Основные типы оптических коннекторов. Оконечные устройства волс

  • Сетевые технологии
  • Часто у знакомых системных администраторов, не сталкивавшихся раньше с оптическим волокном, возникают вопросы, как и какое оборудование необходимо для организации соединения. Немного почитав, становится понятно, что нужен оптический трансивер. В этой обзорной статье я напишу основные характеристики оптических модулей для приема/передачи информации, расскажу основные моменты, связанные с их использованием, и приложу много наглядных изображений с ними. Осторожно, под катом много трафика, делал кучу своих собственных фотографий.

    Что и зачем

    Сегодня практически любое сетевое оборудование для передачи данных в сетях Ethernet, предоставляющее возможность подключения через оптическое волокно, имеет оптические порты. В них устанавливаются оптические модули, в которые уже может подключаться волокно. В каждый модуль встроен оптический передатчик (лазер) и приемник (фотоприемник). При классической передаче данных с их использованием предполагается использовать два оптических волокна - одно для приема, другое для передачи. На изображении снизу представлен коммутатор с оптическими портами и установленными модулями.

    Вот об этих маленьких электронных штуковинах дальше и пойдет речь.

    Виды оптических модулей

    Периодически возникают вопросы, какой же оптический приемопередатчик нужен в конкретной ситуации. Если перед глазами оказывается прайслист какой-либо, то просто разбегаются глаза от обилия всевозможных наименований. Попробую прояснить, что же значат различные буквы и цифры в названии модулей и что же из них вам может понадобиться. Оптические модули различаются формфактором (GBIC, SFP, X2...), типом технологии («прямые», CWDM, WDM, DWDM...), мощностью (в дицебелах), разъемами (FC, LC, SC).

    Различные формфакторы

    В первую очередь модули различаются своими формфакторами. Немного расскажу про различные варианты.

    GBIC

    GigaBit Interface Converter, активно использовался в 2000-х. Самый первый промышленно стандартизованный формат модулей. Очень часто применялся при передачи через многомодовые волокна. Сейчас же практически не используется в силу своих размеров. У меня осталась одна старая циска 3500, еще без поддержки CEF, в которой можно воспользоваться данными модулями. На изображении снизу два GBIC-модуля 1000Base-LX и 1000Base-T:

    SFP

    Small Form-factor Pluggable, наследник GBIC. Наверно самый распространенный на сегодняшний день формат, гораздо удобнее в силу меньших размеров. Такой формфактор позволил значительно увеличить плотность портов на сетевом оборудовании. Благодаря таким размерам стало возможно реализовать до 52 оптических портов на одной железке в один юнит. Используется для передачи данных на скоростях 100Mbits, 1000Mbits. На изображении снизу коммутатор с оптическими портами и пара модулей 1000Base-LX и 1000Base-T.

    SFP+

    Enhanced Small Form-factor Pluggable. Имеют идеентичный SFP размер. Схожий размер позволил сделать оборудование с портами, поддерживающими обычные SFP и SFP+. Такие порты могут работать в режимах 1000Base/10GBase. Лишь дальнобойные CWDM-модули имеют большую длину из-за радиатора. Используются для передачи данных на скоростях 10 Gbits. Малые размеры придали некоторые особенности - для дальнобойных модулей бывают случаи слишком сильного нагрева. Поэтому для передачи более чем на 80 км таких модулей пока нет. На картинке снизу два модуля SFP+ - CWDM и обычный 10GEBase-LR:

    XFP

    10 Gigabit Small Form Factor Pluggable. Также, как и SFP+, используются для передачи данных на скоростях 10 Gbits. Но в отличии от предыдущих, немного шире. Увеличенный размер позволил использовать их для прострела на большие расстояние по стравнению с SFP+. Снизу дополнительная плата для Huawei с установленными XFP и пара таких модулей.

    XENPAK

    Модули, используемые преимущественно в оборудовании Cisco. Используются для передачи данных на скоростях 10 Gbits. Сейчас уже изредка можно найти им применение, изредка можно встретить в старых линейках маршрутизаторов. Также такие модули бывают для подключения медного провода 10GBase-CX4. К сожалению, у меня нашелся лишь один XENPAK-модуль 10GEBase-LR и старая Cisco-вская плата WS-X6704-10GE под них.

    X2

    Дальнейшее развитие модулей формата XENPAK. Часто в разъемы X2 можно установить модуль TwinGig, в который уже можно установить два модуля SFP… Это нужно в случае, если на оборудовании нет 1GE оптических портов. В основном X2-формфактор использует Cisco. В продаже существуют адаптеры X2-SFP+ (XENPACK-to-SFP+). Интересно, что такой комплект (адаптер+SFP+ модуль) выходит дешевле одного X2 модуля.
    К сожалению, на руках у меня нашелся только адаптер, но чтобы понять, как выглядят эти модули и какого они размера этого вполне хватит. На рисунке снизу адаптер X2-SFP+ со вставленным SFP+ модулем.

    Но если кому интересно, вот можно посмотреть больше картинок и возможностей этого разъема.

    Да, я не затрагивал относительно новые формфакторы (QSFP, QSFP+, CFP). На текущий момент они еще не очень распространены.

    Различные стандарты

    Как известно, комитетом 802.3 принято множество разных стандартов Ethernet. Соответственно, оптические модули поддерживают один из них. Неплохая шпаргалка по стандартам Ethernet есть . В основном сейчас распространены следующие типы:
    • 100Base-LX - 100 мегабит по волокну на 10км
    • 100Base-T - 100 мегабит по меди на 100 м
    • 1000Base-LX - 1000 мегабит по волокну на 10 км
    • 1000Base-T - 1000 мегабит по меди на 100 м
    • 1000Base-ZX - 1000 мегабит по одномодовому волокну на 70 км
    • 10GBase-LR - 10GE по одномодовому волокну на 10 км
    • 10GBase-ER - 10GE по одномодовому волокну на 40 км
    Конечно же, оптические модули есть и под другие стандарты, в том числе и 40GE и 100GE. Я перечислил основные типы, используемые в провайдерских сетях. Обычно в названии или спецификации написано, по какому стандарту будет работать тот или иной модуль. Но еще важно посмотреть, поддерживает ли этот стандарт порт оборудования, куда будет установлен модуль. Например, 100Base-LX не заведется в порту коммутатора, поддерживающего только 1000Base-LX. Эту особенность тоже надо учитывать.

    С использованием спектрального уплотнения

    Описанные выше оптические модули передают сигнал в основном на длине волны 1310 нм или 1550 нм на двух волокнах (одно для передачи, другое для приема). Они имеют широкополосный фотоприемник (принимают все) и лазер, излучающий на определенной длине волны (грубо конечно). Но имеется возможность использовать уплотнение по длине волны. Это дает возможность использовать меньшее количество волокон для организации нескольких каналов тем самым увеличивая пропускную способность одного волокна.

    WDM

    Такие модули работают в паре, с одной стороны сигнал передается на длине волны 1310 нм, с другой 1550 нм. Это позволяет вместо двух волокон для организации одного канала использовать одно. Приемник на таких модулях так и остается широкополосным. Бывают как для 1GE, так и для 10GE. Снизу фотографии пары WDM-модулей с различными разъемами для подключения патчкордов LC и SC.

    В большинстве случаев предпочтительнее использовать WDM-модули для малых расстояний. Их цена не очень большая (по 1 тыс рублей за модуль против 500 рублей за обычный). Причина - вы экономите целое волокно, на нем можно будет потом еще один такой же канал прогнать. Хотя конечно есть и другие способы экономии волокон.

    CWDM

    Дальнейшее продолжение технологии WDM. С ее использованием можно добиться до 8 дуплексных каналов по одному волокну. Для этих целей используются CWDM-мультиплексоры (пассивные устройства с призмой внутри, позволяющей делить сигнал по цветам с шагом 20нм в диапазоне от 1270нм до 1610нм). Для этого также используют специальные CWDM-модули, в простонародье их называют «цветные», они передают сигнал на определенной длине волны. В то же время приемник на них широкополосный. Кроме того, такие оптические модули часто делают для передачи на большие расстояние (до 160 км). На рисунке ниже представлен малый комплект CWDM-SFP, на котором с использованием мультиплексоров можно поднять 2GE на одном волокне.

    Как можно заметить, дужки у всех разные. В зависимости от длины волны модуль имеет свою раскраску. К сожалению, у всех производителей они разные.

    Здесь появляется понятие оптический бюджет . Правда его расчет выходит за рамки этой статьи. В кратце, чем больше доступных портов, тем больше вы сможете смультиплексировать каналов, тем больше будет затухание. Кроме того, различные длины волн дают различные затухания на 1 километр передаваемого сигнала. А еще нужно учитывать тип волокна…

    Можно много писать о методиках подбора таких модулей, о пересечении длин волн, о нежелательных длинах, о ADD/DROP-модулях. Но это отдельная тема.

    Разъемы

    Это то место, куда вы будете подключать оптический патчкорд. На оптических модулях сейчас используются преимущественно два типа раъемов - SC и LC. Грубо и жаргонно - большой и мелкий квадраты. Понятно, что имея в наличии патчкорд с разъемом SC, вы не подсоедините его к разъему LC. Нужно либо менять патчкорд, либо ставить переходник-адаптер. В большинстве случаев SFP-модули имеют разъем LC, в то время как X2/XENPAK - SC. Выше на изображениях уже были модули с различными разъемами.

    Немного о патчкордах

    Оптические патчкорды, они же оптические шнуры. Нас будут интересовать следующие характеристики: дуплекс/симплекс (количество волокон), полировка (сейчас это UPC-синие или APC-зеленые), разъем (SC, LC, FC), многомодовость и длина. Конечно, важна еще и толщина сердцевины волокна, но сейчас на многомодовые обычные шнуры используют стандартную толщину. Снизу я представил изображение с различными видами концов патчкордов.

    В основном вы будете встречать следующее обозначение шнуров - ШО-2SM-SC/UPC-SC/UPC-3.0 . Это расшифровывается следующим образом: Шнур Оптический Дуплексный Одномодовый (Single-Mode) с разъемами SC и полировкой UPC с одной стороны и SC-UPC с другой длиной 3.0 метра. Соответственно, например, ШО-SM-LC/APC-SC/APC-15.0 - одномодовый дуплексный шнур с разъемами LC-LC и гравировкой APC длиной 15 метров.

    Неоторые особенности

    Оптические модули - активное оборудование, они потребяют электроэнергию и выделяют тепло. Это следует учитывать при подключении оборудования к электросети. Также коммутатор, заполненный мощными модулями под завязку может потребовать дополнительного охлаждения.

    Не стоит забывать, что в оптические модули встроены лазеры, и с ними необходимо соблюдать некоторую технику безопасности. Конечно в большинстве случаев никакой угрозы они не предоставляют в силу слабой мощности, но бывали случаи, дальнобойные мощные 10GE модули могут вполне выжечь сетчатку глаза или оставить ожог, если использовать палец в качестве аттюниатора.

    Современные оптические модули имеют функцию DDM (Digital Diagnostics Monitoring) - в них встроен ряд сенсоров, через которые можно определить текущее значение некоторых параметров. Смотрится это через интерфейс оборудования, в которое установлен модуль. Самые важные параметры для вас - текущие принимаемая мощность и температура.

    Ряд производителей сетевого оборудования запрещают использовать сторонние модули в их оборудовании. По крайней мере раньше Cisco не давала их запускать, они в ней просто не работали. Сейчас же в узких кругах известны

    Коннектор - коннектор

    Самый привычный для пользователей и операторов тип соединений это коннектор-коннектор. Соединение многоразовое и типичное. Позволяет переключать входы и выходы аппаратуры без специальных приспособлений. Во многом напоминает электрические штеккера и вилки.

    В отличие от электрических соединений в соединении коннектор - коннектор понятие розетка-вилка (мама-папа) несколько изменено. Фактически соединяются два однотипных коннектора посредством специализированного гнезда.

    Принцип действия достаточно прост для понимания, чего не скажешь о технологии изготовления. Задача соединения соединить два оптоволокна вплотную с отклонением от оси порядка микрона при этом ограничив усилие оператора, чтобы не допустить сколов в оптоволокне. Наконечники коннекторов выполняются из керамики и имеют прецизионную точность изготовления. Строго по центру керамического наконечника проходит оптоволокно.

    Оптические разъемы

    Существуют несколько стандартов оптических коннекторов: ST, SC, LC, FC, FDDI и др. Принцип работы у них одинаковый, различны только способы фиксации или тип крепления к гнезду. Рисунки поясняющие различия наиболее распространённых:

    ST-коннектор

    ST-коннектор(от англ. Straight Tip). Соединения оптоволоконных линий
    Размеры и чертежи ОВ-разъёмов

    Самый распространенный в локальных оптических сетях. Керамический наконечник имеет цилиндрическую форму диаметром 2.5 мм со скругленным торцом. Фиксация производится за счет поворота оправы вокруг оси коннектора (байонетное соединение), при этом вращения основы коннектора отсутствуют (теоретически) за счет паза в разъеме розетки. Направляющие оправы сцепляясь с упорами ST-розетки при вращении вдавливают конструкцию в гнездо. Пружинный элемент обеспечивает необходимое прижатие.

    SC-коннектор

    SC-коннектор(от англ. Subscriber Connector)

    Сечение корпуса имеет прямоугольную форму. Подключение/отключение коннектора осуществляется поступательным движением по направляющим и фиксируется защелками. Керамический наконечник имеет цилиндрическую форму диаметром 2.5 мм со скругленным торцом (некоторые модели имеют скос поверхности). Наконечник почти полностью покрывается корпусом и потому менее подвержен загрязнению нежели в ST-конструкции. Отсутствие вращательных движений обуславливает более осторожное прижатие наконечников.

    LC-коннектор

    Коннекторы типа LC - это малогабаритный вариант SC-коннекторов. Он также имеет прямоугольное сечение корпуса. Конструкция исполняется на пластмассовой основе и снабжена защелкой, подобной защелке, применяющейся в модульных коннекторах медных кабельных систем. Вследствие этого и подключение коннектора производится схожим образом. Наконечник изготавливается из керамики и имеет диаметр 1.25 мм. Встречаются как многомодовые, так и одномодовые варианты коннекторов. Ниша этих изделий - многопортовые оптические системы.

    Тот же тип коннектора на два соединения:

    FC-коннектор

    FC-коннектор для соединения оптического волокна
    Размеры и чертежи ОВ-разъёмов

    FC-коннектор. В данном случае фиксация коннектора к гнезду резьбовое. Характеризуются отличными геометрическими характеристиками и высокой защитой наконечника. Получили широкое применение в межстанционных соединениях связи. Имеет тот же диаметр керамического наконечника что и ST-коннектор.

    Гнездо для FC-коннектора закреплённое в оптическом кроссе

    FDDI-коннектор

    FDDI-коннектор. Спаренный коннектор для соединения ОВ

    Для подключения дуплексного кабеля часто применяют FDDI-коннекторы. Конструкция исполняется из пластмассы и содержит два керамических наконечника. Для исключения неправильного подключения линка коннектор имеет несимметричный профиль.

    Технология FDDI предусматривает четыре типа используемых портов: A, B, S и M. Проблема идентификации соответствующих линков решается за счет снабжения коннекторов специальными вставками, которые могут различаться по цветовой гамме или содержать буквенные индексы.

    В основном данный тип используется для подключения к оптическим сетям оконечного оборудования.

    Промышленностью выпускаются так же розетки-адаптеры для соединения различных типов коннекторов чертежи некоторых из них доступны по ссылке: "Розетки-адаптеры "

    Буквы АРС, PC или UPC в обозначении или маркировки ОВ-коннекторов

    В маркировке оптоволоконных коннекторов могут также присутствовать буквы АРС, PC или UPC. Аббревиатура АРС обозначает, что угол полировки торца изделия составляет 8°. Обычно оконечные с полировкой АРС изготавливаются с корпусом или хвостовиком зелёного цвета .

    Рис. А. 13. Схема образования оптического контакта в месте соединения наконечников разъемов PC и АРС.

    Затухание на соединении коннекторов оптоволокна. (оптиковолоконных, волоконно-оптических) линий

    Производители коннекторов обещают следующие затухание на соединении:

    Тип
    коннектора
    Потери (Дб) при 1300 нм
    Многомодовый Одномодовый
    ST 0.25 0.3
    SC 0.2 0.25
    LC 0.1 0.1
    FC 0.2 0.6
    FDDI 0.3 0.4

    На практике такие хорошие затухания получаются не всегда.

    Оконечить волокно коннектором можно и при монтаже стойки (необходим соответствующий инструмент и заготовки коннекторов), но на практике так не делают. В процессе монтажа станционного оборудования или оконечивания оптического кабеля используют готовые и оконеченные оптические шнуры, закупаемые вместе со стойкой или кроссом. Шнур разрезается пополам и каждая половина соединяется посредством сварки с оптоволокном кабеля. Соединения укладываются в кассету (сплайс-пластину) и прячутся в предназначенный для этого бокс. Наружу выводятся только коннекторы, которые вставляются в гнёзда, выведенные на лицевую панель кросса. Станционные операторы могут относится к этим гнёздам как к разъёмам типа "мама". Но по сути гнездо оптоволоконного кросса это просто трубка с необходимыми для данного типа коннектора креплением.

    С теорией и более научно тема оптического соединения коннекторов раскрыта на странице "Оптические разъемы " из книги Листвиных "Рефлектометрия оптических волокон".

    Так же о строении и принципах построения оптоволоконных коннекноров много информации есть на страницах книги Д.Бейли, Э.Райт Волоконная оптика. Теория и практика . По теме коннекторы из неё страницы → Коннекторы Свойства коннектора Общее строение коннектора Распространенные типы коннекторов Работа с коннекторами Косички

    Отечественными и мировыми производителями за прошедшее время было создано множество типов оптических коннекторов, а также специальных проходных адаптеров, используемых для их надежного соединения. Среди них наибольшую популярность завоевали только 4 типа разъемов: LC, ST, FC и SC. Другие коннекторы применяются крайне редко или уже не производятся. Популярность отдельных типов разъемов зависит от конкретной отрасли их использования.

    Главные типы оптических коннекторов

    Оптический разъем ST

    Отличается металлической байонетной конструкцией. А диаметр его керамического наконечника равен 2.5 мм. Раньше данный разъем широко использовался в сетях с многомодовыми волокнами из оптоволокна. А сейчас его не рекомендуют использовать. По сравнению с другими типами, он лишен возможности создания специального дуплексного разъема, имеет невысокую надежность, плохую устойчивость, недостаточно компактный и простой.

    Оптический разъем FC

    По своей конструкции схож с предыдущим. Диаметр его керамического наконечника тоже составляет 2.5 мм, но вместо байонета применяется металлическое соединение с резьбой. Этот разъем сегодня широко используют в оборудовании активного типа и различных измерительных приборах. Он отличается долговечностью, отличной устойчивостью к всевозможным вибрациям. Зачастую его используют именно в магистральных ВОЛС. можно так же в нашей компании. В компании AVS Electronics оптики и компонентов.

    Оптический разъем SC

    Широкое распространение получил за счет удобства коммутации и возможности создания специального дуплексного разъема. Он имеет не только внешний корпус, но и внутренний. А диаметр его керамического наконечника равен 2.5 мм. Как правило, такой разъем устанавливают в проходной адаптер легко, без необходимости вращения. широко используется в СКС, современных сетях передачи всевозможных данных в масштабах города. Кабель оптический

    Оптический разъем LC

    Диаметр наконечника данного разъема равняется 1.25 мм, поэтому с ним необходимо аккуратно работать. За счет своих компактных размеров, данные коннекторы завоевали огромную популярность в различном активном оборудовании, современных пассивных оптических шкафах или полках, имеющих высокую плотность.
    Они легко заходят в специальный проходной адаптер обыкновенным защелкиванием. Ассортимент включает коннекторы и , а также многие другие.
    Среди большого разнообразия различных коннекторов в СКС преимущество отдается дуплексным разъемам SC или LC типа с ключом, которые способны предотвратить неправильный ввод коннектора в проходной адаптер, обеспечить правильную полярность данного оптического соединения. В новейшем активном оборудовании и во всех центрах по обработке данных чаще всего применяют разъемы типа LC, ведь они весьма компактны и надежны. Коннекторы разъемы купить можно у специалистов компании AVS Electronics.

    Типы полировки

    Поверхность торца большинства современных оптических коннекторов размещена под углом в 90 градусов, а торец их керамического наконечника немного закруглен. Их различают по качеству выполненной полировки:
    . PC - это обыкновенное качество, допустимое для простых приложений в СКС, современных локальных сетей с небольшим расстоянием и максимальной скоростью, равной 1 Гбит/с. Показатель отражательной способности равен -35 дБ.
    . SPC - улучшенное качество, отличается отражательной способностью, равной от -40 до -45 дБ либо меньше. Данная полировка характерна для всех и пигтэйлов заводского производства.

    UPC - наилучшее качество, исключительно машинная полировка, проводится усиленный контроль качества. Его отражательная способность равна от -50 до -55 дБ либо ниже. Зачастую шнуры с подобной полировкой используют для осуществления измерений высокой точности в процессе проверки современных оптических систем, функционирования самых требовательных приложений, отличающихся скоростями 10 Гбит/с и выше.

    Коннекторы с угловой APC полировкой

    Стыкуемая поверхность коннекторов, имеющих угловую полировку, размещена под углом в 82 градусов. Показатель отражательной способности равен -65 дБ либо меньше.
    С его помощью можно получить наилучшие параметры из всех вероятных на данный момент и уменьшить обратные отражения, но они абсолютно не совместимы со всеми коннекторами, имеющими базовую полировку. Для снижения риска неправильной стыковки, все корпуса этих коннекторов, их хвостовики вместе с проходными адаптерами, делают насыщенного зеленого цвета. Зачастую применяют в провайдерских линиях и во многих сетях современного кабельного телевидения.

    Цвета коннекторов

    Все вышеупомянутые коннекторы изготавливаются в нескольких версиях: для одномодовых оптических волокон 9/125 мкм либо для многомодовых 50/125 мкм. Корпуса вместе с проходными адаптерами в простых многомодовых коннекторах встречаются в черном или бежевом цвете. А одномодовые коннекторы вместе с адаптерами зачастую имеют синий цвет. Все представленные и многие другие можно в компании AVS Electronics по оптовым ценам, высокого качества.

    В настоящее время существует множество оптических разъемов, отличающихся размерами и формами, методами крепления и фиксации. Выбор типа оптического коннектора зависит от используемого активного оборудования, задач монтажа ВОЛС и требуемой точности.

    Классификация оптических разъемов в целом одинакова и основана на следующих параметрах:

    • стандарт коннектора (разъема);
    • тип шлифовки;
    • тип волокна (одномодовое или многомодовое);
    • тип коннекторов (одинарный или дуплекс).

    В результате различных комбинаций всех этих типов получается огромное множество модификаций коннекторов и адаптеров. На картинке ниже приведены далеко не все из них.

    Что означают все эти буквы?

    Возьмем для примера типичную маркировку оптического патчкорда: SC/UPC-LC/UPC MultiMode Duplex .

    • SC и LC - это типы коннекторов. Здесь мы имеем дело с патчкордом-переходником, так как на нем установлены два разных типа разъемов;
    • UPC - тип шлифовки;
    • Multimode - вид волокна, в данном случае многомодовое волокно, оно также может быть обозначено аббревиатурой MM . Одномодовое маркируется как SinglеMode или SM ;
    • Duplex - два разъема в одном корпусе, для более плотного расположения. Противоположный случай - Simplex , один коннектор в одном корпусе.

    Типы оптических разъемов

    В настоящее время наиболее распространены три типа оптических разъемов: FC , SC и LC .

    FC

    Разъемы FC , как правило, используются в одномодовых соединених. Корпус разъема выполнен из никелированной латуни. Резьбовая фиксация позволяет обеспечить надежную защиту от случайных разъединения.

    • подпружиненное соединение, за счет чего достигается "вдавливание" и плотный контакт;
    • металлической колпачок обеспечивает прочную защиту;
    • коннектор вкручивается в розетку, а значит, не может выскочить, даже если случайно дернуть;
    • шевеление кабеля не влияет на соединение.

    Однако плохо подходит для плотного расположения разъемов - необходимо пространство для вкручивания/выкручивания.

    SC

    Более дешевый и удобный, но менее надежный аналог FC. Легко соединяется (защелка), разъемы могут располагаться плотно.

    Однако пластиковая оболочка может сломаться, а на затухание сигнала и обратные отражения влияют даже прикосновения к коннектору.

    Данный тип разъемов используется наиболее часто, но не рекомендован на важных магистралях.

    Тип разъема SC используется как для многомодового волокна, так и одномодового. Диаметр наконечника 2,5 мм, материал - керамика. Корпус коннектора выполнен из пластика. Фиксация коннектора осуществляется поступательным движением с защелкиванием.

    LC

    Уменьшенный аналог SC. За счет малого размера применяется для кроссовых соединений в офисах, серверных и т.п. - внутри помещений, там где требуется высокая плотность расположения разъемов.

    Диаметр наконечника разъема 1,25 мм, материал - керамика. Фиксация разъема происходит за счет прижимного механизма - защелки, аналогично разъему типа RJ-45, которая исключает непредвиденное разъединение.

    При использовании дуплексных патчкордов возможно соединение коннекторов клипсой. Используется для многомодовых и одномодовых волокон.

    Автор разработки этого типа коннектора - ведущий производитель телекоммуникационного оборудования, Lucent Technologies (США) - изначально прогнозировал своему детищу судьбу лидера рынка. В принципе, так оно и есть. Особенно учитывая то, что этот тип разъема относится к соединениям с повышенной плотностью монтажа.

    ST

    В настоящее время ST коннектор широко не применяется из-за недостатков и возросших потребностей по плотности монтажа. Фиксация коннектора происходит за счет поворота вокруг оси, подобно BNC разъему.

    Типы полировки (шлифовки) оптоволоконных разъемов

    Шлифовка или полировка оптоволоконных разъемов служит для обеспечения идеально плотного соприкосновения сердечников оптоволокна. Между их поверхностями не должно быть воздуха, так как это ухудшает качество сигнала.

    На данный момент используются такие типы полировки, как PC , SPC , UPC и APC .

    PC

    PC — Physical Contac . Прародитель всех остальных видов полировки. Разъем, обработанный методом PC (в том числе вручную), представляет собой скругленный наконечник.

    В первых вариациях полировки был предусмотрен исключительно плоский вариант коннектора, однако жизнь показала, что плоский вариант дает место воздушным зазорам между световодами. В дальнейшем торцы коннекторов получили небольшое закругление. В класс PC входят заполированные вручную и изготовленные по клеевой технологии коннекторы. Недостаток данной полировки заключается в том, что возникает такое явление как «инфракрасный слой» — в инфракрасном диапазоне происходят негативные изменения на торцевом слое. Данное явление ограничивает применение коннекторов с такой полировкой в высокоскоростных сетях (>1G).


    Обратите внимание, на рисунке видно, что соединение коннекторов с плоским торцом чревато, как упоминалось ранее, возникновением воздушной прослойки. В то время как скругленные торцы соединяются более плотно.

    Данный тип полировки может применяться в сетях небольшой дальности, предполагающих небольшую скорость передачи данных.

    SPC

    SPC — Super Physical Contact . По сути та же PC, только сама полировка является более качественной, т.к. она уже не ручная, а машинная. Также был сужен радиус сердечника и материалом наконечника стал цирконий. Дефекты полировки конечно снизить удалось, однако проблема инфракрасного слоя осталась.

    UPC

    UPC- Ultra Physically Contact . Данная полировка осуществляется уже сложными и дорогими системами управления, в результате чего проблема инфракрасного слоя была устранена а параметры отражения значительно снижены. Это дало возможность коннекторам с данной полировкой применяться в высокоскоростных сетях.

    UPC - почти плоский (но не свосем) разъем, который производится с применением высокоточной обработки поверхности. Дает отличные показатели отражательной способности (по сравнению с PC и SPC), поэтому активно применяется в высокоскоростных оптических сетях.

    Коннекторы с этим типом разъема чаще всего - синие.

    APC

    АРС — Angled Physically Contact . На данный момент считается, что наиболее действенным способом снижения энергии отраженного сигнала является полировка под углом 8-12°. Такая полировка поверхности дает самые лучшие результаты. Обратные отражения сигнала практически сразу покидают покидают оптоволокно, и благодаря этому снижаются потери. В таком исполнении отраженный световой сигнал распространяется под большим углом, нежели вводимый в волокно.

    В настоящее время существует множество оптических разъемов, отличающихся размерами и формами, методами крепления и фиксации. Выбор типа оптического коннектора зависит от используемого активного оборудования, задач монтажа волс и требуемой точности. Основными являются - LC, SC, FC, ST.

    Использование оптического разъема LC позволяет добиться высокой плотности монтажа в коммутационной панели или шкафу.

    Диаметр наконечника разъема 1,25 мм, материал - керамика. Фиксация разъема происходит за счет прижимного механизма - защелки, аналогично разъему типа RJ-45, которая исключает непредвиденное разъединение.

    При использовании дуплексных патч-кордов возможно соединение коннекторов клипсой. Используется для многомодовых и одномодовых волокон.


    Тип разъема SC используется как для многомодового волокна, так и одномодового. Диаметр наконечника 2,5 мм, материал - керамика. Корпус коннектора выполнен из пластика. Фиксация коннектора осуществляется поступательным движением с защелкиванием.

    Разъемы FC, как правило, используются в одномодовых соединених. Корпус разъема выполнен из никелированной латуни. Резьбовая фиксация позволяет обеспечить надежную защиту от случайных разъединения.

    В настоящее время ST коннектор широко не применяется из-за недостатков и возросших потребностей по плотности монтажа. Фиксация коннектора происходит за счет поворота вокруг оси, подобно BNC разъему.