Расчет сил резания при сверлении. Расчет режимов резания при сверлении, развертывании

В процессе образования отверстия сверло одновременно совершает вращательное и поступательное движения, при этом режущие кромки сверла срезают тонкие слои материала, образуя стружку. Чем быстрее вращается сверло и чем большее расстояние за один оборот оно преодолевает в направлении оси обрабатываемого отверстия, тем быстрее происходит резание.

Скорость резания зависит от частоты вращения сверла и его диаметра, перемещение сверла вдоль оси заготовки за один оборот влияет на толщину снимаемого елс я материала (стружки). Сверло по сравнению с другими режущими инструментами работа, т в достаточно тяжелых условиях, так как при сверлении затруднен отвод стружки и подвод смазывающе-охлаждающей жидкости.

Основными элементами резания при сверлении являются скорость и глубина резания, подача, толщина и ширина стружки (рис. 3.77).

Скорость резания V — путь, пройденный точкой на режущей кромке сверла, наиболее удаленной от оси его вращения. Определяют скорость резания по формуле V = ndnl1000 (где V- скорость резания, м/мин; d — диаметр сверла, мм; п — частота вращения шпинделя, об/мин; п — постоянное число, равное 3,14; число 1 ООО введено в формулу для перевода диаметра сверла в метры). Величина скорости резания зависит от материала заготовки, материала инструмента и формы его заточки, подачи, глубины резания и наличия охлаждения при обработке отверстия.

Подача 3 измеряется в миллиметрах на один оборот сверла (мм/об). Величина подачи при сверлении выбирается в зависимости от требований, предъявляемых к шероховатости обработанной поверхности и точности обработки, обрабатываемого материала и материала сверля.

Глубина резания t измеряется в миллиметрах и представляет собой расстояние от обрабатываемой поверхности до оси сверла, т.е. при сверлении глубина резания составляет половину диаметра сверла, а при рассверливании — половину разности между диаметром предварительно просверленного отверстия и диаметр ом сверла.

Толщина среза (стружки) измеряется в направлении, перпендикулярном режущей кромки сверла, и равна половине величины перемещения сверла относительно оси обрабатываемого отверстия за один его оборот, т.е. половине величины подачи. Поскольку слой материала за один оборот сверла снимается двумя режущими зубьями, то каждый из этих зубьев удаляет слой материала, толщина которого равна половине величины подачи сверла на один его оборот.

Ширина среза измеряется вдоль режущей кромки и равна ее длине. При рассверливании ширина среза равна длине режущей кромки, участвующей в резании. Измеряется ширина среза в миллиметрах.

Режимы резания устанавливаются с целью обеспечения наибольшей производительности. При этом необходимо учитывать физико-механические свойства материала обрабатываемой заготовки, свойства материала инструмента и требования к качеству обработанной поверхности, заданные чертежом или техническими условиями на изготовление.

Теоретический расчет элементов режима резания выполняют в приведенной ниже последовательности.

1. По специальным справочным таблицам выбирают величину подачи в зависимости от xapat тера обработки, требований к качеству обработанной поверхности, материала сверла и других технологических данных.

2. Рассчитывают скорость инструмента с учетом технологических возможностей, режущих свойств материала инструмента и физико-механических свойств обрабатываемой заготовки.

3. Определяют расчетную частоту вращения шпинделя в соответствии с найденной скоростью резания. Полученную величину сравнивают с паспортными данными станка и принимают равной ближайшему наименьшему значению этой частоты.

4. Определяют действительную скорость резания, с которой будет производиться обработка.

На практике для определения режимов резания используют готовые данные технологических карт и таблиц справочников.

Режимы резания при зенкеровании и развертывании, а также критерии их выбора практически не отличаются от выбора этих параметров при сверлении.

Припуски на обработку отверстий

Припуск — это слой материала, подлежащий снятию при обработке. Величина этого Слоя зависит от требований, предъявляемых к обработанной поверхности и вида обработки.

При сверлении припуск на обработку составляет половину диаметра сверла. При рассверливании припуск определяется в зависимости от требований к обработанной поверхности и от необходимости в ее дальнейшей обработке (зенкеровании, развертывании). Припуск на зенкерование, в зависимости от того, является оно предварительным (перед развертыванием) или окончательным, составляет от 0,5 до 1,2 мм. Величина припуска зависит также от диаметра обрабатываемого отверстия. Припуск на развертывание зависит от диаметра обрабатываемого отверстия и от требований, предъявляемых к качеству обработанной поверхности и составляет от 0,05 до 0,3 мм. Типичные дефекты при обработке отверстий, причины их появления и способы предупреждения приведены в табл. 3.2.

В процессе резания сверло испытывает сопротивление со стороны обрабатываемого материала. На каждую точку режущей кромки действуют силы сопротивления. Заменим их равнодействующей силой, приложенной к точке А на расстоянии, примерно равном D /4 от оси сверла. Последнюю можно разложить на три составляющие силы Р x , Р у и Р z (рис.72.)

Рис. 72. Силы, действующие на сверло

Сила сопротивления Р х направлена вдоль оси сверла. В этом же направлении действует сила Р п на поперечную кромку, сила трения Р т ленточки о поверхность отверстия, cилы сопротивления, действующие на сверло вдоль ее оси, на ось X заменим равнодействующей силой Р 0 , которая называется осевой силой или силой подачи. Она преодолевается механизмом подачи станка. Последний должен передать на шпиндель станка осевую силу Р" 0 , способную преодолеть силу Р 0 . Максимальная осевая сила, допускаемая механизмом подачи станка, приводится в его паспорте.

Формулы для подсчета осевой силы и момента при сверлении:

Определение силы Р 0 и момента М кр производится по эмпирическим формулам, полученным экспериментальным путём. Для сверл из инструментальных сталей при обработке стальных и чугунных деталей они имеют следующий вид:

; , кГс·мм – при сверлении;

; , кГс·мм при рассверливании.

где: С р и С м – коэффициенты, зависящие от обрабатываемого металла, формы заточки сверла и условий резания;

z p , x p , y p , z M , x M и y M – степени влияния диаметра сверла D , глубины резания t , подачи s на осевую силу P 0 и крутящий момент при сверлении М ;

K p и K M – поправочные коэффициенты на изменённые условия сверления;

Радиальные силы Р у , разнонаправленные, уравновешиваются (SР у = 0). Сила Р z создает момент сопротивления резанию М на главных режущих кромках, а сила Р т ’, касательная к ленточке, - момент трения на ней (им обычно пренебрегают).

Относительное влияние элементов сверла на силу резания и момент кручения при сверлении приведены в таблице 16.

Таблица 16. Влияние элементов сверла на осевую силу P 0 икрутящиймоментМ

Момент сопротивления резанию M рез преодолевается механизмом главного движения, т. е. крутящим моментом на шпинделе станка М кр . На каждой ступени шпинделя станка мощность N шп постоянна, момент М кр переменный. Он зависит от частоты вращения (числа оборотов) п на данной ступени и определяется:

М кр = 716200·1,36·() кГс мм ; N шп = N дв ·h , кВт ,

М кр = 974000·() кГс мм .

Зная момент сопротивления М , можно определить эффективную мощность N э затрачиваемую на резание при сверлении,

Мощность на подачу сверла составляет около 1 % от мощности и в расчетах не учитывается. По мощности определяют мощность, которую должен иметь электродвигатель станка для обеспечения заданного процесса резания:

, кВт

Станок пригоден для заданных условий сверления, если N шп > N e .

6.4. Влияние различных факторов на осевую силу и момент при сверлении. На осевую силу Р 0 и момент сопротивления резанию М влияют свойства обрабатываемого материала, геометрические параметры сверла, элементы среза (диаметр, подача) и др.

6.4.1. Свойства обрабатываемого материала . Чем выше предел прочности σ в и твердость НВ материала, тем больше его сопротивление резанию, тем выше значения Р 0 и М . Для сверл из быстрорежущей стали получены экспериментально следующие зависимости:

, и - для стали;

, и - для чугуна.

где: С р и С м – коэффициенты, зависящие от условий резания.

6.4.2. Геометрические параметры сверла . С увеличением угла w осевая сила Р 0 и момент М уменьшаются в связи с увеличением передних углов γ х на главных режущих кромках и облегчением отвода стружки. Угол j , (2j ) влияет на составляющие силы резания и момент по аналогии с точением: при уменьшении угла осевая сила Р 0 уменьшается, а тангенциальная Р z увеличивается, тем самым увеличивается и М . С уменьшением угла 2j сопротивление резанию в связи с увеличением γ х уменьшается, но одновременно увеличивается ширина среза и уменьшается его толщина. Последнее ведет к росту деформации (тонкие стружки деформируются полнее) и, следовательно, росту силы Р x и момента М . Угол наклона поперечной кромки d > 90° (см. рис. 72) и это значительно увеличивает осевую силу Р 0 . Ранее было отмечено, что сила, действующая на поперечную кромку Рп = 0,55Р 0 . Для ее снижения уменьшают длину кромки путем подточки, увеличивают ее передний угол, тем самым создаются более благоприятные условия резания вблизи нее. На величину М геометрия поперечной кромки влияет слабо. Двойная заточка сверла также слабо влияет на Р 0 и М .

Диаметр сверла и подача. С увеличением диаметра сверла D и подачи s увеличиваются ширина и толщина срезаемого слоя, следовательно, возрастают силы и момент резания. Экспериментально установлено, что диаметр сверла влияет на Р 0 в большей степени (1), чем подача (0,8). Для объяснения можно привести аналогию с точением, где глубина резания t влияет в большей степени на силы резания, чем подача (см.), а при сверлении t = D /2 мм. Подача влияет примерно в одинаковой степени (0.8) на осевую силу Р 0 и крутящий момент М , а диаметр влияет в большей степени (1,9) на М и в меньшей - на Р 0 (1). Это объясняется тем, что при увеличении диаметра й возрастает сила Р z , создающая момент М , и одновременно увеличивается длина плеча, на котором действует эта сила, что также способствует увеличению М (рис.).

Охлаждающая жидкость. Подача охлаждающей жидкости в зону резания облегчает отвод стружки, уменьшает работу трения и замедляет износ сверла. Она способствует снижению осевой силы Р 0 и момента М до 25% при обработке стальных деталей и до 15% - при обработке чугунных.

Износ сверла

Природа и характер износа сверл и резцов одинаковы. При обработке вязких материалов (сталей и др.) быстрорежущими сверлами изнашиваются передние и задние поверхности сверла (рис. 73.), а у твердосплавных сверл передние поверхности изнашиваются незначительно.

Рис. 73. Характер износа сверла: А – по задней поверхности; Б – по ленточке; В – по уголкам; Г – по передней поверхности

При обработке хрупких материалов (чугуна, пластмассы и др.) преимущественно изнашиваются задние поверхности и уголки сверла. Передние и задние поверхности сверла более интенсивно изнашиваются на периферии, так как здесь скорость резания наибольшая и уголки сверла, являясь ослабленным местом, сильно нагреваются и разрушаются. Закономерность износа свёрл примерно та же, что и резцов при точении (Рис. 74).

Рис. 74. Характер протекания износа сверла от времени работы

Оценку износа рекомендуется производить: при обработке вязких материалов -по длине износа по задним поверхностям h з , для хрупких материалов - по длине износа уголков h y . Допустимая величина износа -критерий износа при сверлении быстрорежущими свёрлами:

h З кр = 0,4…1,2 мм, при обработке стали;

При обработке чугуна быстрорежущими свёрлами в качестве критерия износа принимается износ по длине уголков.

h у = 0,4…1,2 мм – обработка сверлом из быстрорежущей стали;

h у = 0,9…1,4 мм. – обработка сверлом из твёрдого сплава;

Период стойкости Т , мин, зависит от диаметра сверла и обрабатываемого материала.

Т = (1,0…1,25)∙D – обработка стали быстрорежущими свёрлами;

T = (1,25…1,5) D – обработка чугуна быстрорежущими свёрлами;

Т = (1,5…2,0) D – обработка чугуна свёрлами из твёрдого сплава.

В результате проведенных опытов при сверлении стали быстрорежущими сверлами получена следующая зависимость:

Из полученных результатов видно, что на износ сверла в большей степени влияет скорость, в меньшей - подача. Это становится понятным, если учесть, что на температуру резания степень влияния скорости примерно в 2 раза выше, чем подачи.

Лабораторная работа № 6

Расчёт режимов резания при сверлении

Цель работы: научиться рассчитывать наиболее оптимальные режимы резания при сверлении по аналитическим формулам.

1. Глубина резания t , мм. При сверлении глубина резания t = 0,5 D , при рассверливании, зенкеровании и развертывании t = 0,5 (D d ) ,

где d – начальный диаметр отверстия;

D – диаметр отверстия после обработки.

2. Подача s , мм/об. При сверлении отверстий без ограничивающихся факторов выбираем максимально допустимую по прочности сверла подачу (табл.24). При рассверливании отверстий подача, рекомендованная для сверления, может быть увеличена до 2 раз. При наличии ограничивающих факторов подачи при сверлении и рассверливании равны. Их определяют умножением табличного значения подачи на соответствующий поправочный коэффициент, приведенный в примечании к таблице. Полученные значения корректируем по паспорту станка (приложение 3). Подачи при зенкеровании приведены в табл. 25, а при развертывании – в табл.26.

3. Скорость резания v р , м/мин. Скорость резания при сверлении

https://pandia.ru/text/80/138/images/image003_138.gif" width="128" height="55">

Значения коэффициентов С v и показателей степени m , x , y , q приведены для сверления в табл.27, для рассверливания, зенкерования и развертывания – в табл. 28, а значения периода стойкости Т – табл. 30.

Общий поправочный коэффициент на скорость резания, учитывающий фактические условия резания,

Кv = Кмv Киv Кιv ,

где Кмv - коэффициент на обрабатываемый материал (см. табл. 1, 3, 7, 8);

Киv – коэффициент на инструментальный материал (см. табл. 4);

Кιv, - коэффициент учитывающий глубину сверления (табл. 29). При рассверливании и зенкеровании литых или штампованных отверстий вводится дополнительно поправочный коэффициент Кп v (см. табл. 2).

4. Частоту вращения n , об/мин, рассчитывают по формуле

https://pandia.ru/text/80/138/images/image005_96.gif" width="180" height="51">

5. Крутящий момент M кр , Н·м, и осевую силу Ро , Н, рассчитывают по формулам:

при сверлении

Мкр = 10 См Dqsy Кр;

Р0 = 10 Ср Dqsy Кр;

при рассверливании и зенкеровании

Мкр = 10 См Dq tx sy Кр;

Р0 = 10 Ср tx sy Кр;

Значения См и Ср и показателей степени q , x , y приведены в табл. 31.

Коэффициент Kp , учитывающий фактические условия обработки, в данном случае зависит только от материала обрабатываемой заготовки и определяется выражением

Кр = Кмр.

Значения коэффициента Кмр приведены для стали и чугуна в табл. 11, а для медных и алюминиевых сплавов – в табл. 10.

Для определения крутящего момента при развертывании каждый зуб инструмента можно рассматривать как расточной резец. Тогда при диаметре инструмента D крутящий момент, H·м,

;

здесь sz – подача, мм на один зуб инструмента, равная s/z ,

где s – подача, мм/об, z – число зубьев развертки. Значения коэффициентов и показателей степени см. в табл. 22.

6. Мощность резания Ne , кВт , определяют по формуле:

где n пр - частота вращения инструмента или заготовки, об/мин,

Мощность резания не должна превышать эффективную мощность главного привода станка N е < N э (, где N дв - мощность двигателя, h - кпд станка). Если условие не выполняется и N е > N э , снижают скорость резания. Определяют коэффициент перегрузки рассчитывают новое меньшее значение скорости резания https://pandia.ru/text/80/138/images/image011_47.gif" width="75" height="25 src=">, где Рост – осевая сила станка.

7. Основное время То , мин, рассчитывают по формуле ,

где L длина рабочего хода инструмента, мм;

Длина рабочего хода, мм, равна L = l + l 1 + l 2 ,

где l – длина обрабатываемой поверхности, мм;

l 1 и l 2 – величины врезания и перебега инструмента, мм (см. приложение 4).

Таблица 1

Поправочный коэффициент К мv , учитывающий влияние физико-механических свойств обрабатываемого материала на скорость резания.

Обрабатываемый

материал

Расчетная формула

Серый чугун

Ковкий чугун

Примечания: 1. σв и НВ – фактические параметры. Характеризующие обрабатываемый материал, для которого рассчитывается скорость резания.

2. Коэффициент Кr характеризующий группу стали по обрабатываемости, и показатель степени nv см. в табл.7.

Таблица 2

Поправочный коэффициент Кп v , учитывающий влияние состояния поверхности заготовки на скорость резания.

Таблица 3

Поправочный коэффициент Км v , учитывающий влияние физико-механических свойств медных и алюминиевых сплавов на скорость резания.

Таблица 4

Поправочный коэффициент Киv , учитывающий влияние инструментального материала на скорость резания.

Обрабатываемый

материал

Значения коэффициента Ки v в зависимости от марки

инструментального материала

Сталь конструкционная

Коррозионно-стойкие и жаропрочные стали

Сталь закаленная

Н 35 – 50

Н 51 – 62

Серый и ковкий чугун

Сталь, чугун, медные и алюминиевые сплавы

Сверление является значительно более сложным процессом, чем точение; образование стружки протекает в более тяжелых условиях. Это зависит от условий работы сверла и особенностей его конструкции.

В процессе резания затруднены отвод стружки и подача охлаждающей жидкости к режущим кромкам. При отводе стружки возникает значительное трение между ней, поверхностью канавки сверла и отверстия детали. В результате повышаются деформация стружки и тепловыделение, ухудшается теплоотвод от режущих кромок, ускоряется износ сверла и снижается его стойкость. Скорость резания, допускаемая режущими свойствами сверла, зависит от тех же факторов, что и при точении. Кроме того, существенное влияние оказывает глубина сверления.

6.7.1. Стойкость сверла. Зависимость между скоростью и стойкостью Т такая же, как и при точении. С увеличением скорости резко возрастает интенсивность износа сверла, так как увеличиваются работа резания и количество выделяемого тепла и, следовательно, уменьшается его стойкость. Зависимость выражается известной формулой:

, м/мин или , мин.

Величина m обычно колеблется в пределах 0,125…0,5 в зависимости от обрабатываемого материала и материала сверла. Для быстрорежущих сверл m = 0,2 для стали и m = 0,125 для чугуна. Для твердосплавных сверл m = 0,4 для чугуна. При абразивном износе, имеющем место при обработке пластмасс, m = 0,4…0,5. Стойкость Т зависит от диаметра сверла D и свойств обрабатываемого материала: чем больше D , тем выше Т ; причем для хрупких материалов Т выше. Например, стойкость быстрорежущих сверл D ≤ 5 мм равна 15 мин - по стали и 20 мин - по чугуну; для сверл D = 6…50 мм стойкость соответственно равна 25…90 и 35…140 мин. Это объясняется тем, что при одинаковых условиях обработки силы сопротивления резанию чугуна значительно меньше, чем стали. Значения Т , С и m приводятся в нормативах режимов резания при сверлении.

6.7.2. Свойства обрабатываемого материала и материала инструмента влияют на скорость резания по аналогии с точением. Зависимости между скоростью и механическими свойствами материала для быстрорежущих сверл имеют следующие выражения:

V = - при обработке деталей из углеродистых и легированных сталей; и: V = - при обработке деталей из серых и ковких чугунов.

Допускаемая скорость существенно зависит от материала инструмента. Например, сверла из твердого сплава марки ВК6М позволяют увеличить скорость более чем в 3 раза при обработке вязких материалов (сталей) и в 4 раза при обработке хрупких (чугуна) по сравнению с быстрорежущими.

6.7.3. Геометрия и диаметр сверла. Геометрия сверла влияет на теплообразование и теплоотвод от режущих кромок, а следовательно, на интенсивность износа и стойкость сверла. Для повышения стойкости, или скорости резания, допускаемой сверлом, производят специальную заточку сверла, в результате которой улучшается его геометрия. Способы заточки приведены выше.

Экспериментально установлено, что с увеличением диаметра D при неизменных условиях сверления повышается стойкость, или допускаемая сверлом скорость резания. Это объясняется тем, что при увеличении диаметра D увеличивается масса металла, отводящая тепло от режущих кромок, ленточек и рабочих поверхностей в тело сверла, а также в тело детали. По аналогии с точением ширина среза (b = ) влияет незначительно на температуру резания и тепловая напряженность режущей кромки с увеличением диаметра D растет слабо. Видимо, тепловыделение растет менее интенсивно, чем теплоотвод от режущих кромок и поверхностей трения, поэтому стойкость сверла увеличивается.

6.7.4. Подача и глубина сверления. Подача при сверлении влияет по аналогии с точением. При увеличении подачи увеличиваются толщина и сечение среза, возрастает работа резания и количество выделяемого тепла, и, следовательно, уменьшается допускаемая сверлом скорость резания.

Глубина сверления l по мере возрастания усложняет условия резания: ухудшается отвод стружки, удлиняется время контакта стружки с поверхностью канавки сверла и детали, повышается работа трения и деформация стружки, затрудняется подача охлаждающей жидкости в зону резания и в результате сверло сильно нагревается. Поэтому при l = 5∙D скорость резания уменьшают примерно на 25%, а при l = 10∙D - до 59%. Для глубокого сверления применяют сверла специальных конструкций (ружейные, ВТА и др.).

6.7.5. Охлаждающая жидкость необходима особенно при сверлении пластичных металлов и глубоких отверстий. Удаление (вымывание) стружки с большой глубины производят СОЖ под большим давлением в 100…200 МПа. Для этой цели применяют сверла с внутренним подводом охлаждающей жидкости через каналы в конструкции сверла. Охлаждение позволяет увеличить скорость резания на 25…30%.