Сделать зеркальный телескоп. Как самостоятельно в домашних условиях по простым чертежам сделать самодельный телескоп-рефлектор

Сегодня мы рассмотрим, как создать самодельный телескоп-рефлектор. Как Вы уже наверное знаете, в телескопах-рефлекторах объектив представлен зеркалом. Изготовить самодельный телескоп-рефлектор довольно сложно, особенно если вручную делать для него зеркала, однако несомненным преимуществом самодельного телескопа-рефлектора перед таким же самодельным телескопом-рефрактором является его большее по сравнению с рефрактором оптическое увеличение.


Как самостоятельно сделать мощный телескоп рефлектор или рефрактор увеличением от 500 до 6000 крат своими руками в домашних условиях смотри подробное описание здесь: http://remontavto-moto-velo.blogspot.ru/2018/04/500-6000.html

Самодельные телескопы-рефлекторы любители астрономии строят, в основном, по системе Ньютона.Именно Исаак Ньютон примерно в 1670 году впервые создал телескоп-рефлектор. Это позволило ему избавиться от хроматических аббераций (они ведут к снижению чёткости изображения, к появлению на нём цветных контуров или полос, которых на реальном предмете нет) - главного недостатка существовавших тогда телескопов-рефракторов.


Схема «ньютоновского» рефлектора выглядит так:


В этой схеме зеркало 1 – это объектив, также называемый главным зеркалом. Это зеркало является параболическим или сферическим. Зеркало 2 называется диагональным зеркалом – это зеркало направляет пучок отраженных лучей через окуляр к наблюдателю. Элемент, обозначенный цифрой 3, - окулярный узел.

Фокус главного зеркала и фокус окуляра, вставленного в окулярный тубус, должны совпадать. Фокус главного зеркала определяется как вершина конуса отраженных зеркалом лучей.


Диагональное зеркало изготавливается небольших размеров, оно является плоским и может иметь прямоугольную или же эллиптическую форму. Устанавливается диагональное зеркало на оптической оси главного зеркала (объектива), под углом 45° к ней.

Обычное бытовое плоское зеркало не всегда подходит для использования в качестве диагонального зеркала в самодельном телескопе – для телескопа нужна оптически более точная поверхность. Поэтому в качестве диагонального зеркала можно использовать плоскую поверхность плоско-вогнутой или плоско-выгнутой оптической линзы, если предварительно покрыть эту плоскость слоем серебра или алюминия.

Размеры плоского диагонального зеркала для самодельного телескопа определяются из графического построения конуса лучей, которые отражаются главным зеркалом. При прямоугольной или эллиптической форме зеркала стороны или оси соотносятся друг к другу как 1:1,4.

Объектив и окуляр самодельного телескопа-рефлектора монтируются в трубе телескопа взаимоперпендикулярно. Для крепления главного зеркала самодельного телескопа требуется оправа, деревянная или металлическая.


Для изготовления деревянной оправы главного зеркала самодельного телескопа-рефлектора Вы можете взять круглую или восьмигранную дощечку толщиной не менее 10 мм и на 15-20 мм больше, чем диаметр главного зеркала. Главное зеркало закрепляется на этой дощечке 4 отрезками толстостенной резиновой трубки, надетыми на шурупы. Для лучшей фиксации под головки шурупов можно подложить пластмассовые шайбы (само зеркало зажимать ими нельзя).

Труба самодельного телескопа изготавливается из отрезка металлической трубы, из нескольких склеенных между собой слоев картона. Можно также изготовить трубу металлическо-картонную.

Три слоя плотного картона следует склеить между собой столярным или казеиновым клеем, затем вставить картонную трубу в метталические кольца жесткости. Из металла также делают чашу для оправы главного зеркала самодельного телескопа и крышку трубы.

Длина трубы (тубуса) самодельного телескопа-рефлектора должна быть равна фокусному расстоянию главного зеркала, а внутренний диаметр трубы – 1,25 диаметра главного зеркала. Изнутри тубус самодельного телескопа-рефлектора следует «зачернить», т.е. оклеить матовой черной бумагой или же покрасить черной матовой краской.


Окулярный узел самодельного телескопа-рефлектора в самом простом исполнении может быть основан, как говорится, «на трении»: подвижная внутренняя трубка перемещается вдоль неподвижной внешней, обеспечивая необходимую фокусировку. Окулярный узел также может быть резьбовым.

Самодельный телескоп-рефлектор перед использованием необходимо установить на специальную подставку – монтировку.

Теперь рассмотрим подробно как шлифовать зеркало:

Если фокусное расстояние главного зеркала при диаметре 100 мм больше 700 мм, а при диаметре 120 мм - больше 900 мм, то поверхность зеркала лучше сделать не параболической, а сферической, что намного легче.
Для изготовления такого сферического зеркала нужны два диска (при диаметре 100 мм толщиной - не менее 8-10 мм, при диаметре 120 мм - около 12-14 мм) из хорошо отожженного стекла, например зеркального, витринного, иллюминаторного. Если есть толстое зеркальное стекло, диски можно вырезать и самому с помощью трубчатого сверла. Его сгибают из полосы железа, стали или другого не очень мягкого металла. Толщина стенок сверла - 1-2 мм.

Оно укрепляется на дере-вяном диске того же диаметра, что и зеркало. Диски вырезают, вращая трубчатое сверло на сооруженном для этой цели станочке или вручную. Под край сверла непрерывно подмазывают кашицу из абразива (например, порошка наждака), размешанного с водой.


В качестве заготовок для зеркал можно использовать плоско-выпуклые конденсорные линзы для фотоувеличителей, обрабатывая их плоскую поверхность. Такие линзы диаметром до 113 мм вы сможете приобрести в фотомагазинах.
Диски вырезаны. Теперь их надо отшлифовать. Для этого вам понадобятся шлифующие и полирующие материалы, а также смола и канифоль. Шлифуйте зеркало с помощью абразивных порошков - карборунда (карбида кремния), корунда или наждака. В вашей работе понадобятся абразивы с зернами разной величины. Они обычно различаются по номерам: 40-20 (самый крупнозернистый), 12- 10, б-4. Абразивные порошки разных номеров можно получить, раздробив на мелкие куски абразивный (точильный) камень. Полученный порошок сортируют, просеивая через мелкие сита.

Шлифуйте диски на станочке. На толстой доске - основании - укреплен вращающийся круглый или шести-, восьмиугольный столик. В его центре наглухо закреплена ось, вращающаяся в основании. Столик может опираться на «утопленные» в основании 3 стальных шарика. На таком станочке очень удобно работать: вместо того чтобы самому ходить вокруг стола, можно поворачивать столик станка.


Начинайте шлифовку самым крупным абразивом. Для шлифовки зеркала сферической поверхности наложите один диск на другой. Предварительно нижний диск закрепите в центре вращающегося столика 4 шурупами с надетыми на них отрезками толстостенной резиновой трубки. Затем, смазывая соприкасающиеся поверхности кашицей из абразивного порошка с водой, двигайте верхний диск от себя и к себе на 1/4 - "/з радиуса. При этом оба диска непрерывно поворачивайте в противоположных направлениях. В результате поверхность верхнего диска становится вогнутой, а нижнего - выпуклой.

Чтобы ускорить процесс грубой шлифовки, в современной любительской практике применяется шлифовка кольцом. В качестве кольца возьмите отрезок толстостенной чугунной трубы. Диаметр кольца равен примерно половине диаметра зеркала. Положив будущее зеркало на место шлифовальника, шлифуйте его кольцом, подмазывая кашицу из абразива с водой. Следите, чтобы кольцо не выводилось за пределы края шлифовальника. Кольцо и столик станочка должны все время равномерно поворачиваться в противоположных направлениях. При шлифовке кольцом углубление в стекле получается гораздо быстрее, чем при шлифовке стекла стеклом. При дальнейшей шлифовке кроме стеклянного шлифовальника применяют шлифоваль-ники, основания которых делают из самых разных материалов: металла, гетинакса, текстолита, отлитых из смеси цемента с песком или цемента с алебастром. Применяют также дерево, пропитанное водоотталкивающим составом. На основание такого шлифовальника наклеивают квадратики из стекла или оргстекла. Применяют и специальные металлические шли-фовальники.

Их основания, имеющие вид сферы, вытачивают на токарном станке. Применение описанных выше шлифовальников позволяет ограничиться одним стеклянным диском - будущим зеркалом.


Когда углубление приближается к заданной величине (для 100 мм зеркала - не более 0,90 мм; для 120 мм зеркала - не более 1,00 мм), переходите от грубой шлифовки к тонкой, применяя все более и более мелкие сорта абразива.
Закончив шлифовку самым мелким абразивом, отполируйте поверхность зеркала. На нижний диск - шлифовальник нанесите слой сплава смолы с канифолью толщиной 4-5 мм. Слой разделите сетью канавок на квадратики - фасетки для лучшего контакта со стеклом и циркуляции полирующего вещества.

Принцип работы теневого прибора таков. В центре кривизны О испытываемого зеркала поместите искусственную звезду - точечный источник света (например, в листовой фольге сделайте небольшой прокол и осветите сзади ярким светом), а в точке пересечения отраженных от зеркала лучей света (вершина конуса О") поставьте «нож Фуко» (например, лезвие бритвы). Поместившись сзади фонарика, найдите отражение звезды в зеркале.

Приближаясь или удаляясь от зеркала, добейтесь, чтобы искусственная звезда заполнила своим светом всю поверхность зеркала. Если теперь медленно пересекать вершину конуса лучей «ножом Фуко», то все зеркало будет «гаснуть» одновременно. Это значит, что все лучи, отраженные от зеркала, сходятся в одной точке. Если кривизна поверхности зеркала отклоняется от заданной, то вы увидите «теневую картину», по которой судят о форме поверхности. Поверхность зеркала исправьте дальнейшей полировкой, изменяя характер движений зеркала (штрихов) или форму полировальника. Реальные отклонения поверхности изготовленного вами зеркала от сферы измеряются долями микрона.

Вогнутая сферическая поверхность отполированного зеркала отражает всего около 5% падающего на него света. Поэтому ее надо покрыть светоотражающим слоем алюминия или серебра. Алюминируют зеркало только в специальной установке, а серебрить можно и в домашних условиях.

В телескопе-рефлекторе системы Ньютона диагональное плоское зеркало отклоняет вбок конус лучей, отраженных от главного зеркала. Изготовить хорошее плоское зеркало самим очень трудно. Вместо этого зеркала воспользуйтесь призмой с полным внутренним отражением от призменного бинокля. При главном зеркале диаметром 100-120 мм размеры прямоугольных плоскостей призмы, расположенных под углом 90°, заключены между 20x20 мм и 25x25 мм.

В качестве плоского диагонального зеркала вы можете использовать также плоскую поверхность линзы, поверхность светофильтра от фотоаппарата или любую другую оптически точную плоскость. Покройте ее слоем серебра или алюминируйте.

Пустыня Атакама в Чили - райское место для астрономов. Уникальная чистота воздуха, благоприятные атмосферные условия в течение года и крайне низкий уровень светового загрязнения делают этот негостеприимный район идеальным местом для строительства гигантских телескопов. Например, телескоп E-ELT , под который уже готовят строительную площадку . Однако это не единственный масштабный проект подобного рода. С 2005 года ведутся работы по созданию ещё одного впечатляющего астрономического инструмента, Гигантского Магелланова Телескопа (GMT). Так он будет выглядеть после окончания строительства в 2020 году:

В основе его оптической системы лежит отражающая поверхность из 7 огромных круглых зеркал. Каждое диаметром 8,4 м и весом 20 т. Само по себе изготовление таких зеркала, да ещё и с требуемой точностью, представляет настоящий инженерный шедевр. Как же создаются подобные изделия? Об этом - под катом.

На текущий момент изготовлено два зеркала, третье отлито и постепенно охлаждается, четвёртое запланировано к отливке на конец этого года. Производственный процесс разработан специалистами Лабораторией зеркал обсерватории Стюарда Университета Аризоны (University of Arizona"s Steward Observatory Mirror Lab).

Каждое зеркало составляется из большого количества шестиугольных сегментов, что позволило в 5 раз снизить массу изделия по сравнению цельнолитым зеркалом такого же размера. Заготовки из высококачественного боросиликатного стекла изготавливаются в Японии. Толщина сегментов не превышает 28 мм, что положительно влияет на условия эксплуатации - такое зеркало будет быстро принимать температуру окружающей среды, что предотвратит возникновение колебаний воздуха у поверхности и искажение изображения.


Подложки для сегментов зеркала.

Также облегчённость конструкции самих зеркал позволит собрать отражающую поверхность диаметром 25 метров всего лишь из 7 основных и 7 вторичных зеркал. Это в разы облегчает управление и настройку телескопа. Сравните это с 798 сегментами в проекте E-ELT.

После укладки стеклянных заготовок на подложки (1681 шт), сверху вся площадь будущего зеркала накрывается огромной вращающейся печью. Температура достигает 1178 градусов Цельсия, скорость вращения печи - 5 оборотов в минуту. В результате сегменты сплавляются и образуют единый стеклянный массив с параболической формой поверхности. Вращение печи за счёт центробежной силы как раз и позволяет грубо сформировать параболическую поверхность.

После этого начинается долгий процесс контролируемого равномерного охлаждения, в той же самой вращающейся печи. Он занимает три месяца, чтобы предотвратить появление трещин из-за слишком быстрого охлаждения. По окончании охлаждения, будущее зеркало аккуратно снимается с термостойкой подложки и переносится на полировочный стенд.

Далее начинается ещё более длительный и кропотливый процесс полировки зеркала. В отличие от зеркал сферических, кривизна поверхности которых постоянна, полировка гигантского параболического зеркала высочайшей точности представляет собой очень непростую задачу. В случае с зеркалами для ГМТ отклонение от сферической формы составило 14 мм.

Вообще, параболические линии и поверхности являются, так сказать, неестественными. Почти весь доступный и создаваемый инструментарий так или иначе связан с окружностями и сферами, поэтому учёным и технологам пришлось поломать голову над полировкой зеркала.

Один из основных инструментов представляет собой вращающийся диск диаметром около 1 м, с дозаторами полировальных веществ. Диск может перемещаться вдоль направляющей рельсы, в то время как само зеркало вращается вокруг оси на полировальном стенде.

Это алмазный шлифовальный инструмент для основной обработки поверхности, предназначенный для выравнивания большинства дефектов поверхности стекла и придания седловидной формы. Дело в том, что в ходе вращения жидкое стекло приняло форму симметричной параболы, что является наиболее близким приближением. И для получения седловидной параболической поверхности осуществляется управляемое компьютером шлифование, в ходе которого снимается 6-8 мм стекла. Точность обработки поверхности на данном этапе достигает 100 микрон.

Далее начинается полирование. После каждого цикла полировки с помощью интерферометра проводится измерение поверхности зеркала. Лазерным лучом сканируется вся площадь зеркала, а различные отклонения отражённого луча на выпуклостях и впадинах фиксируются и составляется карта дефектов. Разрешение интерферометра составляет около 5 нанометров.

На основании составленной карты дефектов компьютер управляет инструментами в ходе последующего цикла полировки, тратя больше времени или применяя большее давление при обработке конкретных участков. Для точечного исправления обнаруживаемых одиночных дефектов также использовались полировальные круги диаметром от 10 до 35 см с достаточно гибкими подошвами, повторяющими кривизну поверхности зеркала.

Для задач, которые будет выполнять телескоп, допускается наличие дефектов поверхности не более 25 нанометров. И добиться этого очень непросто. Полировка первого зеркала в итоге заняла около года.

Забрал наконецто вакуумный коллектор на 20 трубок, буду из них собирать концентратор. 1-на трубка наполненая водой (3л.) нагрелась с 20*С до 68.3*С (кипяток на ощуп) за 2 часа 40 минут. За окном 26 мая, на солнце 42*С в тени 15*С время проведения эксперимента с 16,27 до 18,50 солнце садится...
А в концентраторе замер показал 19 минут! до тех же 68*С. Скорость можно увеличить, увеличив площадь концентратора, но тогда возрастает парусность и ухудшается целостность конструкции...
Площадь концентратора составляет 1,0664м.кв.(62х172см.)
Фокусное расстояние 16см.
Покупаете 1-ну вакуумную трубка, а снимаете с неё как с 7-ми в моём варианте, если считать по площади. Внизу видео одного из первопроходцев, которая натолкнула меня на мой подвиг.

Столкнулся пока с проблемой плохой склейки акрила с клеем для зеркал. Легко отклеилось от основы... Также клей для зеркал очень мягкий и система "гуляет" нужно усиливать конструкцию.
сказал (а):
По совету FarSeer; я расположил ось горизонтально (ориентация восток-запад для зимы). Такое расположение проще в конструктивном плане, ветровые нагрузки меньше, увод (переворот) от осадков тоже проще.
В связи с тем, что свои "совки" я буду размещать горизонтально в направлениях восток-запад, дабы не зацыкливаться на трекерах, пришлось обдумывать, как сделать отбор тепла более эффективным, так как стандартная схема с конденсацией жидкости может в теории не работать, так как нет стёка конденсата вниз и соответственно подъёма пара вверх для отдачи своего тепла. Сделал 2 вида отбора тепла от вакуумной трубки.
Вариант-1 (справа, на фото-1) Родной наконечник (утолщение где собирается пар) активно омывается теплоносителем.
Вариант-2 (среднее, на фото-1) взято 2 трубки одна 10мм. в диаметре, другая 15 мм. в диаметре и вставленны одна в другую, по аналогии рекуператоров, внутренняя не доходит до конца пару см. а наружная в конце заглушена, а сверху эти трубки рассоеденены тройником см. фото. Как показали опыты, между горизонтальной трубкой и стоящей под 45* при температурах около 80* разница была около 5* хотя мне говорили что в горизонтальном положении данная трубка вообще работать не будет!
Жду потепления, чтобы выкопать под стойки ямки, потому что земля ещё мёрзлая и копать её не реально.
Что касается аварийных режимов, уже всё продуманно, стоит бесперибойник на 1.5 Квт типа Smart с дополнительными аккумуляторами.
Второй и на мой взгляд самый существенный момент по решению аварийных ситуаций, закрывание зеркал или концентратора от солнца или же его поворачивание от оси фокуса, что выведет концентратор на минимальную мощность простой вакуумной трубки в самый жаркий сезон к примеру, по этому же принцыпу, можно регулировать сумарную мощность концентраторов выводя некоторые из фокуса.

Как вариант концентратора из подручного материала см. фото.

Эта статья предназначена для тех астрономов-любителей, которые уже наигрались с биноклем и телескопом-рефрактором, рассмотрели фазы Венеры, кольца Сатурна и спутники Юпитера, и хотят чего-то менее скучного и более потрясающего. Например, в 1000 крат с огромным объективом. Сделать такое на одних линзах невозможно: дают так называемую хроматическую аберрацию, которая проявляется в виде радужных ореолов вокруг объектов, тем более сильных, чем сильнее увеличение телескопа.

Поэтому встаёт задача собрать самодельный телескоп-рефлектор, то есть телескоп на зеркалах. В его простейшей форме он состоит из двух зеркал (объектива и диагонального) и одной линзы-окуляра.

Где достать

Главное зеркало-объектив телескопа-рефлектора — самая важная и ответственная его часть. И она же — самая сложная в изготовлении. Найти готовое зеркало такого типа практически невозможно.

Хотя есть один способ: можно сделать такое из вогнутой или выпукло-вогнутой линзы. Найдите вогнутую или выпукло-вогнутую линзу самого большого размера, какого только сможете найти. Важно, чтобы фокусное расстояние было как можно выше, а, значит, вогнутость как можно меньше: от слишком мощных вогнутых линз требуется не сферическая, а параболическая форма, а это уже совсем другой дефицит, который никак не сымпровизируешь.

Самый надёжный расчёт — это найти плосковогнутую диаметром в 10-12 см и оптической силой в 1 диоптрию. Поищите её в оптических магазинах. Самодельный телескоп в 1000 крат, таким образом, не получится, но кое-что сделать с таким можно.

Серебрение с помощью химии

Затем надо заняться серебрением, чтобы получить зеркало. Приготовьте раствор, который называется реактивом Толленса. Для того чтобы приготовить этот реактив, нужны: нитрат серебра (ляпис), едкий натр (каустическая сода) и раствор аммиака.

В комплект к этому реактиву ещё понадобится формалин (раствор формальдегида). На 10 мл воды растворите 1 г нитрата серебра, на другие 10 мл воды — 1 г едкого натра. Смешайте эти растворы, должен выпасть белый осадок. Приливайте раствор аммиака, пока осадок не растворится. Этот раствор и есть реактив Толленса.

Чтобы использовать его для серебрения, следует налить его в вогнутую часть, предварительно тщательно очищенную от любых загрязнений. Если очень слабовыраженная вогнутость, следует сделать по её краю барьерчик из воска или пластилина.

Налив реактив, следует начинать частыми каплями добавлять в него формалин. Вскоре образуется плёнка серебра, и она превратится в вогнутое зеркало. Имейте в виду, что реактив Толленса не хранится долго, использовать его надо сразу после того, как он приготовлен.

Есть и способы изготовить вогнутую поверхность самостоятельно, в первую очередь — вышлифовывание на стеклянных кругах вогнутой поверхности. Однако эти способы слишком сложны, и не рекомендованы к использованию начинающими.

Таким же способом, как и вогнутое, следует изготовить диагональное зеркало. Оно должно быть идеально прямым; для его изготовления подойдёт плоская сторона любой плосковыпуклой или плосковогнутой.

Сборка телескопа

Теперь можете начинать собирать самодельный . Вам понадобится труба, длиной точно в фокусное расстояние (если Вы использовали для изготовления плосковогнутую линзу в 1 диоптрию, то возьмите трубу длиной в 100 см, +0,5- 1 см поправки на толщину).

Труба должна быть открытой с одного конца и закрытой с другого, и изнутри выкрашенная самой чёрной краской, что только сможете найти. Диаметр трубы должен быть в 1,25 раза больше диаметра зеркала-рефрактора, если Вы использовали для изготовления линзу диаметром в 100 мм, возьмите трубу диаметром в 125 мм.

В донце трубы, точно по центру, закрепите зеркало-объектив. Чтобы это удобно было делать, донце лучше предусмотреть съёмное. Крепить объектив к донцу можно, к примеру, суперклеем.

Сделайте отверстие ближе к открытому концу трубы. Чтобы высчитать нужное положение для отверстия, отсчитайте от открытого конца трубы её радиус. Там и должен располагаться центр отверстия. В этом отверстии будет укреплён окуляр (перпендикулярно трубе).

Оно должно висеть на оптической оси под углом в 45 градусов. Если угол выдержан правильно, то при взгляде в окуляр Вы будете видеть изображение. Если с первого раза не получится, поэкспериментируйте с углом.

О том, как построить солнечный водонагреватель. Правильнее назвать его параболический солнечный концентратор. Главное преимущество его в том, что зеркало отражает 90% солнечной энергии, а его параболическая форма концентрирует эту энергию в одной точке. Эта установка будет эффективно работать в большинстве районов России, вплоть до 65 градуса с.ш.

Для сборки коллектора нам понадобится несколько основных вещей: сама антенна, система слежения за солнцем и теплообменник-коллектор.

Параболическая антенна.

Можно использовать любую антенну- железную, пластиковую или из стекловолокна. Антенна должна быть панельного типа, а не сеточная. Здесь важна площадь антенны и форма. Надо помнить, мощность нагрева = площади поверхности антенны. И что мощность, собираемая антенной диаметром 1,5 м, будет в 4 раза меньше мощности собираемой антенной с площадью зеркала 3 м.

Так же понадобится поворотный механизм для антенны в сборе. Его можно заказать на Ebay или на Aliexpress.

Понадобится рулон алюминиевой фольги или лавсановой зеркальной пленки, применяемой для теплиц. Клей, которым пленка будет приклеиваться к параболе.

Медная трубка диаметром 6 мм. Фитинги, для подключения горячей воды к баку, к бассейну, ну или где вы будете применять эту конструкцию. Поворотный механизм слежения автор приобрел на EBAY за 30$.

Шаг 1 Переделка антенны для фокусировки солнечного излучения вместо радиоволн.

Надо всего лишь прикрепить лавсановую зеркальную пленку или алюминиевую фольгу к зеркалу антенны.


Такую пленку можно заказать на Aliexpress, если вдруг в магазинах не найдете

Делается это почти также просто, как и звучит. Надо только учесть, что если антенна, к примеру, диаметром 2,5 м, а пленка шириной 1 м, то не надо закрывать антенну пленкой в два прохода, будут образовываться складки и неровности, которые ухудшат фокусировку солнечной энергии. Вырезайте ее небольшими полосами и закрепляйте на антенне с помощью клея. Перед наклейкой пленки убедитесь, что антенна чистая. Если есть места, где краска вздулась- зачистите их наждачной бумагой. Вам надо выровнять все неровности. Обратите внимание, чтобы LNB-конвертор был снят со своего места- иначе он может расплавиться. После наклейки пленки и установки антенны на место не приближайте руки или лицо к месту крепления головки- вы рискуете получить серьезные солнечные ожоги.

Шаг 2 система слежения.

Как было написано выше - автор купил систему слежения на Ebay. Вы так же можете поискать поворотные системы слежения за солнцем. Но я нашел несложную схему с копеечной ценой, которая довольно точно отслеживает положение солнца.

Список деталей:
(скачиваний: 428)
* U1/U2 - LM339
* Q1 - TIP42C
* Q2 - TIP41C
* Q3 - 2N3906
* Q4 - 2N3904
* R1 - 1meg
* R2 - 1k
* R3 - 10k
* R4 - 10k
* R5 - 10k
* R6 - 4.7k
* R7 - 2.7k
* C1 - 10n керамика
* M - DC мотор до 1А
* LEDs - 5mm 563nm


Видео работы гелиотракера по схеме из архива

Сам можно сделать на основе передней ступицы автомобиля ВАЗ.

Кому интересно фото взято отсюда:

Шаг 3 Создание теплообменника-коллектора

Для изготовления теплообменника понадобится медная трубка, свернутая в кольцо и помещенная в фокус нашего концентратора. Но сначала нам надо узнать размер фокальной точки тарелки. Для этого надо снять LNB-конвертер с тарелки, оставив стойки крепления конвертера. Теперь надо повернуть тарелку на солнце, предварительно закрепив кусок доски на месте крепления конвертера. Подержите доску немного в этом положении, пока не появиться дым. Это займет по времени примерно 10-15 секунд. После этого отверните антенну от солнца, снимите доску с крепления. Все манипуляции с антенной, ее развороты, проводятся для того, чтобы вы случайно не засунули руку в фокус зеркала- это опасно, можно сильно обжечься. Пусть остынет. Измерьте размер сожженной части древесины- это будет размер вашего теплообменника.


Размер точки фокусировки будет определять, сколько медной трубки вам понадобится. Автору понадобилось 6 метров трубы при размере пятна 13см.


Я думаю, что возможно, вместо свернутой трубки можно поставить радиатор от автомобильной печки, есть довольно маленькие радиаторы. Радиатор должен быть зачерненный для лучшего поглощения тепла. Если же вы решили использовать трубку, надо постараться согнуть ее без перегибов и изломов. Обычно для этого трубку заполняют песком, закрывают с обеих сторон и сгибают на какой-нибудь оправке подходящего диаметра. Автор залил в трубку воды и положил ее в морозильную камеру, открытыми концами вверх, чтобы вода не вытекла. Лед в трубке создаст давление изнутри, что позволит избежать изломов. Это позволит согнуть трубу с меньшим радиусом изгиба. Ее надо сворачивать по конусу- каждый виток должен быть не много большего диаметра чем предыдущий. Можно спаять витки коллектора между собой для более жесткой конструкции. И не забудьте слить воду после того, как закончите с коллектором, чтобы после установки его на место, вы не обожглись паром или горячей водой

Шаг 4. Собираем все вместе и пробуем.


Теперь у вас есть зеркальная парабола, модуль слежения за солнцем, помещенный в водонепроницаемый контейнер, или пластиковую емкость, законченный коллектор. Все, что осталось сделать - это установить коллектор на место и опробовать его в работе. Вы можете пойти дальше и усовершенствовать конструкцию, сделав, что-то типа кастрюли с утеплителем и одеть ее на заднюю часть коллектора. Механизм слежения должен отслеживать движение с востока на запад, т.е. поворачиваться в течение дня за солнцем. А сезонные положения светила (вверх\вниз) можно регулировать вручную один раз в неделю. Можно, конечно, добавить механизм слежения и по вертикали- тогда вы получите практически автоматическую работу установки. Если вы планируете использовать воду для подогрева бассейна или в качестве горячей воды в водопроводе- вам понадобиться насос, который будет прокачивать воду через коллектор. В случае если вы будете нагревать емкость с водой, надо принять меры, чтобы избежать закипания воды и взрыва бака. Сделать это можно используя