Принципиальная схема итп. Что такое индивидуальный тепловой пункт

Описание

Завод ГазСинтез проектирует и производит центральные тепловые пункты , которые устанавливаются в качестве связующего звена между городскими магистралями и распределительными сетями. Основная функция центральных тепловых сетей ЦТП - это передача и распределение тепловой энергии от ТЭЦ к потребителям для отопления, вентиляции и горячего водоснабжения. ЦТП обслуживают более двух объектов (домов), комплекс зданий и сооружений, группу промышленных и производственных зданий, микрорайоны, кварталы, поселки, деревни и др.

Назначение центральных тепловых пунктов

Пункты ЦТП не просто распределяют тепловую энергию между Потребителями. ЦТП осуществляют контроль, управление и регулирование всех технических параметров работы пункта: поддерживают необходимый температурный режим, регулируют давление на выходе из теплового пункта в зависимости от входного давления воды, защищают оборудование Потребителей от гидроударов из-за превышения давления воды у теплоисточника.

Устройство центральных тепловых пунктов

Завод ГазСинтез поставляет отдельно стоящие центральные тепловые пункты. Внутри ЦТП располагается все необходимое технологическое оборудование. Состав оборудования подбирается индивидуально на основании требований Заказчика к производительности/мощности, площади обслуживаемого объекта, схемы имеющегося теплоснабжения (открытой/закрытой), технических условий эксплуатации.

Зависимая и независимая схемы подключения системы отопления

При использовании воды в качестве теплоносителя в системе отопления центральные тепловые пункты могут иметь зависимую и независимую схему подключения оборудования. При зависимой схеме подключения (одноконтурной) вода от магистральной сети поступает непосредственно Потребителю в систему теплоснабжения. При такой схеме нет необходимости в промежуточных тепловых пунктах, теплообменниках и другом смесительном оборудовании. Поэтому в пунктах ЦТП не может быть использована зависимая схема подключения системы теплоснабжения. Недостатком такой схемы является невозможность регулирования температурного режима.

При независимой схеме подключения (двухконтурной) теплоноситель от магистральных сетей (первый контур) нагревает теплоноситель, который уже будет циркулировать в системе отопления Потребителей (второй контур). Преимуществами данной схемы является возможность регулирования и управления температурным режимом и давлением теплоносителя обоих контуров.

Открытая и закрытая схемы подключения системы ГВС

Открытая схема подключения системы горячего водоснабжения характеризуется непосредственным забором воды для нужд Потребителя непосредственно из тепловой магистральной сети. Закрытая схема подключения системы горячего водоснабжения - это подогрев воды до нужной температуры теплоносителем, забранным из магистральной теплосети.

Принцип работы центрального теплового пункта

Теплоноситель из магистральных сетей поступает по подающему трубопроводу в теплообменник центрального теплового пункта , где используется для подогрева воды для системы ГВС и отопления. После подогрева воды в теплообменнике, вода возвращается по обратному трубопроводу в магистральную сеть.

Нагреваемая вода для системы ГВС и отопления поступает в тепловой пункт из магистрального водопровода, проходит через насос и поступает в теплообменник для подогрева. Затем после достижения необходимой температуры поступает в циркуляционную систему горячего водоснабжения. В результате отбора горячей воды Потребителями, температура воды понижается. Для поддержания ее на заданном уровне, устанавливается подогреватель второй ступени ГВС.

В результате нормальной работы теплового пункта ЦТП может происходить естественная утечка воды, которая восполняется системой подпитки из магистральной сети.

Состав оборудования центральных тепловых пунктов

В состав пунктов ЦТП входит следующее теплоэнергетическое оборудование и вспомогательное оборудование:

  • теплообменник для нагрева воды теплоносителем из магистральных сетей
  • насосы (циркуляционные насосы ГВС и системы отопления, насос подпитки, смесительный, резервный/аварийный)
  • регулирующая арматура
  • запорно-предохранительное оборудование (краны, задвижки, клапаны)
  • контрольно-измерительные приборы (счетчики, приборы учета тепла, манометры и др.)
  • система автоматизированного контроля, управления и регулирования гидравлическим и тепловым режимами
  • система водоподготовки и деаэрации воды
  • расширительный бак для компенсации расширения теплоносителя в системе отопления

Компоновочная схема центрального теплового пункта ЦТП мощностью 4,28 МВт производства Завода ГазСинтез

(размещение оборудования, габаритные размеры даны для справки и могут отличаться)

Преимущества центральных тепловых пунктов производства Завода ГазСинтез

На Заводе ГазСинтез центральные тепловые пункты комплектуются всем необходимым и качественным оборудованием для надежной безаварийной и долговечной эксплуатации ЦТП. Точный расчет необходимого оборудования обеспечит Вам нормальное функционирование системы, а также позволит экономить теплоэнергию.

Мы проектируем и производим ЦТП в соответствии с требованиями государственных стандартов:

  • СП 41-101-95 "Проектирование тепловых пунктов"
  • СТО 17330282.27.060.003-2008 "Тепловые пункты тепловых сетей"
  • СП 124.13330.2012 "Тепловые сети. Актуализированная редакция СНиП 41-02-2003"

Изготавливаемые на Заводе тепловые пункты имеют высокое качество, подтвержденное Сертификатами соответствия и разрешительными документами государственного образца. Наши тепловые пункты мы комплектуем оборудованием только ведущих производителей.

Как в Вашем городе заказать центральный тепловой пункт на Заводе ГазСинтез?

Для расчета стоимости изготовления центральных тепловых пунктов на Заводе ГазСинтез и расчета стоимости доставки до места эксплуатации:

  • звоните по телефону 8-800-555-4784
  • заполняйте Опросный лист и присылайте на электронную почту
  • указывайте контактную информацию в форме " ", и наш специалист свяжется с Вами

Наши специалисты предлагают весь комплекс услуг (проектирование, изготовление, монтаж, пуско-наладку ЦТП), что существенно отразится на Вашей экономической выгоде при заказе на Заводе ГазСинтез, а также на сроках производства, монтажа и пуско-наладки.

Правильность функционирования обору­дования теплового пункта определяет эконо­мичность использования и подаваемой потре­бителю теплоты, и самого теплоносителя. Тепловой пункт является юридической грани­цей, что предполагает необходимость его оборудования набором контрольно-измерительных приборов, позволяющих определить взаимную ответственность сторон. Схемы и оборудование тепловых пунктов необходимо определять в соответствии не только с тех­ническими характеристиками местных систем теплопотребления, но и обязательно с харак­теристиками внешней тепловой сети, режимом работы ее и теплоисточника.

В разделе 2 рассмотрены схемы присоеди­нения всех трех основных видов местных систем. Рассматривались они раздельно, т. е. считалось, что они присоединены как бы к общему коллектору, давление теплоносите­ля в котором постоянно и не зависит от расхода. Суммарный расход теплоносителя в коллекторе в этом случае равен сумме расходов в ветвях.

Однако тепловые пункты присоединяют­ся не к коллектору теплоисточника, а к тепловой сети, и в этом случае изменение расхода теплоносителя в одной из систем неизбежно отразится на расходе теплоноси­теля в другой.

Рис.4.35. Графики расхода теплоносителя:

а - при подключении потребителей непосредст­венно к коллектору теплоисточника; б - при под­ключении потребителей к тепловой сети

На рис. 4.35 графически показано изме­нение расходов теплоносителя в обоих слу­чаях: на схеме рис. 4.35, а системы отопле­ния и горячего водоснабжения присоеди­нены к коллекторам теплоисточника раздель­но, на схеме рис. 4.35,б те же системы (и с тем же расчетным расходом тепло­носителя) присоединены к наружной тепловой сети, имеющей значительные потери давления. Если в первом случае суммарный расход теплоносителя растет синхронно с расходом на горячее водоснабжение (режимы I , II, III ), то во втором, хотя и имеет место рост расхода теплоносителя, одновременно авто­матически снижается расход на отопление, в результате чего суммарный расход тепло­носителя (в данном примере) составляет при применении схемы рис. 4.35,б 80% расхода при применении схемы рис. 4.35,а. Степень сокращения расхода воды определяет соотно­шение располагаемых напоров: чем больше соотношение, тем больше снижение суммар­ного расхода.

Магистральные тепловые сети рассчиты­ваются на среднесуточную тепловую нагруз­ку, что существенно снижает их диаметры, а следовательно, затраты средств и металла. При применении в сетях повышенных гра­фиков температур воды возможно и дальней­шее снижение расчетного расхода воды в теп­ловой сети и расчет ее диаметров только на нагрузку отопления и приточной венти­ляции.

Максимум горячего водоснабжения мо­жет быть покрыт с помощью аккумулято­ров горячей воды либо путем использо­вания аккумулирующей способности отапливаемых зданий. Поскольку применение акку­муляторов неизбежно вызывает дополнитель­ные капитальные и эксплуатационные затра­ты, то их применение пока ограничено. Тем не менее в ряде случаев применение крупных аккумуляторов в сетях и при групповых тепловых пунктах (ГТП) может быть эффективно.

При использовании аккумулирующей способности отапливаемых зданий имеют место колебания температуры воздуха в по­мещениях (квартирах). Необходимо, чтобы эти колебания не превышали допустимого предела, в качестве которого можно, напри­мер, принять +0,5°С. Температурный режим помещений определяется рядом факторов и поэтому трудно поддается расчету. Наиболее надежным в данном случае является метод эксперимента. В условиях средней полосы РФ длительная эксплуатация показывает возможность применения этого способа по­крытия максимума для подавляющего боль­шинства эксплуатируемых жилых зданий.

Фактическое использование аккумули­рующей способности отапливаемых (в основ­ном жилых) зданий началось с появления в тепловых сетях первых подогревателей горячего водоснабжения. Так, регулировка теплового пункта при параллельной схеме включения подогревателей горячего водо­снабжения (рис. 4.36) производилась таким образом, что в часы максимума водоразбора некоторая часть сетевой воды недодавалась в систему отопления. По этому же принципу работают тепловые пункты при открытом водоразборе. Как при открытой, так и закрытой системе теплоснабжения наиболь­шее снижение расхода в отопительной системе имеет место при температуре сете­вой воды 70 °С (60 °С) и наименьшее (нуле­вое) - при 150°С.

Рис. 4.36. Схема теплового пункта жилого дома с параллельным включением подогре­вателя горячего водоснабжения:

1 - подогреватель горячего водоснабжения; 2 - эле­ватор; 3 4 - цир­куляционный насос; 5 - регулятор температуры от датчика наружной температуры воздуха

Возможность организованного и заранее рассчитанного использования аккумулирую­щей способности жилых зданий реализо­вана в схеме теплового пункта с так называемым предвключенным подогревате­лем горячего водоснабжения (рис. 4.37).

Рис. 4.37. Схема теплового пункта жилого дома с предвключенным подогревателем го­рячего водоснабжения:

1 - подогреватель; 2 - элеватор; 3 - регулятор температуры воды; 4 - регулятор расхода; 5 - циркуляционный насос

Преимуществом предвключенной схемы является возможность работы теплового пункта жилого дома (при отопительном графике в тепловой сети) на постоянном расходе теплоносителя в течение всего отопи­тельного сезона, что делает гидравлический режим тепловой сети стабильным.

При отсутствии автоматического регули­рования в тепловых пунктах стабильность гидравлического режима явилась убедитель­ным аргументом в пользу применения двухступенчатой последовательной схемы включения подогревателей горячего водо­снабжения. Возможности применения этой схемы (рис. 4.38) по сравнению с предвклю­ченной возрастают из-за покрытия определен­ной доли нагрузки горячего водоснабжения за счет использования теплоты обратной воды. Однако применение данной схемы в основном связано с внедрением в тепловых сетях так называемого повышенного графика температур, с помощью которого и может достигаться примерное постоянство расходов теплоносителя на тепловом (например, для жилого дома) пункте.

Рис. 4.38. Схема теплового пункта жилого дома с двухступенчатым последовательным включением подогревателей горячего водо­снабжения:

1,2 - 3 - элеватор; 4 - регулятор температуры воды; 5 - регулятор расхода; 6 - перемычка для переклю­чения на смешанную схему; 7 - циркуляционный насос; 8 - смесительный насос

Как в схеме с предвключенным подогре­вателем, так и в двухступенчатой схеме с последовательным включением подогрева­телей имеет место тесная связь между отпуском теплоты на отопление и горячее водоснабжение, причем приоритет обычно отдается второму.

Более универсальной в этом отношении является двухступенчатая смешанная схема (рис. 4.39), которая может применяться как при нормальном, так и при повышенном отопительном графике и для всех потреби­телей независимо от соотношения нагрузок горячего водоснабжения и отопления. Обяза­тельным элементом обеих схем являются смесительные насосы.

Рис. 4.39. Схема теплового пункта жилого дома с двухступенчатым смешанным вклю­чением подогревателей горячего водоснабже­ния:

1,2 - подогреватели первой и второй ступеней; 3 - элеватор; 4 - регулятор температуры воды; 5 - циркуляционный насос; 6 - смесительный на­сос; 7 - регулятор температуры

Минимальная температура подаваемой воды в тепловой сети со смешанной тепло­вой нагрузкой составляет около 70 °С, что требует ограничения подачи теплоносителя на отопление в периоды высоких темпе­ратур наружного воздуха. В условиях средней полосы РФ эти периоды достаточно продолжительны (до 1000 ч и более) и пере­расход теплоты на отопление (по отноше­нию к годовому) из-за этого может достигать до 3 % и более. Так как современные системы отопления достаточно чувствитель­ны к изменению температурно-гидравлического режима, то для исключения пере­расхода теплоты и соблюдения нормальных санитарных условий в отапливаемых поме­щениях необходимо дополнение всех упомя­нутых схем тепловых пунктов устройствами для регулирования температуры воды, посту­пающей в системы отопления, путем установки смесительного насоса, что обычно и при­меняется в групповых тепловых пунктах. В местных тепловых пунктах при отсутст­вии бесшумных насосов как промежуточное решение может применяться также элеватор с регулируемым соплом. При этом надо учитывать, что такое решение неприемлемо при двухступенчатой последовательной схеме. Необходимость в установке смесительных насосов отпадает при присоединении систем отопления через подогреватели, так как их роль в этом случае выполняют циркуля­ционные насосы, обеспечивающие постоянст­во расхода воды в отопительной сети.

При проектировании схем тепловых пунк­тов в жилых микрорайонах при закрытой системе теплоснабжения основным вопросом является выбор схемы присоединения по­догревателей горячего водоснабжения. Вы­бранная схема определяет расчетные расходы теплоносителя, режим регулирования и пр.

Выбор схемы присоединения прежде всего определяется принятым температурным режи­мом тепловой сети. При работе тепловой сети по отопительному графику выбор схемы присоединения следует производить на основе технико-экономического расчета - путем сравнения параллельной и смешан­ной схем.

Смешанная схема может обеспечить более низкую температуру обратной воды в целом от теплового пункта по сравне­нию с параллельной, что помимо снижения расчетного расхода воды для тепловой сети обеспечивает более экономичную выработку электроэнергии на ТЭЦ. Исходя из этого в практике проектирования при теплоснаб­жении от ТЭЦ (а также при совместной работе котельных с ТЭЦ), предпочтение при отопительном графике температур от­дается смешанной схеме. При коротких тепло­вых сетях от котельных (и поэтому отно­сительно дешевых) результаты технико-экономического сравнения могут быть и дру­гими, т. е. в пользу применения более простой схемы.

При повышенном графике температур в закрытых системах теплоснабжения схема присоединения может быть смешанной или последовательной двухступенчатой.

Сравнение, выполненное различными ор­ганизациями на примерах автоматизации центральных тепловых пунктов, показывает, что обе схемы в условиях нормальной работы источника теплоснабжения примерно равноэкономичны.

Небольшим преимуществом последова­тельной схемы является возможность работы без смесительного насоса в течение 75 % продолжительности отопительного сезона, что давало прежде некоторые обоснования отказаться от насосов; при смешанной схеме насос должен работать весь сезон.

Преимуществом смешанной схемы яв­ляется возможность полного автоматического выключения систем отопления, что невоз­можно получить в последовательной схеме, так как вода из подогревателя второй сту­пени попадает в систему отопления. Оба указанных обстоятельства не являются ре­шающими. Важным показателем схем являет­ся их работа в критических ситуациях.

Такими ситуациями могут быть снижение температуры воды в ТЭЦ против графика (например, из-за временного недостатка топ­лива) либо повреждение одного из участ­ков магистральной тепловой сети при нали­чии резервирующих перемычек.

В первом случае схемы могут реагиро­вать примерно одинаково, во втором - по-разному. Имеется возможность 100%-го резервирования потребителей до t н = –15 °С без увеличения диаметров тепловых магистралей и перемы­чек между ними. Для этого при сокра­щении подачи теплоносителя на ТЭЦ одно­временно соответственно повышается темпе­ратура подаваемой воды. Автоматизирован­ные смешанные схемы (при обязательном наличии смесительных насосов) на это прореагируют сокращением расхода сетевой воды, что и обеспечит восстановление нор­мального гидравлического режима во всей сети. Такая компенсация одного параметра другим полезна и в других случаях, так как позволяет в определенных пределах проводить, например, ремонтные работы на тепловых магистралях в отопительный сезон, а также локализовать известные несоот­ветствия температуры подаваемой воды по­требителям, расположенным в разном удале­нии от ТЭЦ.

Если автоматизация регулирования схем с последовательным включением подогре­вателей горячего водоснабжения предусмат­ривает постоянство расхода теплоносителя из тепловой сети, возможность компен­сации расхода теплоносителя его темпера­турой в этом случае исключается. Не приходится доказывать всю целесообразность (в проектировании, монтаже и особенно в эксплуатации) применения единообразной схе­мы присоединения. С этой точки зрения несомненное преимущество имеет двухступен­чатая смешанная схема, которая может применяться независимо от графика температур в тепловой сети и соотношения нагрузок горячего водоснабжения и отопления.

Рис. 4.40. Схема теплового пункта жилого дома при открытой системе теплоснабжения:

1 - регулятор (смеситель) температуры воды; 2 - элеватор; 3 - обратный клапан; 4 - дроссельная шайба

Схемы присоединения жилых зданий при открытой системе теплоснабжения значи­тельно проще описанных (рис. 4.40). Эконо­мичная и надежная работа таких пунктов может быть обеспечена лишь при наличии и надежной работе авторегулятора темпера­туры воды, ручное переключение потреби­телей к подающей или обратной линии не обеспечивает необходимой температуры воды. К тому же система горячего водо­снабжения, подключенная к подающей линии и отключенная от обратной, работает под давлением подающего теплопровода. При­веденные соображения о выборе схем тепло­вых пунктов в одинаковой степени относятся как к местным тепловым пунктам (МТП) в зда­ниях, так и к групповым, которые могут обеспечивать теплоснабжение целых микро­районов.

Чем больше мощность теплоисточника и радиус действия тепловых сетей, тем прин­ципиально более сложными должны стано­виться схемы МТП, поскольку вырастают абсолютные давления, усложняется гидравли­ческий режим, начинает сказываться тран­спортное запаздывание. Так, в схемах МТП появляется необходимость применения на­сосов, средств защиты и сложной аппара­туры авторегулирования. Все это не только удорожает сооружение МТП, но и услож­няет их обслуживание. Наиболее рациональ­ным способом упрощения схем МТП является сооружение групповых тепловых пунктов (в виде ГТП), в которых и должно разме­щаться дополнительное сложное оборудова­ние и приборы. Этот способ наиболее применим в жилых микрорайонах, в которых характеристики систем отопления и горячего водоснабжения и, следовательно, схемы МТП однотипны.

Тепловые пункты: устройство, работа, схема, оборудование

Тепловой пункт представляет собой комплекс технологического оборудования, которое используется в процессе теплоснабжения, вентиляции и горячего водоснабжения потребителей (жилых и производственных зданий, строительных площадок, объектов социального назначения). Главное назначение тепловых пунктов - это распределение тепловой энергии от тепловой сети между конечными потребителями.

Преимущества установки тепловых пунктов в системе теплоснабжения потребителей

Среди преимуществ тепловых пунктов можно назвать следующие:

  • минимизация тепловых потерь
  • сравнительно низкие эксплуатационные затраты, экономичность
  • возможность выбора режима теплоснабжения и теплопотребления в зависимости от времени суток и сезона
  • бесшумная работа, малые габариты (по сравнению с другим оборудованием системы теплообеспечения)
  • автоматизация и диспетчеризация процесса эксплуатации
  • возможность изготовления по индивидуальному заказу

Тепловые пункты могут иметь разные тепловые схемы, типы систем теплопотребления и характеристики используемого оборудования, что зависит от индивидуальных требований Заказчика. Комплектация ТП определяется на основе технических параметров тепловой сети:

  • тепловые нагрузки на сеть
  • температурный режим холодной и горячей воды
  • давление систем тепло- и водоснабжения
  • возможные потери давления
  • климатические условия и т.д.

Виды тепловых пунктов

Вид необходимого теплового пункта зависит от его назначения, количества подводящих теплосистем, количества потребителей, способу размещения и монтажа и выполняемых пунктом функций. В зависимости от вида теплового пункта выбирается его технологическая схема и комплектация.

Тепловые пункты бывают следующих видов:

  • индивидуальные тепловые пункты ИТП
  • центральные тепловые пункты ЦТП
  • блочные тепловые пункты БТП

Открытые и закрытые системы тепловых пунктов. Зависимые и независимые схемы подключения тепловых пунктов

В открытой системе теплоснабжения вода для работы теплового пункта поступает непосредственно из теплосетей. Водозабор может быть полным или частичным. Объем воды, забранный для нужд теплового пункта, восполняется поступлением воды в теплосеть. Следует отметить, что водоподготовка в таких системах осуществляется только на входе в теплосеть. Из-за этого качество воды, поступающей потребителю, оставляет желать лучшего.

Открытые системы, в свою очередь, могут быть зависимыми и независимыми.

В зависимой схеме подключения теплового пункта к тепловой сети теплоноситель из теплосетей попадает непосредственно в систему отопления. Такая система достаточно проста, так как в ней отсутствует необходимость установки дополнительного оборудования. Хотя эта же особенность ведет к существенному недостатку, а, именно, к невозможности регулирования подачи тепла потребителю.

Независимые схемы подключения теплового пункта характеризуются экономической выгодой (до 40%), так как в них между оборудованием конечных потребителей и источником теплоэнергии установлены теплообменники тепловых пунктов, которые регулируют количество подаваемого тепла. Также неоспоримым преимуществом является повышение качества подаваемой воды.

В связи с энергоэффективностью независимых систем многие тепловые компании реконструируют и модернизируют свое оборудование из зависимых систем в независимые.

Закрытая система теплоснабжения является полностью изолированной системой и использует циркулирующую воду в трубопроводе без забора ее из тепловых сетей. Такая система использует воду только в качестве теплоносителя. Утечка теплоносителя возможна, но вода восполняется автоматически при помощи регулятора подпитки.

Количество теплоносителя в закрытой системе остается постоянным, а выработка и распределение тепла потребителю регулируется температурой теплоносителя. Закрытая система характеризуется высоким качеством водоподготовки и высокой энергоэффективностью.

Способы обеспечения потребителей тепловой энергией

По способу обеспечения потребителей тепловой энергией различают одноступенчатые и многоступенчатые тепловые пункты.

Одноступенчатая система характеризуются непосредственным присоединение потребителей к тепловым сетям. Место присоединение называется абонентским вводом. Для каждого объекта теплопотребления должен быть предусмотрен свое технологическое оборудование (подогреватели, элеваторы, насосы, арматура, оборудование КИПиА и др.).

Недостатком одноступенчатой системы подключения является ограничение предела допустимого максимального давления в теплосетях из-за опасности высокого давления для радиаторов отопления. В связи с этим такие системы, в основном, используют для небольшого количества потребителей и для тепловых сетей небольшой длины.

Многоступенчатые системы подключения характеризуются наличием тепловых пунктов между источником тепла и потребителем.

Индивидуальные тепловые пункты

Индивидуальные тепловые пункты обслуживают одного мелкого потребителя (дом, небольшое строение или здание), который уже подключен к системе центрального теплоснабжения. Задача такого ИТП - обеспечение потребителя горячей водой и отоплением (до 40 кВт). Существуют крупные индивидуальные пункты, мощность которых может достигать 2 МВт. Традиционно ИТП размещают в подвале или техническом помещении здания, реже их располагают в отдельно стоящих помещениях. К ИТП подключают только теплоноситель и осуществляют подвод водопроводной воды.

ИТП состоят из двух контуров: первый контур - это контур отопления для поддержания заданной температуры в отапливаемом помещении при помощи датчика температуры; второй контур - это контур горячего водоснабжения.

Центральные тепловые пункты

Центральные тепловые пункты ЦТП применяют для теплообеспечения группы зданий и сооружений. ЦТП выполняют функцию обеспечения потребителей ГВС, ХВС и теплом. Степень автоматизации и диспетчеризации центральных тепловых пунктов (только контроль за параметрами или контроль/управление параметрами ЦТП) определяется Заказчиком и технологическими нуждами. ЦТП могут иметь как зависимую, так и независимую схему подключения к тепловой сети. При зависимой схеме подключения теплоноситель в самом тепловой пункте разделяется на систему отопления и систему горячего водоснабжения. В независимой схеме подключения теплоноситель нагревается во втором контуре теплового пункта поступающей водой из тепловой сети.

Они поставляются на монтажную площадку в полной заводской готовности. На месте последующей эксплуатации осуществляется только подключение к теплосетям и настройка оборудования.

Оборудование центрального теплового пункта (ЦТП) включает в себя следующие элементы:

  • подогреватели (теплообменники) - секционные, многоходовые, блочного типа, пластинчатые - в зависимости от проекта, для горячего водоснабжения, поддерживающие нужную температуру и напор воды у водоразборных точек
  • циркуляционные хозяйственные, противопожарные, отопительные и резервные насосы
  • смесительные устройства
  • тепловые и водомерные узлы
  • контрольно-измерительные приборы КИП и автоматики
  • запорно-регулирующая арматура
  • расширительный мембранный бак

Блочные тепловые пункты (модульные тепловые пункты)

Блочный (модульный) тепловой пункт БТП имеет блочное исполнение. БТП может состоять из более, чем одного блока (модуля), смонтированных, зачастую, на одной объединенной раме. Каждый модуль является независимым и законченным пунктом. При этом регулирование работой общее. Блоснче тепловые пункты могут иметь как локальную систему управления и регулирования, так и дистанционное управление и диспетчеризацию.

В состав блочного теплового пункта могут входить как индивидуальные тепловые пункты, так и центральные тепловые пункты.

Основные системы теплоснабжения потребителей в составе теплового пункта

  • система горячего водоснабжения (открытая или закрытая схема подключения)
  • система отопления (зависимая или независимая схема подключения)
  • система вентиляции

Типовые схемы подключения систем в тепловых пунктах

Типовая схема подключения системы ГВС


Типовая схема подключения системы отопления


Типовая схема подключения системы ГВС и отопления


Типовая схема подключения системы ГВС, отопления и вентиляции


В состав теплового пункта также входит система холодного водоснабжения, но она не является потребителем тепловой энергии.

Принцип работы тепловых пунктов

Тепловая энергия поступает на тепловые пункты от теплогенерирующих предприятий посредством тепловых сетей - первичных магистрельных теплосетей. Вторичные, или разводящие, теплосети соединяют ТП уже с конечным потребителем.

Магистральные теплосети обычно имеют большую протяженность, соединяя источник тепла и непосредственно тепловой пункт, и диаметр (до 1400 мм). Зачастую магистральные тепловые сети могут объединять несколько теплогенерирующих предприятий, что увеличивает надежность обеспечения потребителей энергией.

Перед поступление в магистральные сети вода проходит водоподготовку, которая приводит химические показатели воды (жесткость, рН, содержание кислорода, железа) в соответствии с нормативными требованиями. Это необходимо для того, чтобы снижать уровень коррозионного влияния воды на внутреннюю поверхность труб.

Разводящие трубопроводы имеют сравнительно малую протяженность (до 500 м), соединяя тепловой пункт и уже конечного потребителя.

Теплоноситель (холодная вода) поступает по подающему трубопроводу в тепловой пункт, где проходит через насосы системы холодного водоснабжения. Далее он (теплоноситель) использует первичные подогреватели ГВС и подается в циркуляционный контур системы горячего водоснабжения, откуда поступает уже к конечному потребителю и обратно в ТП, постоянно циркулируя. Для поддержания необходимой температуры теплоносителя, он постоянно подогревается в подогревателе второй ступени ГВС.

Система отопления - это такой же замкнутый контур, как и система ГВС. В случае возникновения утечек теплоносителя, его объем восполняется из системы подпитки теплового пункта.

Затем теплоноситель поступает в обратный трубопровод и поступает опять на теплогенерирующее предприятие по магистральным трубопроводам.

Типовая комплектация тепловых пунктов

Для обеспечения надежной эксплуатации тепловых пунктов они поставляются со следующим минимальным технологическим оборудованием:

  • два пластинчатых теплообменника (паяные или разборные) для системы отопления и системы ГВС
  • насосная станция для перекачки теплоносителя к потребителю, а именно - к отопительным приборам здания или сооружения
  • система автоматического регулирования количества и температуры теплоносителя (датчики, контроллеры, расходомеры) для контроля параметров теплоносителя, учета тепловых нагрузок и регулирования расхода
  • система водоподготовки
  • технологическое оборудование - запорная арматура, обратные клапаны, контрольно-измерительные приборы, регуляторы

Следует отметить, что комплектация теплового пункта технологическим оборудованием во многом зависит от схемы подключения системы горячего водоснабжения и схемы подключения системы отопления.

Так, например, в закрытых системах устанавливаются теплообменники, насосы и оборудование водоподготовки для дальнейшего распределения теплоносителя между системой ГВС и системой отопления. А в открытых системах устанавливаются смесительные насосы (для смешения горячей и холодной воды в нужной пропорции) и регуляторы температуры.

Наши специалисты оказывают весь комплекс услуг, начиная с проектирования, производства, поставки, и заканчивая монтажом и пуско-наладкой тепловых пунктов различной комплектации.

С. Дейнеко

Индивидуальный тепловой пункт - важнейшая составляющая систем теплоснабжения зданий. От его характеристик во многом зависит регулирование систем отопления и ГВС, а также эффективность использования тепловой энергии. Поэтому тепловым пунктам уделяется большое внимание в ходе термомодернизаций зданий, масштабные проекты которых в ближайшем будущем планируется воплотить в жизнь в различных регионах Украины

Индивидуальный тепловой пункт (ИТП) — комплекс устройств, расположенный в обособленном помещении (как правило, в подвальном помещении), состоящий из элементов, обеспечивающих присоединение системы отопления и горячего водоснабжения к централизованной тепловой сети. По подающему трубопроводу осуществляется подача теплоносителя в здание. С помощью второго обратного трубопровода в котельную попадает уже охлажденный теплоноситель из системы.

Температурный график работы тепловой сети определяет то, в каком режиме тепловой пункт будет работать в дальнейшем и какое оборудование необходимо в нем устанавливать. Различают несколько температурных графиков работы тепловой сети:

  • 150/70°С;
  • 130/70°С;
  • 110/70°С;
  • 95 (90)/70°С.

Если температура теплоносителя не превышает 95°С, то его остается только распределить по всей отопительной системе. В этом случае возможно применять только коллектор с балансировочными клапанами для гидравлической увязки циркуляционных колец. Если же температура теплоносителя превышает 95°С, то такой теплоноситель нельзя напрямую использовать в системе отопления без его температурной регулировки. Именно в этом и заключается важная функция теплового пункта. При этом необходимо, чтобы температура теплоносителя в системе отопления изменялась в зависимости от изменения температуры наружного воздуха.

В тепловых пунктах старого образца (рис. 1, 2) в качестве регулирующего устройства применялся элеваторный узел. Это позволяло существенно снизить стоимость оборудования, однако с помощью такого ТП было невозможно осуществлять точную регулировку температуры теплоносителя, особенно при переходных режимах работы системы. Элеваторный узел обеспечивал только «качественную» регулировку теплоносителя, когда температура в системе отопления изменяется в зависимости от температуры теплоносителя, приходящего от централизованной тепловой сети. Это приводило к тому, что «регулировка» температуры воздуха в помещениях производилась потребителями при помощи открытого окна и с огромными тепловыми затратами, уходящими в никуда.

Рис. 1.
1 - подающий трубопровод; 2 - обратный трубопровод; 3 - задвижки; 4 - водомер; 5 - грязевики; 6 - манометры; 7 - термометры; 8 - элеватор; 9 - нагревательные приборы системы отопления

Поэтому минимальные изначальные капиталовложения выливались в финансовые потери в долгосрочной перспективе. Особенно низкая эффективность работы элеваторных узлов проявилась с ростом цен на тепловую энергию, а также с невозможностью работы централизованной тепловой сети по температурному или гидравлическому графику, на который были рассчитаны установленные ранее элеваторные узлы.


Рис. 2. Элеваторный узел «советской» эпохи

Принцип работы элеватора заключается в том, чтобы смешивать теплоноситель из централизованной тепловой сети и воду из обратного трубопровода системы отопления до температуры, соответствующей нормативной для данной системы. Это происходит за счет принципа эжекции при использовании в конструкции элеватора сопла определенного диаметра (рис. 3). После элеваторного узла смешанный теплоноситель подается в систему отопления здания. Элеватор совмещает одновременно два устройства: циркуляционный насос и смесительное устройство. На эффективность смешения и циркуляции в системе отопления не влияют колебания теплового режима в тепловых сетях. Вся регулировка заключается в правильном подборе диаметра сопла и обеспечения необходимого коэффициента смешения (нормативный коэффициент 2,2). Для работы элеваторного узла нет необходимости подводить электрический ток.

Рис. 3. Принципиальная схема конструкции элеваторного узла

Однако имеются многочисленные недостатки, которые сводят на нет всю простоту и неприхотливость обслуживания данного устройства. На эффективность работы напрямую влияют колебания гидравлического режима в тепловых сетях. Так, для нормального смешения, перепад давлений в подающем и обратном трубопроводах необходимо поддерживать в пределах 0,8 - 2 бар; температура на выходе из элеватора не поддается регулировке и напрямую зависит только от изменения температуры тепловой сети. В этом случае, если температура теплоносителя, поступающего из котельной, не соответствует температурному графику, то и температура на выходе из элеватора будет ниже необходимой, что напрямую повлияет на внутреннюю температуру воздуха в помещениях здания.

Подобные устройства получили широкое применение во многих типах зданий, подключенных к централизованной тепловой сети. Однако в настоящее время они не соответствуют требованиям по энергосбережению, в связи с чем подлежат замене на современные индивидуальные тепловые пункты. Их стоимость значительно выше и для работы обязательно требуется электропитание. Но, в то же время, эти устройства более экономны - позволяют снизить энергопотребление на 30 - 50%, что с учетом роста цен на теплоноситель позволит уменьшить срок окупаемости до 5 - 7 лет, а срок службы ИТП напрямую зависит от качества используемых элементов управления, материалов и уровня подготовки технического персонала при его обслуживании.

Современные ИТП

Энергосбережение достигается, в частности, за счет регулирования температуры теплоносителя с учетом поправки на изменение температуры наружного воздуха. Для этих целей в каждом тепловом пункте применяют комплекс оборудования (рис. 4) для обеспечения необходимой циркуляции в системе отопления (циркуляционные насосы) и регулирования температуры теплоносителя (регулирующие клапаны с электрическими приводами, контроллеры с датчиками температуры).

Рис. 4. Принципиальная схема индивидуального теплового пункта и использованием контроллера , регулирующего клапана и циркуляционного насоса

Большинство тепловых пунктов имеет в своем составе также теплообменник для подключения к внутренней системе горячего водоснабжения (ГВС) с циркуляционным насосом. Набор оборудования зависит от конкретных задач и исходных данных. Именно поэтому, из-за различных возможных вариантов конструкции, а также своей компактности и транспортабельности, современные ИТП получили название модульных (рис. 5).


Рис. 5. Современный модульный индивидуальный тепловой пункт в сборе

Рассмотрим использование ИТП в зависимых и независимых схемах подключения системы отопления к централизованной тепловой сети.

В ИТП с зависимым присоединением системы отопления к внешним тепловым сетям циркуляция теплоносителя в отопительном контуре поддерживается циркуляционным насосом. Управление насосом осуществляется в автоматическом режиме от контроллера или от соответствующего блока управления. Автоматическое поддержание необходимого температурного графика в отопительном контуре также осуществляется электронным регулятором. Контролер воздействует на регулирующий клапан, расположенный на подающем трубопроводе на стороне внешней тепловой сети («острой воде»). Между подающим и обратным трубопроводами установлена смесительная перемычка с обратным клапаном, за счет которой осуществляется подмес в подающий трубопровод из обратной линии теплоносителя, с более низкими температурными параметрами (рис. 6).

Рис. 6. Принципиальная схема модульного теплового пункта, подключенного по зависимой схеме:
1 - контроллер; 2 - двухходовой регулирующий клапан с электрическим приводом; 3 - датчики температуры теплоносителя; 4 - датчик температуры наружного воздуха; 5 - реле давления для защиты насосов от сухого хода; 6 - фильтры; 7 - задвижки; 8 - термометры; 9 - манометры; 10 - циркуляционные насосы системы отопления; 11 - обратный клапан; 12 - блок управления циркуляционными насосами

В данной схеме работа системы отопления зависит от давлений в центральной тепловой сети. Поэтому во многих случаях потребуется установка регуляторов перепада давления, а, в случае необходимости, и регуляторов давления «после себя» или «до себя» на подающем или на обратном трубопроводах.

В независимой системе для присоединения к внешнему источнику тепла используется теплообменник (рис. 7). Циркуляция теплоносителя в системе отопления осуществляется циркуляционным насосом. Управление насосом производится в автоматическом режиме контролером или соответствующим блоком управления. Автоматическое поддержание необходимого температурного графика в нагреваемом контуре также осуществляется электронным регулятором. Контроллер воздействует на регулируемый клапан, расположенный на подающем трубопроводе на стороне внешней тепловой сети («острой воде»).


Рис. 7. Принципиальная схема модульного теплового пункта, подключенного по независимой схеме:
1 - контроллер; 2 - двухходовой регулирующий клапан с электрическим приводом; 3 - датчики температуры теплоносителя; 4 - датчик температуры наружного воздуха; 5 - реле давления для защиты насосов от сухого хода; 6 - фильтры; 7 - задвижки; 8 - термометры; 9 - манометры; 10 - циркуляционные насосы системы отопления; 11 - обратный клапан; 12 - блок управления циркуляционными насосами; 13 - теплообменник системы отопления

Достоинством данной схемы является то, что отопительный контур независим от гидравлических режимов централизованной тепловой сети. Также система отопления не страдает от несоответствия качества входящего теплоносителя, поступающего из центральной тепловой сети (наличия продуктов коррозии, грязи, песка и т.д.), а также перепадов давления в ней. В то же время стоимость капитальных вложений при применении независимой схемы больше - по причине необходимости установки и последующего обслуживания теплообменника.

Как правило, в современных системах применяются разборные пластинчатые теплообменники (рис. 8), которые достаточно просты в обслуживании и ремонтопригодны: при потере герметичности или выходе из строя одной секции, теплообменник возможно разобрать, а секцию заменить. Также, при необходимости, можно повысить мощность путем увеличения количества пластин теплообменника. Кроме того, в независимых системах применяют паяные неразборные теплообменники.

Рис. 8. Теплообменники для независимых систем подключения ИТП

Согласно ДБН В.2.5-39:2008 «Инженерное оборудование зданий и сооружений. Внешние сети и сооружения. Тепловые сети», в общем случае предписано подсоединение систем отопления по зависимой схеме. Независимая схема предписана для жилых зданий с 12 и более этажами и других потребителей, если это обусловлено гидравлическим режимом работы системы или техническим заданием заказчика.

ГВС от теплового пункта

Наиболее простой и распространенной является схема с одноступенчатым параллельным присоединением подогревателей горячего водоснабжения (рис. 9). Они присоединены к той же тепловой сети, что и системы отопления зданий. Вода, из наружной водопроводной сети подается в подогреватель ГВС. В нем она нагревается сетевой водой, поступающей из подающего трубопровода тепловой сети.

Рис. 9. Схема с зависимым присоединением системы отопления к тепловой сети и одноступенчатым параллельным присоединением теплообменника ГВС

Охлажденная сетевая вода подается в обратный трубопровод тепловой сети. После подогревателя горячего водоснабжения нагретая водопроводная вода подается в систему ГВС. Если приборы в этой системе закрыты (к примеру, в ночное время), то горячая вода по циркуляционному трубопроводу снова подается в подогреватель ГВС.

Эту схему с одноступенчатым параллельным присоединением подогревателей горячего водоснабжения рекомендуется применять, если отношение максимального расхода теплоты на ГВС зданий к максимальному расходу теплоты на отопление зданий менее 0,2 или более 1,0. Схема используется при нормальном температурном графике сетевой воды в тепловых сетях.

Кроме того, применяется двухступенчатая система подогрева воды в системе ГВС. В ней в зимний период холодная водопроводная вода сначала подогревается в теплообменнике первой ступени (с 5 до 30 ˚С) теплоносителем из обратного трубопровода системы отопления, а затем для окончательного догрева воды до необходимой температуры (60 ˚С) используется сетевая вода из подающего трубопровода тепловой сети (рис. 10). Идея состоит в том, чтобы использовать для нагрева бросовую тепловую энергию обратной линии от системы отопления. При этом сокращается расход сетевой воды на подогрев воды в системе ГВС. В летний период нагрев происходит по одноступенчатой схеме.

Рис. 10. Схема теплового пункта с зависимым присоединением системы отопления к тепловой сети и двухступенчатым нагревом воды

Требования к оборудованию

Важнейшей характеристикой современного теплового пункта является наличие приборов учета тепловой энергии, что в обязательном порядке предусмотрено ДБН В.2.5-39:2008 «Инженерное оборудование зданий и сооружений. Внешние сети и сооружения. Тепловые сети».

Согласно разделу 16 указанных норм, в тепловом пункте должно быть размещено оборудование, арматура, устройства контроля, управления и автоматизации, с помощью которых осуществляют:

  • регулирование температуры теплоносителя по погодным условиям ;
  • изменение и контроль параметров теплоносителя;
  • учет тепловых нагрузок, затрат теплоносителя и конденсата;
  • регулирование затрат теплоносителя;
  • защиту локальной системы от аварийного повышения параметров теплоносителя;
  • доочистку теплоносителя;
  • заполнение и подпитку систем отопления;
  • комбинированное теплообеспечение с использованием тепловой энергии от альтернативных источников.

Подсоединение потребителей к теплосети должно осуществляться по схемам с минимальными затратами воды, а также экономией тепловой энергии за счет установки автоматических регуляторов теплового потока и ограничения затрат сетевой воды. Не допускается присоединение системы отопления к тепловой сети через элеватор вместе с автоматическим регулятором теплового потока.

Предписано использовать высокоэффективные теплообменники с высокими теплотехническими и эксплуатационными характеристиками и малыми габаритами. В наивысших точках трубопроводов тепловых пунктов следует устанавливать воздухоотводчики, причем рекомендуется применять автоматические устройства с обратными клапанами. В нижних точках следует устанавливать штуцеры с запорными кранами для спуска воды и конденсата.

На вводе в тепловой пункт на подающем трубопроводе следует устанавливать грязевик, а перед насосами, теплообменниками, регулирующими клапанами и счетчиками воды - сетчатые фильтры. Кроме того, фильтр-грязевик необходимо устанавливать на обратной линии перед регулирующими устройствами и приборами учета. По обе стороны от фильтров следует предусмотреть манометры.

Для защиты каналов ГВС от накипи нормами предписано использовать устройства магнитной и ультразвуковой обработки воды. Принудительная вентиляция, которой необходимо обустраивать ИТП, рассчитывается на кратковременное действие и должна обеспечивать 10-кратный обмен с неорганизованным приливом свежего воздуха через входные двери.

Во избежание превышения уровня шума, ИТП не допускается располагать рядом, под или над помещениями жилых квартир, спален и комнат игр детсадов и т.д. Кроме того, регламентируется, что установленные насосы должны быть с допустимым низким уровнем шума.

Тепловой пункт следует оснащать средствами автоматизации, приборами теплотехнического контроля, учета и регулирования, которые устанавливают на месте или на щите управления.

Автоматизация ИТП должна обеспечивать:

  • регулирование затрат тепловой энергии в системе отопления и ограничение максимального расхода сетевой воды у потребителя;
  • заданную температуру в системе ГВС;
  • поддержание статического давления в системах потребителей теплоты при их независимом присоединении;
  • заданное давление в обратном трубопроводе или необходимый перепад давления воды в подающем и обратном трубопроводах тепловых сетей;
  • защиту систем теплопотребления от повышенного давления и температуры;
  • включение резервного насоса при отключении основного рабочего и др.

Помимо того, современные проекты предусматривают обустройство удаленного доступа к управлению тепловыми пунктами. Это позволяет организовать централизованную систему диспетчеризации и осуществлять контроль за работой систем отопления и ГВС. Поставщиками оборудования для ИТП являются ведущие компании-производители соответствующего теплотехнического оборудования, например: системы автоматики - Honeywell (США), Siemens (Германия), Danfoss (Дания); насосы - Grundfos (Дания), Wilo (Германия); теплообменники - Alfa Laval (Швеция), Gea (Германия) и др.

Стоит также отметить, что современные ИТП включают достаточно сложное оборудование, которое требует периодического технического и сервисного обслуживания, заключающегося, к примеру, в промывке сетчатых фильтров (не реже 4 раз в год), чистке теплообменников (минимум 1 раз в 5 лет) и т.д. При отсутствии надлежащего технического обслуживания оборудование теплового пункта может прийти в негодность или выйти из строя. Примеры тому в Украине, к сожалению, уже есть.

В то же время, существуют подводные камни при проектировании всего оборудования ИТП. Дело в том, что в отечественных условиях температура в подающем трубопроводе централизованной сети часто не соответствует нормируемой, которую указывает теплоснабжающая организация в технических условиях, выдаваемых для проектирования.

При этом разница в официальных и реальных данных может быть довольно существенной (например, в реальности поставляется теплоноситель с температурой не более 100˚С вместо указанных 150˚С, или наблюдается неравномерность температуры теплоносителя со стороны центральной тепловой по времени суток), что соответственно, влияет на выбор оборудования, его последующую эффективность работы и, в итоге, на его стоимость. По этой причине рекомендуется при реконструкции ИТП на этапе проектирования, проводить замеры реальных параметров теплоснабжения на объекте и учитывать их в дальнейшем при расчетах и выборе оборудования. При этом из-за возможного несоответствия параметров, оборудование стоит проектировать с запасом в 5-20 %.

Реализация на практике

Первые современные энергоэффективные модульные ИТП в Украине были установлены в Киеве в период 2001 - 2005 гг. в рамках реализации проекта Всемирного банка «Энергосбережение в административных и общественных зданиях». Всего было смонтировано 1173 ИТП. К настоящему времени по причине не решенных ранее вопросов периодического квалифицированного технического обслуживания порядка 200 из них пришли в негодность или требуют ремонта.

Видео. Реализованный проект с применением индивидуального теплового пункта в многоквартирном жилом доме, экономия до 30% теплоэнергии

Модернизация установленных ранее тепловых пунктов с организацией удаленного доступа к ним является одним из пунктов программы «Термосанация в бюджетных учреждениях г. Киева» с привлечением кредитных средств Северной экологической финансовой корпорации (NEFCO) и грантов «Фонда Восточного партнерства по энергоэффективности и окружающей среде» (E5P).

Помимо того, в минувшем году Всемирный банк объявил о старте масштабного шестилетнего проекта, направленного на повышение энергоэффективности теплоснабжения в 10 городах Украины. Бюджет проекта составляет 382 млн. долларов США. Направлены они будут, в частности, и на установку модульных ИТП. Планируется также ремонт котельных, замена трубопроводов и установка счетчиков тепловой энергии. Намечено, что проект поможет в снижении издержек, повышении надежности обслуживания и улучшении общего качества теплоты, поступающей свыше 3 млн. украинцам.

Модернизация теплового пункта - одно из условий повышения энергоэффективности здания в целом. В настоящее время кредитованием внедрения данных проектов занимается ряд украинских банков, в том числе и в рамках государственных программ. Подробнее об этом можно прочитать в предыдущем номере нашего журнала в статье «Термомодернизация: что именно и за какие средства ».

Больше важных статей и новостей в Telegram-канале AW-Therm . Подписывайтесь!

Просмотрено: 183 224

Когда речь заходит о рациональном использовании тепловой энергии, все сразу же вспоминают о кризисе и неимоверных счетах по «жировкам», им спровоцированных. В новых домах, где предусмотрены инженерные решения, позволяющие регулировать потребление тепловой энергии в каждой отдельной квартире, можно найти оптимальный вариант отопления или горячего водоснабжения (ГВС), который устроит жильца. В отношении старых строений дело обстоит куда сложнее. Индивидуальные тепловые пункты становятся единственным разумным решением задачи экономии тепла для их обитателей.

Определение ИТП — индивидуальный тепловой пункт

Согласно хрестоматийному определению ИТП — это не что иное, как тепловой пункт, предназначенный для обслуживания целого здания или отдельных его частей. Эта сухая формулировка требует пояснения.

Функции индивидуального теплового пункта заключаются в перераспределении энергии, поступающей из сети (центральный тепловой пункт или котельная) между системами вентиляции, ГВС и отопления, в соответствии с потребностями здания. При этом учитывается специфика обслуживаемых помещений. Жилые, складские, подвальные и другие их виды, разумеется, должны отличаться и по температурному режиму и параметрам вентиляции.

Установка ИТП подразумевает наличие отдельного помещения. Чаще всего оборудование монтируется в подвальных или технических помещениях многоэтажек, пристройках к многоквартирным домам или в отдельно стоящих строениях, находящихся в непосредственной близости.

Модернизация здания путем установки ИТП требует существенных финансовых затрат. Несмотря на это, актуальность ее проведения продиктована преимуществами, сулящими несомненные выгоды, а именно:

  • расход теплоносителя и его параметры подвергаются учету и оперативному контролю;
  • распределение теплоносителя по системе в зависимости от условий теплопотребления;
  • регулирование расхода теплоносителя, в соответствии с возникшими требованиями;
  • возможность изменения вида теплоносителя;
  • повышенный уровень безопасности в случаях аварий и прочие.

Возможность влиять на процесс расхода теплоносителя и его энергетические показатели привлекательна сама по себе, не говоря об экономии от рационального использования тепловых ресурсов. Единовременные же затраты на оборудование ИТП с лихвой окупятся за весьма скромный промежуток времени.

Структура ИТП зависит от того, какие системы потребления он обслуживает. В общем случае в его комплектацию могут входить системы обеспечения отопления, ГВС, отопления и ГВС, а также отопления, ГВС и вентиляции. Поэтому в состав ИТП обязательно входят следующие устройства:

  1. теплообменники для передачи тепловой энергии;
  2. арматура запорного и регулирующего действия;
  3. приборы для контроля и измерения параметров;
  4. насосное оборудование;
  5. щиты управления и контроллеры.

Здесь приведены лишь устройства, присутствующие на всех ИТП, хотя каждый конкретный вариант может иметь и дополнительные узлы. Источник холодного водоснабжения, обычно находится в том же помещении, например.

Схема теплового пункта отопления построена с использованием пластинчатого теплообменника и является полностью независимой. Для поддержания давления на требуемом уровне устанавливается сдвоенный насос. Предусмотрен простой способ «доукомплектации» схемы системой горячего водоснабжения и другими узлами, и агрегатами, включая приборы учета.

Работа ИТП для ГВС подразумевает включение в схему пластинчатых теплообменников, работающих только на нагрузку по ГВС. Перепады давления в этом случае компенсируются группой насосов.

В случае организации систем для отопления и ГВС выше рассмотренные схемы объединяются. Пластинчатые теплообменники отопления работают вместе с двухступенчатым контуром ГВС, причем подпитка системы отопления осуществляется от обратного трубопровода теплосети посредством соответствующих насосов. Сеть холодного водоснабжения же является подпитывающим источником для системы ГВС.

Если к ИТП необходимо подключить и систему вентиляции, то он оснащается еще одним пластинчатым теплообменником, связанным с ней. Отопление и ГВС продолжают работать по ранее описанному принципу, а контур вентиляции подключается аналогично отопительному с добавлением необходимых контрольно-измерительных приборов.

Индивидуальный тепловой пункт. Принцип работы

Центральный тепловой пункт, являющийся источником теплоносителя, подает горячую воду на вход индивидуального теплового пункта через трубопровод. Причем эта жидкость никоим образом не попадает ни в одну из систем здания. Как для отопления, так и для подогрева воды в системе ГВС, а также вентиляции используется исключительно температура подаваемого теплоносителя. Передача энергии в системы происходит в теплообменниках пластинчатого типа.

Температура передается магистральным теплоносителем воде, забранной из системы холодного водоснабжения. Итак, цикл движения теплоносителя начинается в теплообменнике, проходит через тракт соответствующей системы, отдавая тепло, и по обратному магистральному водопроводу возвращается для дальнейшего использования на предприятие, обеспечивающее теплоснабжение (котельную). Часть цикла, предусматривающая отдачу тепла, обогревает жилища и делает воду в кранах горячей.

Холодная вода поступает в подогреватели из системы холодного водоснабжения. Для этого используется система насосов, поддерживающих требуемый уровень давления в системах. Насосы и дополнительные устройства необходимы для снижения, либо повышения, давления воды из снабжающей магистрали до допустимого уровня, а также его стабилизации в системах здания.

Преимущества использования ИТП

Четырехтрубная система теплоснабжения от центрального теплового пункта, применявшаяся раньше достаточно часто, имеет массу недостатков, которые отсутствуют у ИТП. Кроме того, последний имеет ряд весьма значительных преимуществ перед конкурентом, а именно:

  • экономичность, обусловленная значительным (до 30%) снижением потребления тепла;
  • доступность приборов упрощает контроль как за расходом теплоносителя, так и количественными показателями тепловой энергии;
  • возможность гибкого и оперативного влияния на расход тепла путем оптимизации режима его потребления, в зависимости от погоды, например;
  • простота монтажа и довольно скромные габаритные размеры устройства, позволяющие размещать его в небольших помещениях;
  • надежность и стабильность работы ИТП, а также благоприятное влияние на те же характеристике обслуживаемых систем.

Этот перечень можно продолжать сколь угодно долго. Он отражает лишь основные, лежащие на поверхности, преимущества, получаемые при использовании ИТП. В него можно добавить, например, возможность автоматизации управления ИТП. В этом случае его экономические и эксплуатационные показатели становятся еще более привлекательными для потребителя.

Наиболее существенным недостатком ИТП, если не считать транспортных расходов и затрат на погрузочно-разгрузочные мероприятия, является необходимость улаживания всевозможного рода формальностей. Получение соответствующих разрешений и согласований можно отнести к очень серьезным задачам.

Фактически, такие задачи сможет решить только специализированная организация.

Этапы установки теплового пункта

Понятно, что одного решения, пусть и коллективного, основанного на мнении всех жильцов дома, недостаточно. Кратко процедуру оснащения объекта, многоквартирного дома, например, можно описать следующим образом:

  1. собственно, позитивное решение жильцов;
  2. заявка в теплоснабжающую организацию для разработки технического задания;
  3. получение технических условий;
  4. пред проектное обследование объекта, для определения состояния и состава имеющегося оборудования;
  5. разработка проекта с последующим его утверждением;
  6. заключение договора;
  7. реализация проекта и проведение пусконаладочных испытаний.

Алгоритм может показаться, на первый взгляд, достаточно сложным. На самом же деле, всю работу начиная от решения и заканчивая принятием в эксплуатацию можно сделать менее чем за два месяца. Все заботы нужно возложить на плечи ответственной компании, специализирующейся на оказании подобного рода услуг и позитивно зарекомендовавшей себя. Благо, сейчас таковых предостаточно. Останется лишь дожидаться результата.