так же, как и при проверке на полноту обескрахмаливания.

Результат.

Степень посинения листа в темноте – 0 баллов, на рассеянном свету – 1 балл, на ярком свете – 3 балла.

Вывод. При увеличении интенсивности освещения скорость фотосинтеза увеличилась.

3.3. Зависимость интенсивности фотосинтеза от температуры.

Цель . Определить зависимость фотосинтеза от температуры.

Методика опыта.

Подготовленные листья пеларгонии поставьте на равном расстоянии от мощного источника света: один на холод (между рамами окна), другой - при комнатной температуре. Через указанное время определите наличие крахмала.

Сделайте вывод о влиянии температуры на интенсивность фотосинтеза.

Ход работы.

Лишенные крахмала листья поставили на равном расстоянии от лампы: один на холод (между рамами окна), другой - при комнатной температуре. Через 1 ч из листьев каждого варианта вырезали три кусочка ткани одинаковой формы, обработали так же, как и при проверке на полноту обескрахмаливания.

Результат.

Степень посинения листа на холоде – 1 балл, при комнатной температуре – 3 балла.

Вывод. При увеличении температуры скорость фотосинтеза увеличилась.

3.4. Зависимость интенсивности фотосинтеза от концентрации углекислого газа в атмосфере.

Цель. Определить зависимость интенсивности фотосинтеза от концентрации углекислого газа в атмосфере

Методика опыта.

Листья пеларгонии, подготовленные к работе, поставьте в сосуд с водой, а сосуд - на кусок стекла под стеклянным колпаком. Туда же поместите маленькую чашечку с 1-2 г соды, в которую добавьте 3 - 5 мл 10%-ной серной или соляной кислоты. Замажьте стык между стеклом и колпаком пластилином. Другой лист оставьте в классе. При этом освещенность и температура обоих листьев должны быть одинаковы. Через указанное время проведите учет накопленного в листьях крахмала, сделайте вывод о влиянии концентрации СОг на интенсивность фотосинтеза.

Ход работы.

Листья герани, подготовленные к работе, поставили в сосуд с водой, а сосуд - на кусок стекла под стеклянным колпаком. Туда же поместили маленькую чашечку с 2 г соды, в которую добавьте 5 мл 10%-ной соляной кислоты. Замазали стык между стеклом и колпаком пластилином. Другой лист оставили в классе. При этом освещенность и температура обоих листьев одинаковы.

Результат.

Степень посинения листа в классе – 2 балл, под колпаком – 3 балла.

Вывод. При увеличении концентрации углекислого газа в атмосферы скорость фотосинтеза увеличилась.

Заключение

Проделав практическую часть исследовательской работы, мы пришли к выводу, что наша гипотеза подтвердилась. Действительно, интенсивность фотосинтеза зависит от температуры, освещенности, содержания углекислого газа в атмосфере.

Источники информации.

1. Лемеза Н.А., Лисов Н.Д. Клетка – основа жизни. Учеб. Пособие. – Мн.: НКФ «Экоперспектива», 1997.

2. Никишов А.И. Биология. Конспективный курс. Учеб.пособие. – М.: ТЦ «Сфера», 1999.

3.Пономарева И.Н., Корнилова О.А., Кумченко В.С. Биология: 6 класс: Учебник для учащихся общеобразовательных учреждений /Под ред. проф. И.Н.Пономаревой. – М.: Вентана-граф,2008.

4. Пономарева И.Н. Экология. – М.: Вентана-Граф,2006.

5. Чернова Н.М., Былова А.М. Экология: Учеб.пособие для студентов биол. спец. пед. ин-тов. – М.: Просвещение, 1988

Пономарева И.Н., Корнилова О.А., Кумченко В.С. Биология: 6 класс: Учебник для учащихся общеобразовательных учреждений /Под ред. проф. И.Н.Пономаревой. – М.: Вентана-граф, 2008.

Чернова Н.М., Былова А.М. Экология: Учеб.пособие для студентов биол. спец. пед. ин-тов. – М.: Просвещение, 1988

Каждое живое существо на планете нуждается в пище или энергии, чтобы выжить. Некоторые организмы питаются другими существами, тогда как другие могут производить свои собственные питательные элементы. сами производят продукты питания, глюкозу, в процессе, который называется фотосинтезом.

Фотосинтез и дыхание взаимосвязаны. Результатом фотосинтеза является глюкоза, которая хранится как химическая энергия в . Эта накопленная химическая энергия получается в результате превращения неорганического углерода (углекислого газа) в органический углерод. Процесс дыхания высвобождает накопленную химическую энергию.

Помимо продуктов, которые они производят, растениям также необходим углерод, водород и кислород, чтобы выжить. Вода, поглощенная из почвы, обеспечивает водород и кислород. Во время фотосинтеза, углерод и вода используются для синтеза пищи. Растения также нуждаются в нитратах, чтобы производить аминокислоты (аминокислота - ингредиент для выработки белка). В дополнение к этому, они нуждаются в магнии для производства хлорофилла.

Заметка: Живые существа, которые зависят от других продуктов питания называются . Травоядные, такие как коровы, а также растения, питающиеся насекомыми, являются примерами гетеротрофов. Живые существа, производящие собственную пищу, называются . Зеленые растения и водоросли - примеры автотрофов.

В этой статье вы узнаете больше о том, как происходит фотосинтез у растений и об необходимы для этого процесса условиях.

Определение фотосинтеза

Фотосинтез - это химический процесс, посредством которого растения, некоторые и водоросли производят глюкозу и кислород из углекислого газа и воды, используя только свет в качестве источника энергии.

Этот процесс чрезвычайно важен для жизни на Земле, поскольку благодаря ему выделяется кислород, от которого зависит вся жизнь.

Зачем растениям нужна глюкоза (пища)?

Подобно людям и другим живым существам, растения также нуждаются в питании для поддержания жизнедеятельности. Значение глюкозы для растений заключается в следующем:

  • Глюкоза, полученная в результате фотосинтеза, используется во время дыхания для высвобождения энергии, необходимой растению для других жизненно важных процессов.
  • Растительные клетки также превращают часть глюкозы в крахмал, который используют по мере необходимости. По этой причине мертвые растения используются в качестве биомассы, ведь в них хранится химическая энергия.
  • Глюкоза также необходима, чтобы производить другие химические вещества, такие как белки, жиры и растительные сахара, необходимые для обеспечения роста и других важных процессов.

Фазы фотосинтеза

Процесс фотосинтеза разделен на две фазы: световую и темновую.


Световая фаза фотосинтеза

Как следует из названия, световые фазы нуждаются в солнечном свете. В светозависимых реакциях энергия солнечного света поглощается хлорофиллом и преобразуется в запасенную химическую энергию в виде молекулы электронного носителя НАДФН (никотинамидадениндинуклеотидфосфат) и молекулы энергии АТФ (аденозинтрифосфат). Световые фазы протекают в тилакоидных мембранах в пределах хлоропласта.

Темновая фаза фотосинтеза или цикл Кальвина

В темновой фазе или цикле Кальвина возбужденные электроны из световой фазы обеспечивают энергию для образования углеводов из молекул углекислого газа. Не зависящие от света фазы иногда называют циклом Кальвина из-за цикличности процесса.

Хотя темновые фазы не используют свет в качестве реагента (и, как результат, могут происходить днем или ночью), им необходимо, чтобы продукты светозависимых реакций функционировали. Независимые от света молекулы зависят от молекул энергоносителей - АТФ и НАДФН - для создания новых молекул углеводов. После передачи энергии молекулы энергоносители возвращаются к световым фазам для получения более энергичных электронов. Кроме того, несколько ферментов темновой фазы активируются с помощью света.

Схема фаз фотосинтеза

Заметка: Это означает, что темновые фазы не будут продолжаться, если растения будут лишены света слишком долго, так как они используют продукты световых фаз.

Строение листьев растений

Мы не можем полностью изучить фотосинтез, не зная больше о строении листа. Лист адаптирован для того, чтобы играть жизненно важную роль в процессе фотосинтеза.

Внешнее строение листьев

  • Площадь

Одной из самых главных особенностей растений является большая площадь поверхности листьев. Большинство зеленых растений имеют широкие, плоские и открытые листья, которые способны захватывать столько солнечной энергии (солнечного света), сколько необходимо для фотосинтеза.

  • Центральная жилка и черешок

Центральная жилка и черешок соединяются вместе и являются основанием листа. Черешок располагает лист таким образом, чтобы он получал как можно больше света.

  • Листовая пластинка

Простые листья имеют одну листовую пластину, а сложные - несколько. Листовая пластинка - одна из самых главных составляющих листа, которая непосредственно участвует в процессе фотосинтеза.

  • Жилы

Сеть жилок в листьях переносит воду от стеблей к листьям. Выделяемая глюкоза также направляется в другие части растения из листьев через жилки. Кроме того, эти части листа поддерживают и удерживают листовую пластину плоской для большего захвата солнечного света. Расположение жилок (жилкование) зависит от вида растения.

  • Основание листа

Основанием листа выступает самая нижняя его часть, которая сочленена со стеблем. Зачастую, у основания листа располагается парное количество прилистников.

  • Край листа

В зависимости от вида растения, край листа может иметь различную форму, включая: цельнокрайнюю, зубчатую, пильчатую, выемчатую, городчатую и т.п.

  • Верхушка листа

Как и край листа, верхушка бывает различной формы, включая: острую, округлую, туповатую, вытянутую, оттянутою и т.д.

Внутреннее строение листьев

Ниже представлена ​​близкая схема внутреннего строения тканей листьев:

  • Кутикула

Кутикула выступает главным, защитным слоем на поверхности растения. Как правило, она толще на верхней части листа. Кутикула покрыта веществом, похожим на воск, благодаря которому защищает растение от воды.

  • Эпидермис

Эпидермис - слой клеток, который является покровной тканью листа. Его главная функция - защита внутренних тканей листа от обезвоживания, механических повреждений и инфекций. Он также регулирует процесс газообмена и транспирации.

  • Мезофилл

Мезофилл - это основная ткань растения. Здесь происходит процесс фотосинтеза. У большинства растений мезофилл разделен на два слоя: верхний - палисадный и нижний - губчатый.

  • Защитные клетки

Защитные клетки - специализированные клетки в эпидермисе листьев, которые используются для контроля газообмена. Они выполняют защитную функцию для устьица. Устьичные поры становятся большими, когда вода есть в свободном доступе, в противном случае, защитные клетки становятся вялыми.

  • Устьице

Фотосинтез зависит от проникновения углекислого газа (CO2) из воздуха через устьица в ткани мезофилла. Кислород (O2), полученный как побочный продукт фотосинтеза, выходит из растения через устьица. Когда устьица открытые, вода теряется в результате испарения и должна быть восполнена через поток транспирации, водой, поглощенной корнями. Растения вынуждены уравновешивать количество поглощенного СО2 из воздуха и потерю воды через устьичные поры.

Условия, необходимые для фотосинтеза

Ниже приведены условия, которые необходимы растениям для осуществления процесса фотосинтеза:

  • Углекислый газ. Бесцветный природный газ без запаха, обнаруженный в воздухе и имеет научное обозначение CO2. Он образуется при горении углерода и органических соединений, а также возникает в процессе дыхания.
  • Вода . Прозрачное жидкое химическое вещество без запаха и вкуса (в нормальных условиях).
  • Свет. Хотя искусственный свет также подходит для растений, естественный солнечный свет, как правило, создает лучшие условия для фотосинтеза, потому что в нем присутствует природное ультрафиолетовое излучение, которое оказывает положительное влияние на растения.
  • Хлорофилл. Это зеленый пигмент, найденный в листьях растений.
  • Питательные вещества и минералы. Химические вещества и органические соединения, которые корни растений поглощают из почвы.

Что образуется в результате фотосинтеза?

  • Глюкоза;
  • Кислород.

(Световая энергия показана в скобках, поскольку она не является веществом)

Заметка: Растения получают CO2 из воздуха через их листья, и воду из почвы через корни. Световая энергия исходит от Солнца. Полученный кислород выделяется в воздух из листьев. Получаемую глюкозу можно превратить в другие вещества, такие как крахмал, который используется как запас энергии.

Если факторы, способствующие фотосинтезу, отсутствуют или присутствуют в недостаточном количестве, это может негативно повлиять на растение. Например, меньшее количество света создает благоприятные условия для насекомых, которые едят листья растения, а недостаток воды замедляет.

Где происходит фотосинтез?

Фотосинтез происходит внутри растительных клеток, в мелких пластидах, называемых хлоропластами. Хлоропласты (в основном встречающиеся в слое мезофилла) содержат зеленое вещество, называемое хлорофиллом. Ниже приведены другие части клетки, которые работают с хлоропластом, чтобы осуществить фотосинтез.

Строение растительной клетки

Функции частей растительной клетки

  • : обеспечивает структурную и механическую поддержку, защищает клетки от , фиксирует и определяет форму клетки, контролирует скорость и направление роста, а также придает форму растениям.
  • : обеспечивает платформу для большинства химических процессов, контролируемых ферментами.
  • : действует как барьер, контролируя движение веществ в клетку и из нее.
  • : как было описано выше, они содержат хлорофилл, зеленое вещество, которое поглощает световую энергию в процессе фотосинтеза.
  • : полость внутри клеточной цитоплазмы, которая накапливает воду.
  • : содержит генетическую марку (ДНК), которая контролирует деятельность клетки.

Хлорофилл поглощает световую энергию, необходимую для фотосинтеза. Важно отметить, что поглощаются не все цветовые длины волны света. Растения в основном поглощают красную и синюю волны - они не поглощают свет в зеленом диапазоне.

Углекислый газ в процессе фотосинтеза

Растения получают углекислый газ из воздуха через их листья. Углекислый газ просачивается через маленькое отверстие в нижней части листа - устьицу.

Нижняя часть листа имеет свободно расположенные клетки, чтобы углекислый газ достиг других клеток в листьях. Это также позволяет кислороду, образующемуся при фотосинтезе, легко покидать лист.

Углекислый газ присутствует в воздухе, которым мы дышим, в очень низких концентрациях и служит необходимым фактором темновой фазы фотосинтеза.

Свет в процессе фотосинтеза

Лист обычно имеет большую площадь поверхности, поэтому он может поглощать много света. Его верхняя поверхность защищена от потери воды, болезней и воздействия погоды восковым слоем (кутикулой). Верх листа находится там, где падает свет. Этот слой мезофилла называется палисадным. Он приспособлен для поглощения большого количества света, ведь в нем находится много хлоропластов.

В световых фазах, процесс фотосинтеза увеличивается с большим количеством света. Больше молекул хлорофилла ионизируется, и больше генерируется АТФ и НАДФН, если световые фотоны сосредоточены на зеленом листе. Хотя свет чрезвычайно важен в световых фазах, необходимо отметить, что чрезмерное его количество может повредить хлорофилл, и уменьшить процесс фотосинтеза.

Световые фазы не слишком сильно зависят от температуры, воды или углекислого газа, хотя все они нужны для завершения процесса фотосинтеза.

Вода в процессе фотосинтеза

Растения получают воду, необходимую для фотосинтеза через свои корни. Они имеют корневые волоски, которые разрастаются в почве. Корни характеризуются большой площадью поверхности и тонкими стенками, что позволяет воде легко проходить сквозь них.

На изображении представлены растения и их клетки с достаточным количеством воды (слева) и ее нехваткой (справа).

Заметка: Корневые клетки не содержат хлоропластов, поскольку они, как правило, находятся в темноте и не могут фотосинтезировать.

Если растение не впитывает достаточное количество воды, оно увядает. Без воды, растение будет не способно фотосинтезировать достаточно быстро, и может даже погибнуть.

Какое значение имеет вода для растений?

  • Обеспечивает растворенными минералами, которые поддерживают здоровье растений;
  • Является средой для транспортировки ;
  • Поддерживает устойчивость и прямостояние;
  • Охлаждает и насыщает влагой;
  • Дает возможность проводить различные химические реакции в растительных клетках.

Значение фотосинтеза в природе

Биохимический процесс фотосинтеза использует энергию солнечного света для преобразования воды и углекислого газа в кислород и глюкозу. Глюкоза используется в качестве строительных блоков в растениях для роста тканей. Таким образом, фотосинтез - это способ, благодаря которому формируются корни, стебли, листья, цветы и плоды. Без процесса фотосинтеза растения не смогут расти или размножаться.

  • Продуценты

Из-за фотосинтетической способности, растения известны как продуценты и служат основой почти каждой пищевой цепи на Земле. (Водоросли являются эквивалентом растений в ). Вся пища, которую мы едим, происходит от организмов, являющихся фотосинтетиками. Мы питаемся этими растениями напрямую или едим животных, таких как коровы или свиньи, которые потребляют растительную пищу.

  • Основа пищевой цепи

Внутри водных систем, растения и водоросли также составляют основу пищевой цепи. Водоросли служат пищей для , которые, в свою очередь, выступают источником питания для более крупных организмов. Без фотосинтеза в водной среде жизнь была бы невозможна.

  • Удаление углекислого газа

Фотосинтез превращает углекислый газ в кислород. Во время фотосинтеза углекислый газ из атмосферы поступает в растение, а затем выделяется в виде кислорода. В сегодняшнем мире, где уровни двуокиси углерода растут ужасающими темпами, любой процесс, который устраняет углекислый газ из атмосферы, является экологически важным.

  • Круговорот питательных веществ

Растения и другие фотосинтезирующие организмы играют жизненно важную роль в круговороте питательных веществ. Азот в воздухе фиксируется в растительных тканях и становится доступным для создания белков. Микроэлементы, находящиеся в почве, также могут быть включены в растительную ткань и стать доступными для травоядных животных, дальше по пищевой цепи.

  • Фотосинтетическая зависимость

Фотосинтез зависит от интенсивности и качества света. На экваторе, где солнечный свет обилен весь год и вода не является ограничивающим фактором, растения имеют высокие темпы роста, и могут стать довольно большими. И наоборот, фотосинтез в более глубоких частях океана встречается реже, поскольку свет не проникает в эти слои, и в результате эта экосистема оказывается более бесплодной.

Интенсивность фотосинтеза зависит от целого ряда факторов. Во-первых, от длины световой волны. Наиболее эффективно процесс протекает под действием волн сине-фиолетовой и красной части спектра. Кроме того, на скорость фотосинтеза влияет степень освещенности, и до определенного момента скорость процесса возрастает пропорционально количеству света, нот далее уже не зависит от него.

Другим фактором является концентрация углекислого газа. Чем она выше, тем интенсивнее идет процесс фотосинтеза. В обычных условиях недостаток углекислого газа – главный ограничивающий фактор, так как в атмосферном воздухе его содержится небольшой процент. Однако в тепличных условиях можно устранить этот дефицит, что благоприятно скажется на скорости фотосинтеза и темпе роста растений.

Немаловажным фактором интенсивности фотосинтеза является температура. Все реакции фотосинтеза катализируются ферментами, для которых оптимальной температурой является интервал 25-30 О С. При более низких температурах скорость действия ферментов резко снижается.

Вода - важный фактор, влияющий на фотосинтез. Однако оценить количественно этот фактор невозможно, поскольку вода участвует во многих других обменных процессах, происходящих в растительной клетке.

Значение фотосинтеза . Фотосинтез является основополагающим процессом в живой природе. Благодаря ему из неорганических веществ – углекислого газа и воды – при участии энергии солнечного света зеленые растения синтезируют органические вещества, необходимые для жизнедеятельности всего живого на Земле. Первичный синтез этих веществ обеспечивает осуществление процессов ассимиляции и диссимиляции у всех организмов.

Продукты фотосинтеза – органические вещества – используются организмами:

  • для построения клеток;
  • как источник энергии для процессов жизнедеятельности.

Человек использует созданные растениями вещества:

  • в качестве продуктов питания (плоды, семена и др.);
  • в качестве источника энергии (уголь, торф, древесина);
  • как строительный материал.

Человечество своим существованием обязано фотосинтезу. Все запасы горючего на Земле – это продукция фотосинтеза. Используя ископаемое топливо, мы получаем энергию, запасенную в результате фотосинтеза древними растениями, существовавшими в прошлые геологические эпохи.

Одновременно с синтезом органических веществ в атмосферу Земли выделяется побочный продукт фотосинтеза – кислород, который необходим для дыхания организмов. Без кислорода жизнь на нашей планете невозможна. Его запасы постоянно расходуются на продукты горения, окисления, дыхания, происходящие в природе. По подсчетам ученых, без фотосинтеза весь запас кислорода был бы израсходован в течение 3000 лет. Следовательно, фотосинтез имеет величайшее значение для жизни на Земле.

В течение многих веков ученые биологи пытались разгадать тайну зеленого листа. Долгое время считалось, что растения создают питательные вещества из воды и минеральных веществ. Это убеждение связано с экспериментом голландского исследователя Анна ванн Гельмонта, проведенным еще в 17 веке. Он посадил деревце ивы в кадку, точно измерив массу растения (2,3 кг) и сухой почвы (90,8 кг). В течении пяти лет он только поливал растение, ничего не внося в почву. Через пять лет масса дерева увеличилась на 74 кг, тогда как масса почвы уменьшилась лишь на 0,06 кг. Ученый сделал вывод, что растение образует все вещества из воды. Таким образом, было установлено одно вещество, которое усваивает растение при фотосинтезе.

Первую попытку научного определения функции зеленого листа предпринял в 1667 итальянский натуралист Марчелло Мальпиги. Он заметил, что если у проростков тыквы оторвать первые зародышевые листочки, то растение перестает развиваться. Изучая строения растений, он сделал предположение: под действием солнечных лучей в листьях растения происходит какие-то преобразования и испаряется вода. Однако на эти предположения в то время не обратили внимания.

Через 100 лет швейцарский ученый Шарль Бонне провел несколько экспериментов с помещением листа растения в воду и освещением его солнечным светом. Только вывод он сделал неверный, считая, что растение не участвует в образовании пузырьков.

Открытие роли зеленого листа принадлежит химику, англичанину Джозефу Пристли. В 1772 году, изучая значение воздуха для горения веществ и дыхания, он поставил опыт и выяснил, что растения улучшают воздух и делают его пригодным для дыхания и горения. После серии опытов Пристли обратил внимание, что растения улучшают воздух на свету. Он первым высказал предположение о роли света в жизнедеятельности растений.

В 1800 году швейцарский ученый Жан Сенебье научно разъяснил сущность этого процесса (к тому времени Лавуазье уже открыл кислород и изучил его свойства): листья растений разлагают углекислый газ и выделяют кислород только под действием солнечного света.

Во второй половине 19 века была получена спиртовая вытяжка из листьев растений зеленого цвета. Это вещество назвали хлорофиллом.

Немецкий естествоиспытатель Роберт Майер открыл поглощение растением солнечного света и превращение ее в энергию химических связей органических веществ (количество запасающегося в растении углерода в виде органических веществ напрямую зависит от количества падающего на растение света).

Климент Аркадьевич Тимирязев, русский ученый исследовал влияние различных участков спектра солнечного света на процесс фотосинтеза. Ему удалось установить, что именно в красных лучах фотосинтез протекает наиболее эффективно, и доказать, что интенсивность этого процесса соответствует поглощению света хлорофиллом.

К.А. Тимирязев подчеркнул, что, усваивая углерод, растение усваивает и солнечный свет, переводя его энергию в энергию органических веществ

Из всех факторов одновременно влияющих на процесс фотосинтеза лимитирующим будет тот, который ближе к минимальному уровню. Это установил Блэкман в 1905 году . Разные факторы могут быть лимитными, но один из них главный.

1. При низкой освещенности скорость фотосинтеза прямопропорциональна интенсивности света. Свет – лимитирующий фактор при низкой освещенности. При большой интенсивности света происходит обесцвечивание хлорофилла и фотосинтез замедляется. В таких условиях в природе растения обычно защищены (толстая кутикула, опушенные листья, чешуйки).

  1. Для темновых реакций фотосинтеза необходим углекислый газ , который включается в органические вещества, в полевых условиях является лимитирующим фактором. Концентрация СО 2 варьирует в атмосфере в пределах от 0,03–0,04%, но если повысить ее, то можно увеличить скорость фотосинтеза. Некоторые тепличные культуры сейчас выращиваются при повышенном содержании СО 2 .
  2. Температурный фактор . Темновые и некоторые световые реакции фотосинтеза контролируются ферментами, а их действие зависит от температуры. Оптимальная температура для растений умеренного пояса составляет 25 °С. При каждом повышении температуры на 10 °С (вплоть до 35 °С) скорость реакций удваивается, но из-за влияния ряда иных факторов растения лучше растут при 25 °С.
  3. Вода – исходное вещество для фотосинтеза. Недостаток воды влияет на многие процессы в клетках. Но даже временное увядание приводит к серьезным потерям урожая. Причины: при увядании устьица растений закрываются, а это мешает свободному доступу СО 2 для фотосинтеза; при нехватке воды в листьях некоторых растений накапливается абсцизовая кислота . Это гормон растений – ингибитор роста. В лабораторных условиях ее используют для изучения торможения ростового процесса.
  4. Концентрация хлорофилла . Количество хлорофилла может уменьшаться при заболеваниях мучнистой росой, ржавчиной, вирусными болезнями, недостатком минеральных веществ и возрастом (при нормальном старении). При пожелтении листьев наблюдаются хлоротичные явления или хлороз . Причиной может быть недостаток минеральных веществ. Для синтеза хлорофилла нужны Fe, Mg, N и К.
  5. Кислород . Высокая концентрация кислорода в атмосфере (21%) ингибирует фотосинтез. Кислород конкурирует с углекислым газом за активный центр фермента, участвующего в фиксации СО 2 , что снижает скорость фотосинтеза.
  6. Специфические ингибиторы . Лучший способ погубить растение – это подавить фотосинтез. Для этого ученые разработали ингибиторы – гербициды – диоксины. Например:ДХММ – дихлорфенилдиметилмочевина – подавляет световые реакции фотосинтеза. Успешно используют для изучения световых реакций фотосинтеза.
  7. Загрязнение окружающей среды . Газы промышленного происхождения, озон и сернистый газ, даже в малых концентрациях сильно повреждают листья у ряда растений. К сернистому газу очень чувствительны лишайники. Поэтому существует метод лихеноиндикации – определение загрязнения окружающей среды по лишайникам. Сажа забивает устьица и уменьшает прозрачность листовой эпидермы, что снижает скорость фотосинтеза.

6. Факторы жизни растений, тепло, свет, воздух, вода - Растения в течение всей своей жизни постоянно находятся во взаимодействии с внешней средой. Требования растений к факторам жизни определяются наследственностью растений, и они различны не только для каждого вида, но и для каждого сорта той или иной культуры. Вот почему глубокое знание этих требований дает возможность правильно устанавливать структуру посевных площадей, чередование культур, размещение севооборотов .
Для нормальной жизнедеятельности растениям необходимы свет, тепло, вода, питательные вещества, включая углекислоту и воздух.
Основным источником света для растений является солнечная радиация. Хотя этот источник находится вне влияния человека, степень использования световой энергии солнца для фотосинтеза зависит от уровня агротехники: способов посева (направление рядков с севера на юг или с востока на запад), дифференцированных норм высева, обработки почвы и др.
Своевременное прореживание растений и уничтожение сорняков улучшают освещенность растений.
Тепло в жизни растений , наряду со светом представляет основной фактор жизни растений и необходимое условие для биологических, химических и физических процессов в почве. Каждое растение на различных фазах и стадиях развития предъявляет определенные, но неодинаковые требования к теплу, изучение которых составляет одну из задач физиологии растений и научного земледелия. тепло в жизни растений влияет на скорость развития в каждой стадии роста. В задачу земледелия входит также изучение теплового режима почвы и способов его регулирования.
Вода в жизни растений и питательные вещества, за исключением углекислоты, поступающей как из почвы, так и из атмосферы, представляют почвенные факторы жизни растений. Поэтому воду и питательные вещества называют элементами плодородия почвы.
Воздух в жизни растений (атмосферный и почвенный) необходим как источник кислорода для дыхания растений и почвенных микроорганизмов, а также как источник углерода, который растение усваивает в процессе фотосинтеза. Кроме того, Воздух в жизни растений необходим для микробиологических процессов в почве, в результате которых органическое вещество почвы разлагается аэробными микроорганизмами с образованием растворимых минеральных соединений азота, фосфора, калия и других элементов питания растений.



7 . Показатели фотосинтетической продуктивности посева

Урожай создается в процессе фотосинтеза, когда в зеленых рас­ тениях образуется органическое вещество из диоксида углерода, воды и минеральных веществ. Энергия солнечного луча переходит в энергию растительной биомассы. Эффективность этого процес­ са и в конечном счете урожай зависят от функционирования посе­ ва как фотосинтезирующей системы. В полевых условиях посев (ценоз) как совокупность растений на единице площади представляет собой сложную динамическую саморегулирующуюся фотосинтезирующую систему. Эта система включает в себя много компонентов, которые можно рассматри­ вать как подсистемы; она динамическая, так как постоянно меняет свои параметры во времени; саморегулирующаяся, так как, не­ смотря на разнообразные воздействия, посев изменяет свои пара­ метры определенным образом, поддерживая гомеостаз.

Показатели фотосинтетической деятельности посевов. Посев представляет собой оптическую систему, в которой листья погло­ щают ФАР. В начальный период развития растений ассимиляци­ онная поверхность невелика и значительная часть ФАР проходит мимо листьев, не улавливается ими. С повышением площади лис­ тьев увеличивается и поглощение ими энергии солнца. Когда ин­ декс листовой поверхности* составляет 4...5, т. е. площадь листьев в посеве 40...50 тыс. м 2 /га, поглощение ФАР листьями посева до­ стигает максимального значения - 75...80 % видимой, 40 % общей радиации. При дальнейшем увеличении площади листьев погло­ щение ФАР не повышается. В посевах, где ход формирования площади листьев оптималь­ ный, поглощение ФАР может составить в среднем за вегетацию 50...60 % падающей радиации. Поглощенная растительным по­ кровом ФАР - энергетическая основа для фотосинтеза. Однако в урожае аккумулируется только часть этой энергии. Коэффици­ ент использования ФАР обычно определяют по отношению к па­ дающей на растительный покров ФАР. Если в урожае биомассы в средней полосе России аккумулировано 2...3 % прихода на посев ФАР, то сухая масса всех органов растений составит 10... 15 т/га, а возможная урожайность - 4...6 т зерна с 1 га. В изреженных по­ севах коэффициент использования ФАР составляет всего 0,5...1,0%.

При рассмотрении посева как фотосинтезирующей системы урожай сухой биомассы, создаваемый за вегетационный период, или его прирост за определенный период зависит от величины средней площади листьев, продолжительности периода и чистой продуктивности фотосинтеза за этот период.

У = ФП ЧПФ,

где У -урожайность сухой биомассы, т/га;

ФП- фотосинтетический потенциал, тыс. м 2 - дни/га;

ЧПФ -чистая продуктивность фотосинтеза, г/(м2 - дни).

Фотосинтетический потенциал рассчитывают по формуле

где Sc - средняя за период площадь листьев, тыс. м 2 /га;

Т - продолжительность периода, дни.

Основные показатели для ценоза, как и урожайность, опреде­ ляют в расчете на единицу площади -1м 2 или 1 га. Так, площадь листьев измеряют в тыс. м 2 /га. Кроме того, пользуются таким по­ казателем, как индекс листовой поверхности. Основную часть ассимиляционной поверхности составляют листья, именно в них осуществляется фотосинтез. Фотосинтез мо­ жет происходить и в других зеленых частях растений - стеблях, остях, зеленых плодах и т. п., однако вклад этих органов в общий фотосинтез обычно небольшой. Принято сравнивать посевы меж­ ду собой, а также различные состояния одного посева в динамике по площади листьев, отождествляя ее с понятием «ассимиляцион­ ная поверхность». Динамика площади листьев в посеве подчиняется определен­ ной закономерности. После появления всходов площадь листьев медленно повышается, затем темпы нарастания увеличиваются. К моменту прекращения образования боковых побегов и роста ра­ стений в высоту площадь листьев достигает максимальной за веге­ тацию величины, затем начинает постепенно снижаться в связи с пожелтением и отмиранием нижних листьев. К концу вегетации в посевах многих культур (зерновые, зерновые бобовые) зеленые листья на растениях отсутствуют. Площадь листьев различных сельскохозяйственных растений может сильно варьировать в течение вегетации в зависимости от условий водоснабжения, питания, агротехнических приемов. Максимальная площадь листьев в засушливых условиях достигает всего 5... 10 тыс. м 2 /га, а при избыточных увлажнении и азотном питании она может превышать 70 тыс. м 2 /га. Считается, что при индексе листовой поверхности 4...5 посев как оптическая фото- синтезирующая система работает в оптимальном режиме, поглощая наибольшее количество ФАР. При меньшей площа­ ди листьев часть ФАР лис­ тья не улавливают. Если площадь листьев больше 50 тыс. м 2 /га, то верхние ли­ стья затеняют нижние, их доля в фотосинтезе резко снижается. Более того, вер­ хние листья «кормят» ниж­ ние, что невыгодно для формирования плодов, се­ мян, клубней и т. д. Динамика площади лис­ тьев показывает, что на разных этапах вегетации посев как фотосинтезиру- ющая система функциони­ рует неодинаково (рис. 3). Первые 20...30 дней вегетации, когда средняя площадь листьев составляет 3...7 тыс. м 2 /га, большая часть ФАР не улавливается листьями, и поэтому коэффициент использования ФАР не может быть высоким. Далее площадь ли­ стьев начинает быстро нарастать, достигая максимума. Как пра­ вило, это происходит у мятликовых в фазе молочного состояния зерна, у зерновых бобовых в фазе полного налива семян в сред­ нем ярусе, у многолетних трав в фазе цветения. Затем площадь листьев начинает быстро снижаться. В это время преобладают перераспределение и отток веществ из вегетативных органов в генеративные. На продолжительность этих периодов и их соотношение влияют различные факторы, в том числе агротехнические. С их помощью можно регулировать процесс нарастания площади листьев и продол­ жительность периодов. В засушливых условиях густоту растений, а следовательно, и площадь листьев намеренно снижают, так как при большой площади листьев усиливается транспирация, растения сильнее страдают от недостатка влаги, урожайность уменьшается.

Основными внешними факторами , влияющими на интенсивность фотосинтеза, являются освещенность, концентрация диоксида углерода и температура. Если по горизонтальной оси отложить изменение любого из перечисленных факторов, то кривые зависимости интенсивности фотосинтеза от этих факторов будут иметь вид, представленный на рисунке. Сначала при увеличении значения какого-либо из лимитирующих факторов наблюдается линейное увеличение интенсивности фотосинтеза. Затем по мере того, как другой фактор или факторы становятся лимитирующими, происходит замедление интенсивности реакции и ее стабилизация.

В дальнейшем будем предполагать, что меняется лишь один, обсуждаемый, фактор , а остальные имеют оптимальные значения.

Освещенность и фотосинтез

При низкой освещенности интенсивность фотосинтеза возрастает пропорционально увеличению количества падающего света. Постепенно под воздействием других факторов интенсивность фотосинтеза снижается. Освещенность в ясный летний день составляет примерно 100 000 люкс (10 000 фут-кандел), тогда как для нормального процесса фотосинтеза необходима освещенность, равная лишь 10 000 люкс. Поэтому для большинства растений (кроме растений, находящихся в тени) свет не является главным лимитирующим фактором фотосинтеза. Очень высокие значения интенсивности света могут приводить к обесцвечиванию хлорофилла и замедлению реакций фотосинтеза. Вместе с тем растения, постоянно находящиеся в подобных условиях, обычно хорошо к ним адаптированы; например, листья у них покрыты толстой кутикулой или густо опушены.

Концентрация диоксида углерода и фотосинтез

Диоксид углерода используется в темновых реакциях для получения сахара. В нормальных условиях диоксид углерода является основным лимитирующим фактором фотосинтеза. В атмосфере содержится от 0,03 до 0,04% диоксида углерода. Если повысить его содержание в воздухе, то можно добиться увеличения интенсивности фотосинтеза. В течение короткого периода можно поддерживать оптимальную концентрацию, составляющую 0,5%, однако при длительном воздействии такая концентрация становится опасной для растения. Поэтому наиболее благоприятной считается концентрация диоксида углерода, равная примерно 0,1%. Некоторые тепличные культуры, например томаты, выращивают именно в атмосфере, обогащенной диоксидом углерода. В настоящее время большой интерес вызывают растения, способные эффективно удалять диоксид углерода из атмосферы и дающие при этом повышенные урожаи. Такие растения, называемые С4-растения, обсуждаются в соответствующем разделе.

Температура и фотосинтез

Темновые, а в некоторой степени и световые реакции контролируются ферментами , поэтому температура воздуха имеет большое значение. Для растений умеренного климата наиболее благоприятной температурой является температура примерно 25 °С. При повышении температуры на каждые 10 °С скорость реакции удваивается, (вплоть до 35 °С), однако другие данные свидетельствуют о том, что при 25 "С растение развивается лучше.

Концентрация хлорофилла и фотосинтез

Сама по себе концентрация хлорофилла не является фактором, лимитирующим фотосинтез. Важными могут оказаться причины понижения уровня хлорофилла: болезни (мучнистая роса, ржа, вирусные болезни), недостаток микроэлементов, нормальные процессы старения. Когда лист желтеет, говорят, что он стал хлоротичным, а процесс образования желтоватой окраски листьев называется хлорозом. Хлоро-тичные пятна часто являются симптомом болезни или минеральной недостаточности. Некоторые элементы, например железо, магний и азот (последние два непосредственно входят в молекулу хлорофилла), необходимы для образования хлорофилла, поэтому эти элементы особенно важны. Кроме того, растению требуется калий. Еше одной причиной возникновения хлороза является недостаток света, поскольку свет необходим на конечной стадии синтеза хлорофилла.


Специфические ингибиторы и фотосинтез

Если подавить фотосинтез , то растение неминуемо погибнет. На этом была основана разработка различных гербицидов, например ДХММ (дихлорфенилдиметилмочевина). Данный препарат запускает обходной путь нециклического потока электронов в хлоропластах, ингибируя таким образом световые реакции. ДХММ сыграла важную роль в изучении световых реакций фотосинтеза.

Еше два фактора оказывают большое влияние на рост сельскохозяйственных культур и имеют более общее значение для роста растения и процесса фотосинтеза - это наличие воды и загрязнение окружающей среды.

Вода и фотосинтез

Вода представляет собой исходное вещество для фотосинтеза. Однако поскольку вода влияет на огромное число клеточных процессов, оценить ее непосредственное влияние на фотосинтез невозможно. Тем не менее, изучая количество синтезируемого органического вещества у растений, страдающих от недостатка воды, можно видеть, что временное увядание приводит к резкому снижению урожая. Даже если у растений не наблюдается видимых изменений, незначительный дефицит воды приводит к значительному падению урожая. Причины этого сложны и не до конца изучены. Одной из явных причин можно считать закрывание устьиц при увядании, что препятствует поступлению углекислого газа для фотосинтеза. Кроме того, было показано, что при недостатке воды в листьях некоторых растений накапливается абсцизовая кислота, являющаяся ингибитором роста.

Загрязнение окружающей среды и фотосинтез

Некоторые газы промышленного происхождения, например озон и диоксид серы , даже в небольших количествах очень опасны для листьев растений, хотя точные причины этого до сих пор не установлены. Так, зерновые культуры в загрязненных районах теряют до 15% своей массы, особенно во время засушливого лета. Оказалось, что лишайники очень чувствительны к диоксиду серы. Сажа забивает устьица и уменьшает прозрачность эпидермиса листа.