Виды и преимущества стекол с напылением. Российское стекло с нанопокрытием завоевывает зарубежный рынок

Здравствуйте, друзья.


Итак, история началась немного ранее, когда у нас появилась вакуумная камера. Путь её к нам был неблизок и может быть описан отдельным рассказом, но это, как говорится, «совсем другая история». Скажу только, что ещё раньше она приносила людям какую-то пользу в одной из лабораторий Гёттингенского университета.

Первое, на чём мы начали эксплуатировать вакуумную камеру, стало испробывание способа термического осаждения металлов на подложки. Способ прост и стар, как мир. В молибденовый тигель помещается мишень распыляемого металла, например, серебра. Вокруг него размещён нагревательный элемент. Мы использовали проволоку из вольфрамрениевого сплава, которую наматывали в виде спирали.

Полностью устройство для термического напыления выглядит следующим образом:

Оснастка для термического напыления металлов. а. В сборе (защитный экран и задвижка сняты). Обозначения: 1 – тигель, 2 – нагревательный элемент, 3 – паропровод, 4 – токоподвод, 5 – термопара, 6 – рамка для образца.

После пропускания тока (в вакуумную камеру идёт через гермовводы) спираль раскаляется, нагревает лодочку, в которой также нагревается материал мишени и испаряется. Облако металлического пара поднимается по паропроводу и окутывает тело, на которое необходимо осадить металлическую плёнку.

Сам по себе способ простой и хороший, однако есть и минусы: большое энергопотребление, трудно располагать в облаке пара поверхности (тела), на которые нужно осаждать плёнку. Адгезия тоже не самая лучшая. Наносили на разные материалы, в том числе на металлы, стекло, пластик и др. В основном - для исследовательских целей, поскольку мы только осваивали вакуумное оборудование.

Теперь настал черёд рассказать про вакуумную систему. Эксперименты мы проводили в вакуумной камере, оснащенной вакуумной системой, состоящей из роторного форвакуумного и турбомолекулярного насоса и обеспечивающей остаточное давление 9,5 10 -6 – 1,2 10 -5 мм.рт.ст.
Если на первый взгляд кажется, что она не сложная, то на самом деле это не так. Во-первых, сама камера должна иметь герметичность, необходимую для поддержания высокого вакуума. Это достигается применением герметизации всех функциональных фланцев и отверстий. Верхний и нижний фланцы-крышки имеют такие же, по-принципу, резиновые уплотнения, как и самые малые отверстия, предназначенные для установки окон, датчиков, устройств, гермовводов и др. фланцевых крышек, только диаметром гораздо большим. Например, для надежной герметизации такого отверстия


Требуется фланец, прокладка и крепеж, как на этой фотографии.


Вот этим датчиком производится измерение вакуума в камере, сигнал с него поступает на прибор, который показывает уровень высокого вакуума.

Вакуум необходимого уровня (например 10-5 мм.рт.ст.), достигается следующим образом. Вначале форвакуумным насосом откачивается низкий вакуум до уровня 10-2. По достижении этого уровня включается высоковакуумный насос (турбомолекулярный), ротор которого может вращаться со скоростью 40 000 об/мин. При этом форвакуумный насос продолжает работать - он откачивает давление из самого турбомолекулярного насоса. Последний является довольно капризным агрегатом и его «тонкое» устройство и сыграло определенную роль в этом повествовании. Мы используем японский турбомолекулярный насос фирмы Osaka vacuum.

Откачиваемый из камеры воздух с парами масла рекомендуется сбрасывать в атмосферу, поскольку мелкодисперсные капельки масла могут «забрызгать» все помещение.

Разобравшись с вакуумной системой и отработав термическое напыление мы решили опробовать другой способ нанесения пленок - магнетронный. У нас был длительный опыт общения с одной крупной лабораторией, которая нам наносила функциональные нанопокрытия для некоторых наших разработок как раз способом магнетронного напыления. Кроме того у нас имеются довольно тесные связи с некоторыми кафедрами МИФИ, МВТУ и других вузов, которые также помогали нам освоить эту технологию.

Но со временем мы захотели использовать побольше возможностей, которые предоставляет вакуумная камера.

В скором времени у нас появился небольшой магнетрон, который мы и решили приспособить для нанесения пленок.

Именно магнетронный вакуумный метод напыления тонких металлических и керамических пленок считается одним из самых производительных, экономичных и простых в эксплуатации среди всех физических методов напыления: термического испарения, магнетронного, ионного, лазерного, электронно-лучевого. Магнетрон устанавливается в один из фланцев, как удобно для использования. Однако для напыления этого еще недостаточно, поскольку он требует подведения определенного напряжения, охлаждающей воды, а также газов для обеспечения поджига плазмы.

Теоретический экскурс

Упрощённо, магнетрон устроен следующим образом. На основании, которое одновременно служит магнитопроводом, помещены сильные магниты, которые образуют сильное магнитное поле. С другой стороны магниты закрываются металлической пластиной, которая служит источником распыляемого материала и называется мишенью. На магнетрон подается потенциал, а на корпус вакуумной камеры - земля. Разница потенциалов, образуемая между магнетроном и корпусом камеры в условиях разряженной атмосферы и магнитного поля приводит к следующему. Атом плазмообразующего газа аргона попадает в действие силовых линий магнитного и электрического поля и ионизируется под их действием. Выбившийся электрон притягивается к корпусу камеры. Положительный ион притягивается к мишени магнетрона и, разогнавшись под действием силовых линий магнитного поля, ударяется о мишень, выбивая из нее частицу. Та вылетает под углом обратным тому углу, под которым в мишень попал ион атома аргона. Частица металла летит от мишени в сторону расположенной напротив нее подложки, которая может быть сделана из любого материала.

Наши вузовские друзья изготовили для этого магнетрона DC источник питания на мощность порядка 500 Вт.

Также мы соорудили систему газонапуска для плазмообразующего газа аргона.

Для размещения предметов, на которые будут напыляться плёнки, мы соорудили следующее приспособление. В крышке камеры имеются технологические отверстия, в которые можно устанавливать разные приспособления: гермовводы электроэнергии, гермовводы движения, прозрачные окошки, датчики и прочее. В одно из этих отверстий мы установили гермоввод вращающегося вала. Снаружи камеры на этот вал мы подвели вращение от небольшого электромоторчика. Установив скорость вращения барабана порядка 2-5 герц мы добились хорошей равномерности нанесения плёнок по окружности барабана.

Снизу, т.е. внутри камеры, мы укрепили на вал лёгкую металлическую корзину, на которую можно навешивать предметы. В канцелярском магазине такой стандартный барабан продаётся как корзина для мусора и стоит порядка 100 рублей.

Теперь у нас было в наличии практически всё необходимое для напыления плёнок. В качестве мишеней мы использовали следующие металлы: медь, титан, нержавейку, алюминий, сплав медь-хром.

И начали пылить. Через прозрачные окна в камеру можно было наблюдать свечение плазмы на поверхности мишени магнетрона. Так мы контролировали «на глазок» момент поджига плазмы и интенсивность напыления.

Способ контроля толщины напыления придумали достаточно простой. Размещали на барабане один и тот же кусочек фольги с замеренной площадью поверхности и измеряли его массу до и после сеанса напыления. Зная плотность напыляемого металла легко вычисляли толщину наносимого покрытия. Регулировали толщину покрытия либо изменением времени напыления, либо регулируя напряжение на источнике питания магнетрона. На этом фото видны прецизионные весы, позволяющие замерять массу образцов с точностью до десятитысячных долей грамма.

Наносили мы на различные материалы: дерево, металлы, фольга, пластики, бумага, полиэтиленовые плёнки, ткани, короче на всё, что можно было разместить в камере и прикрепить к барабану. В основном мы ориентировались на получение эффектов декоративного характера – изменение цвета или тактильного восприятия поверхности. На этих образцах органического и неорганического происхождения можно увидеть разницу в цвете до и после нанесения различных металлических плёнок.

Ещё более рельефно разница в цвете до и после напыления видна на тканях и плёнках. Здесь правый кусочек обычной полиэтиленовой плёнки – не напыленный, а левая покрыта слоем меди.

Ещё один эффект, который может быть использован для различных нужд – это проводимость тонких плёнок на подложках. На этом фото показано сопротивление кусочка бумаги (в омах), на который нанесена плёнка из титана толщиной чуть больше микрона.

Для дальнейшего развития мы выбрали несколько направлений. Один из них – улучшать эффективность напыления плёнок магнетронами. Собираемся «замахнуться» на собственную разработку и изготовление более мощного магнетрона высотой с камеру и мощностью в 2 раза больше, чем показанный в этом очерке. Также мы хотим опробовать технологию реактивного напыления, когда вместе с плазмообразующим газом аргоном в камеру подаются, например, кислород или азот и в ходе напыления плёнок на поверхности подложки образуются не чисто металлические плёнки, а оксиды или нитриды, которые имеют другой спектр свойств, нежели чистые металлические плёнки.

Среди покупателей распространено мнение, что качество теплоизоляции окон (одна из пяти их основных функций) определяется числом стекол в стеклопакете, а также расстоянием между ними. Исходя из этого, можно сделать вывод, что идеальным вариантом в представлении клиентов является окно с большим количеством камер и стекол. Подобные конструкции действительно способны гарантировать максимальную теплоизоляцию, но в то же время они отличаются существенным недостатком – из-за большой массы очень быстро изнашивается фурнитура . Оптимальным выходом из ситуации представляется покупка стекла с напылением.

В настоящее время для остекления квартир используются стекла с серебряным, титановым напылением и др. При этом нанесение металла на поверхность окна происходит или методом пиролиза, или магнетронным распылением на специальном высоковакуумном оборудовании.

В отличие от традиционных стеклопакетов, уменьшающих теплопотери от конвекции (перемещение масс нагретого воздуха) и теплопроводности, окна с напылением минимизируют потери и от теплового излучения. Именно на счет последнего приходится основной объем теплопотерь. В связи с этим стекла с титановым напылением (и прочими видами металлического напыления) получили наименование энергосберегающих или низкоэмиссионных.

Стекла с металлическим напылением называют селективными – из-за того, что они отражают лишь электромагнитные волны определенного диапазона. Такие конструкции гарантируют прохождение в квартиру коротковолнового солнечного излучения, однако препятствуют выходу из нее длинноволнового теплового излучения, к примеру, от отопительных приборов.

Стекла с напылением получили широкое распространение не только в строительном секторе. Производители часов с недавних пор занялись активным производством минеральных стекол с сапфировым напылением. Их поверхность тверда как у сапфировых стекол (ее практически невозможно поцарапать) и, в то же время, они не уступают по прочности конструкции минеральным и пластиковым стеклам.

K-стекла и I-стекла

Сейчас большинство крупных фирм в мире, специализирующихся на выпуске оконных конструкций, освоили производство энергосберегающих стекол. Выделяются два типа покрытий – твердое (т.н. К-стекло или Low-E) и мягкое (I-стекло или Double Low-E).

К-стекло, получаемое методом пиролиза, появилось на рынке первым. При его изготовлении на предварительно очищенную поверхность обычного стекла при высокой температуре наносится тончайший слой (10-15 нм) окислов металлов, являющийся прозрачным и располагающий прекрасной электропроводностью. Последняя характеристика напрямую связана с эмиссией (излучательной способностью) поверхности. И если у обычного стекла коэффициент эмиссии равняется 0,84, то у К-стекла – 0,2. Определение «твердая» такая конструкция заслужила за счет повышенной прочности.

I-стекло, по сравнению с К-стеклом, обладает улучшенными теплосберегающими свойствами. В данном случае при производстве происходит вакуумное напыление металла на стекло. В стеклопакет «мягкое» I-стекло ставится напылением вовнутрь, т.к. не отличается устойчивостью к механическим нагрузкам. Эффективность снижения теплопотерь у I-стекла в 1,5 раза выше, чем у К-стекла. Оно может сохранять в квартире до 90% тепловой энергии.


Наряду со снижением до минимума тепловых потерь в помещении, снижением нагрузки на фурнитуру, стекла с напылением характеризуются прозрачностью. Наличие напыления увеличивает стоимость стеклопакета в 1,5-2 раза (зависит от того, одно- или двухкамерный стеклопакет).

Обратившись в компанию «Globalwindow», вы получите исчерпывающие консультации по расчету стоимости окон , по подбору идеального для вашего дома решения. Окна с напылением непременно оправдают затраты на их приобретение – особенно они актуальны для тех, у кого в доме функционирует индивидуальная система отопления.

Подмосковный завод Pilkington, принадлежащий группе компании SP Glass — портфельной компании РОСНАНО, открыл экспортные поставки высокотехнологичного стекла с магнетронным напылением. С марта 2016 года завод систематически поставляет стекло в Дубай, Ливан, Ирландию и Австралию.

«На конец 2016 года мы уверенно экспортируем 30% объёма. Речь идёт не о простых продуктах, которые поставляют за рубеж другие российские стекольные компании, а именно о дорогих, высокотехнологичных. В этом году Россия в нашем лице стала активным поставщиком стекла с магнетронным напылением на Ближний Восток, в Ирландию, в Австралию. В Джебель-Али наше стекло участвует в остеклении крупнейшего медицинского центра, в Мельбурне используется в жилых комплексах», - комментирует Дмитрий Сулин, член Совета директоров Группы SP Glass.

Большую часть экспортируемой продукции составляют энергоэффективные стёкла моделей Pilkington Suncool и Lifeglass с магнетронным напылением Double Silver. Это напыление содержит свыше 15 слоёв толщиной менее 20 нанометров, два из которых серебряные. Общая толщина покрытия в 1000 меньше, чем у листа бумаги, но с ним стекло обретает выдающиеся характеристики: беспрецедентный уровень светопропускания, превосходную теплоизоляцию и эффективную защиту от солнечного жара.

Возросший спрос на высокотехнологичную стекольную продукцию позволил российскому заводу Pilkington установить производственный рекорд, как локального, так и мирового масштаба. В 2016 году предприятие произвело самое больше количество стекла с магнетронным напылением среди всех заводов Pilkington в мире.

«Наибольшей производственной мощности мы достигли в сентябре. Столько стекла с покрытием за один месяц не производил ещё никто из заводов Pilkington, в том числе в Великобритании, на родине бренда. Это при том, что коутер (вакуумно-магнетронная установка для нанесения покрытия — ред.) мы запустили в конце 2014 года. То есть нам потребовалось менее полутора лет, чтобы наладить производство стекла с покрытием и научиться делать его настолько качественно и в таких объёмах, что наше, российское стекло стало интересно заказчикам на других континентах», - добавляет Дмитрий Сулин.

Зарубежные заказчики получают стекло от SP Glass в листах различных размеров — от стандартного 3210×2250 мм до так называемого «полноразмерного Джамбо» 6000×3210 мм. Формат Джамбо самый востребованный у строителей, но и самый сложный для погрузки и транспортировки. Для такого стекла не подходят стандартные контейнеры и требуются особые методы крепления, поэтому предпочтительным способом его перевозки остаются специализированные автомобили — «джамбовозы». Реже это стекло перевозят в открытых контейнерах по железной дороге. SP Glass в 2016 году стала первой российской компанией, которая наладила поставки Джамбо по морю. Таким способом компания доставляет стекло заказчикам в Бейруте (Ливан), Джебель-Али (Дубай), Мельбурне (Австралия) и Нине (Ирландия).

Стекло, произведённое на предприятиях группы SP Glass, стало первым в России экспортным товаром, прошедшим автоматическую регистрацию и автовыпуск таможенной декларации. Это новая технология, которая введена распоряжением ФТС России от 30 января 2015 г. № 32-р. Автовыпуск декларации на товары значительно ускоряет процесс совершения таможенной операции и исключает человеческий фактор. Впервые процедура применена 14 июня 2016 г. на Светогорском таможенном посту Выборгской таможни. Под процедуру «экспорт» попало стекло Pilkington, направляющееся в Ирландию. Общее время с момента принятия декларации на товары на регистрацию до момента её выпуска составило 2 минуты 26 секунд.

Группа компаний SP Glass — лидер России и СНГ в разработке и производстве высококачественного стекла и стеклопакетов с магнетронным напылением для окон и фасадного остекления. Основана в 2012 году. Акционерами группы являются РОСНАНО, NSG Group (Япония), Glasswall и Европейский Банк Реконструкции и Развития.

Группа объединяет компании «Пилкингтон Гласс» и ГК «СТиС», которые развивают производство энергосберегающей стекольной продукции для остекления жилых домов и общественных зданий: стекло Pilkington и Lifeglass, стеклопакеты STiS, Теплопакеты DS.

Продукцию SP Glass используют крупнейшие оконные и строительные компании в России и странах ближнего зарубежья. С 2016 года Группа экспортирует стекло с нанонапылением в Дубай, Ливан, Ирландию и Австралию.

Среди объектов, остеклённых с участием SP Glass, стадион «ФИШТ» в Сочи, станции и пересадочные узлы Московского центрального кольца, Marriott Tverskaya Hotel Moscow, «Дом на Мосфильмовской» в Москве и крупнейший в Европе торгово-развлекательный комплекс «Авиапарк» в Москве.

Флагманские продукты SP Glass — стёкла и стеклопакеты с магнетронным напылением, выполненным по технологии Double Silver. Это покрытие содержит свыше 15 слоёв толщиной менее 20 нанометров, два из которых серебряные. Общая толщина покрытия в 1000 меньше, чем у листа бумаги, но с ним стекло обретает выдающиеся характеристики: беспрецедентный уровень светопропускания, превосходную теплоизоляцию и эффективную защиту от солнечного жара.

В строительных и производственных сферах все чаще применяются высокопрочные пластики. Они превосходят традиционные твердые материалы за счет своей небольшой массы, податливости в обработке и практичности. И все же металл сохраняется во многих отраслях как наиболее выгодный материал с точки зрения сочетания прочности, жесткости и долговечности. При этом далеко не всегда оправдывает себя использование цельной структуры. Все чаще технологи применяют напыление металлов, которое позволяет наделить рабочую заготовку частью свойств наиболее подходящего в плане эксплуатации сплава.

Общие сведения о технологиях металлизации

Среди современных методов металлизации поверхностей чаще применяют гальваническое нанесение, а также погружение в расплавы. Традиционная технология также предусматривает вакуумную обработку напылением, которая имеет свои классификации в зависимости от используемых активных сред. Так или иначе, любое напыление металлов предусматривает обработку основы материала с целью получения тех или иных защитных качеств. Это может быть формирование антикоррозийного слоя, восстановление утраченной структуры или же ремонт эксплуатационного износа.

При этом сама рабочая поверхность в большинстве случаев подвергается термической обработке. Перед нанесением металлических частиц она расплавляется горелками, индукторами или посредством воздействия низкотемпературной плазмы. Таким образом подготавливается основа с оптимальными физико-химическими качествами, на которой в дальнейшем производится напыление металлов в виде порошка. Важно отметить, что в качестве основного материала может выступать тот же металл, стекло, пластики или некоторые породы древесины и камни.

Метод химического хромирования

В качестве активного компонента для реализации такого напыления используют химические реагенты. Классический состав включает хлористый хром, натрий, уксусную кислоту, а также воду с раствором едкого натра. Процесс напыления выполняется при температуре порядка 80 °С. Начинается работа с подготовки материала. Обычно хромирование используют для обработки металлических поверхностей, в частности стали. Перед самой операцией материал подвергается первичному покрытию медным слоем. Далее производится химическое хромирование посредством подключенного к компрессорной установке. После завершения процедуры изделие моется в чистой воде и просушивается.

Метод газопламенной обработки

Если в предыдущей технологии предусматривается тщательная подготовка основы, которая должна подвергаться покрытию, то в данном случае особое внимание уделяется частицам металлизации. Современное газопламенное напыление может выполняться с помощью полимерного порошка, проволочного или шнурового материала. Данная масса направляется в пламя кислородно-пропановой или ацетиленокислородной горелки, в которой происходит расплавление и перенос на напыляемую основу сжатым воздухом. Далее состав остывает, формируя готовое к применению покрытие.

При помощи данной методики можно наделять материалы антикоррозийной стойкостью и механической прочностью. Активным материалом можно обрабатывать алюминиевые, никелевые, цинковые, железные и медные сплавы. В частности, газопламенное напыление используют для повышения эксплуатационных качеств изоляционных покрытий, электротехнических деталей и т. д. Кроме этого, технология используется в интерьерном и архитектурном дизайне для обеспечения конструкций декоративными свойствами.

Метод вакуумного напыления

В этом случае речь идет о группе методов, которые предполагают формирование тонких пленок в вакууме при воздействии прямой конденсации пара. Технология реализуется разными путями, в том числе за счет термического воздействия, испарения электронными и лазерными лучами. Используется вакуумное напыление для повышения технических качеств деталей, оборудования и инструментов. К примеру, такая обработка позволяет формировать специальные «рабочие» покрытия, которые могут повышать электропроводность, изолирующие свойства, износостойкость и защиту от коррозии.

Технология применяется и для создания декоративных покрытий. В данном случае техника может задействоваться в операциях, требующих высокой точности. Например, вакуумное напыление используют в изготовлении часов с позолоченным покрытием, для придания эстетичного вида оправам для очков и т. д.

Применяемое оборудование

Чаще всего для напыления используются аппараты, снабженные сверхзвуковым соплом. Также применяется небольшой по размерам электрический нагреватель, работающий на подачу сжатого воздуха. Особенностью последней модели является возможность доведения температуры до 600 °С. До недавнего времени применение стандартных устройств, напоминающих по принципу действия пневматические пистолеты, осложнялось тем, что частицы изнашивали насадки инструмента. Современное оборудование, благодаря которому осуществляется напыление металлов, использует принцип пульверизатора. Это значит, что в момент прохождения рабочей газовой среды по каналу подачи струи скорость потока увеличивается по мере сужения трубы. Вместе с этим падает и статическое давление. Такой принцип работы сокращает износы и увеличивает рабочий срок аппаратов.

Заключение

В целях удешевления технологических операций по защите металла от внешних воздействий часто используются узкоспециализированные, но менее эффективные средства. При этом сэкономить помогает и напыление металла, цена которого составляет в среднем 8-10 тыс. руб. за деталь. Финансовая целесообразность обусловлена тем, что такие покрытия могут обеспечивать сразу несколько функциональных качеств. Например, обработав металлический компонент кровельной конструкции, вы можете получить такие свойства, как антикоррозийность, стойкость перед воздействием осадков, механическая защищенность. Существуют и особые металлизированные покрытия, способные уберечь деталь от агрессивных химических и термических воздействий.

Напыление на стекло металлов, их окислов позволяет либо улучшить качество стекла, либо придать ему дополнительные полезные свойства. Например, бывает напыление на . Или тонировочное.

Насколько сложный это процесс – напыление? Можно ли осуществить его своими руками, в домашней лаборатории? Какие полезные свойства придаются стеклу напылением?

На эти и другие вопросы мы ответим в статье далее на нашем портале.

Напыление металла на стекло: как это делается

Установка для магнетронного напыления на стекло

Есть два основных способа напыления металла на стекло:

  1. Пиролитический способ – напыление производится в процессе изготовления стекла.
  2. Вакуумное напыление на стекло – осуществляется на специальных установках на уже готовые листы стекла.

Разработано несколько методов вакуумного напыления на стекло: катодный, ионно-плазменный, магнетронный и т.д. В виду своей простоты и относительной дешевизны процесса наибольшей популярностью пользуется магнетронное напыление на стекло.

Установка для напыления: вид внутри установки

По своему принципу оно напоминает работу обычной электронно-лучевой трубки телевизоров старого образца: разогнанные в магнитном поле ионы инертных газов встречают на своем пути мишень (металл, оксид металла) и выбивают из нее атомы, которые тонким слоем покрывают размещенное поперек линий магнитного поля стекло.

Простота магнетронного способа оказалась настолько соблазнительной, что возникла идея делать напыление на стекло своими руками. В Москве и других городах было несколько попыток реализовать ее в домашних условиях – занимались созданием доморощенных установок, главным образом, специалисты предприятий соответствующего профиля.

Сразу предупредим: создать в домашних (гаражных) условиях устойчиво работающее оборудование для магнетронного напыления, дающее качественные результаты, никому из известных нам умельцев пока не удалось. Хотя эксперименты продолжаются.

Виды стекла с напылением

Стекло с зеркальным напылением в составе оконного стеклопакета

В быту мы настолько часто встречаем стекло с разными видами напыления, что даже перестаем обращать на него внимание. Самый бросающийся в глаза пример - стекло с зеркальным напылением. То самое, которое позволяет видеть изнутри дома, но не позволяет заглянуть во внутрь.

Принципиально оно от зеркала с подложкой из амальгамы отличается лишь тем, что в промышленных условиях наносится настолько тонкий отражающий слой металлов, что стекло обретает свойства полупрозрачности: в одном направлении через него видеть можно, в другом – можно увидеть лишь собственное отражение.

Обычно в качестве «шпионского окна» используется стекло с титановым напылением: благодаря уникальным свойствам титана такие стёкла долговечны, не меняют своих свойств десятками лет.

Стекло с титановым напылением в витрине

В Москве цена стекла с зеркальным напылением – от 360 руб./м². Кстати говоря, покупая зеркальную плёнку для стёкол, вы ничего не выиграете: суммарная цена «стекло+плёнка» будет такой же.

Не надо путать стёкла с зеркальным напылением со стеклом с напылением серебра. Напыление ионами серебра используется для создания энергосберегающих стёкол. Они не пропускают инфракрасное излучение из квартиры на улицу, способствуют сбережению тепла. Среди специалистов их обозначает кратко: .

Другой распространенный вариант применения вакуумной магнетронной технологии - тонировка стекол напылением. Она пользуется популярностью у автомобилистов. Окна в жилых строениях, все-таки, дешевле тонировать плёнкой (см. статьи и ).

Минеральные стекла с сапфировым напылением для часовых циферблатов

Нельзя не сказать несколько слов о стёклах с сапфировым напылением. Они используются в часовой промышленности, для остекления циферблатов. Обычный материал для этого – минеральное стекло, искусственно выращиваемое из кристаллов оксида кремния. Но для Джеймса Бонда и прочих любителей использовать наручные часы вместо кастета такое стекло кажется недостаточно прочным, подверженным царапинам; поэтому швейцарские часовщики научились «выращивать» стекло из искусственных сапфиров. Оно обладает очень большой твёрдостью и соответствующей ценой.

Компромисс между стоимостью и качеством был найден в создании минерального стекла с сапфировым напылением: оно почти также дешево, как обычное минеральное, и почти также твердо, как сапфировое. Одна беда: напыление со временем стирается.

Некоторые новорусские почитатели творчества Яна Флеминга (автора Бондианы) спрашивают, нет ли для часов стекла с алмазным напылением?

Увы, еще не появилось. Но ждём с минуты на минуты – специально для обитателей Рублёвки!

Так отличают энергосберегающее стекло от обычного Остекление лоджии стёклами с тонирующим напылением