Задача о замене оборудования. Важной экономической проблемой является своевременное обновление оборудования: автомобилей, станков

Оптимальная стратегия замены оборудования

Одной из важных экономических проблем является определение оптимальной стратегии в замене старых станков, агрегатов, машин на новые.

Старение оборудования включает его физический и моральный износ, в результате чего растут производственные затраты по выпуску продукции на старом оборудовании, увеличиваются затраты на его ремонт и обслуживание, снижаются производительность и ликвидная стоимость.

Наступает время, когда старое оборудование выгоднее продать, заменить новым, чем эксплуатировать ценой больших затрат; причем его можно заменить новым оборудованием того же вида или новым, более совершенным.

Оптимальная стратегия замены оборудования состоит в определении оптимальных сроков замены. Критерием оптимальности при этом может служить прибыль от эксплуатации оборудования, которую следует оптимизировать, или суммарные затраты на эксплуатацию в течение рассматриваемого промежутка времени, подлежащие минимизации.

Введем обозначения: r(t) - стоимость продукции, производимой за один год на единице оборудования возраста t лет;

u(t) - ежегодные затраты на обслуживание оборудования возраста t лет;

s(t) - остаточная стоимость оборудования возраста t лет;

Р - покупная цена оборудования.

Рассмотрим период N лет, в пределах которого требуется определить оптимальный цикл замены оборудования.

Обозначим через fN(t) максимальный доход, получаемый от оборудования возраста t лет за оставшиеся N лет цикла использования оборудования при условии оптимальной стратегии.

Возраст оборудования отсчитывается в направлении течения процесса. Так, t = 0 соответствует случаю использования нового оборудования. Временные же стадии процесса нумеруются в обратном направлении по отношению к ходу процесса. Так, N = 1 относится к одной временной стадии, остающейся до завершения процесса, а N = N - к началу процесса.

На каждом этапе N–стадийного процесса должно быть принято решение о сохранении или замене оборудования. Выбранный вариант должен обеспечивать получение максимальной прибыли.

Функциональные уравнения, основанные на принципе оптимальности, имеют вид:

Первое уравнение описывает N–стадийный процесс, а второе- одностадийный. Оба уравнения состоят из двух частей: верхняя строка определяет доход, получаемый при сохранении оборудования; нижняя - доход, получаемый при замене оборудования и продолжении процесса работы на новом оборудовании.

В первом уравнении функция r(t) - u(t) есть разность между стоимостью произведенной продукции и эксплуатационными издержками на N–й стадии процесса.

Функция fN–1 (t + 1) характеризует суммарную прибыль от (N - 1) оставшихся стадий для оборудования, возраст которого в начале осуществления этих стадий составляет (t + 1) лет.

Нижняя строка в первом уравнении характеризуется следующим образом: функция s(t) - Р представляет чистые издержки по замене оборудования, возраст которого t лет.

Функция r(0) выражает доход, получаемый от нового оборудования возраста 0 лет. Предполагается, что переход от работы на оборудовании возраста t лет к работе на новом оборудовании совершается мгновенно, т.е. период замены старого оборудования и переход на работу на новом оборудовании укладываются в одну и ту же стадию.

Последняя функция fN–1 представляет собой доход от оставшихся N - 1 стадий, до начала осуществления которых возраст оборудования составляет один год.

Аналогичная интерпретация может быть дана уравнению для одностадийного процесса. Здесь нет слагаемого вида f0(t + 1), так как N принимает значение 1, 2,..., N. Равенство f0(t) = 0 следует из определения функции fN(t).

Уравнения являются рекуррентными соотношениями, которые позволяют определить величину fN(t) в зависимости от fN–1(t + 1). Структура этих уравнений показывает, что при переходе от одной стадии процесса к следующей возраст оборудования увеличивается с t до (t + 1) лет, а число оставшихся стадий уменьшается с N до (N - 1).

Расчет начинают с использования первого уравнения. Уравнения позволяют оценить варианты замены и сохранения оборудования, с тем чтобы принять тот из них, который предполагает больший доход. Эти соотношения дают возможность не только выбрать линию поведения при решении вопроса о сохранении или замене оборудования, но и определить прибыль, получаемую при принятии каждого из этих решений.

Пример. Определить оптимальный цикл замены оборудования при следующих исходных данных: Р = 10, S(t) = 0, f(t) = r(t) - u(t), представленных в таблице.

Решение. Уравнения запишем в следующем виде:

Вычисления продолжаем до тех пор, пока не будет выполнено условие f1(1) > f2(2), т.е. в данный момент оборудование необходимо заменить, так как величина прибыли, получаемая в результате замены оборудования, больше, чем в случае использования старого. Результаты расчетов помещаем в таблицу, момент замены отмечаем звездочкой, после чего дальнейшие вычисления по строчке прекращаем.

Можно не решать каждый раз уравнение, а вычисления проводить в таблице. Например, вычислим f4(t):

Дальнейшие расчеты для f4(t) прекращаем, так как f4(4) = 23 По результатам вычислений и по линии, разграничивающей области решений сохранения и замены оборудования, находим оптимальный цикл замены оборудования. Для данной задачи он составляет 4 года.

Ответ. Для получения максимальной прибыли от использования оборудования в двенадцатиэтапном процессе оптимальный цикл состоит в замене оборудования через каждые 4 года.

Оптимальное распределение ресурсов

Пусть имеется некоторое количество ресурсов х, которое необходимо распределить между п различными предприятиями, объектами, работами и т.д. так, чтобы получить максимальную суммарную эффективность от выбранного способа распределения.

Введем обозначения: xi - количество ресурсов, выделенных i–му предприятию (i = );

gi(xi) - функция полезности, в данном случае это величина дохода от использования ресурса xi, полученного i–м предприятием;

fk(x) - наибольший доход, который можно получить при использовании ресурсов х от первых k различных предприятий.

Сформулированную задачу можно записать в математической форме:

при ограничениях:

Для решения задачи необходимо получить рекуррентное соотношение, связывающее fk(x) и fk–1(x).

Обозначим через хk количество ресурса, используемого k–м способом (0 ≤ xk ≤ х), тогда для (k - 1) способов остается величина ресурсов, равная (x - xk). Наибольший доход, который получается при использовании ресурса (x - xk) от первых (k - 1) способов, составит fk–1(x - xk).

Для максимизации суммарного дохода от k–гo и первых (k - 1) способов необходимо выбрать xk таким образом, чтобы выполнялись соотношения

Рассмотрим конкретную задачу по распределению капиталовложений между предприятиями.

Распределение инвестиций для эффективного использования потенциала предприятия

Совет директоров фирмы рассматривает предложения по наращиванию производственных мощностей для увеличения выпуска однородной продукции на четырех предприятиях, принадлежащих фирме.

Для расширения производства совет директоров выделяет средства в объеме 120 млн р. с дискретностью 20 млн р. Прирост выпуска продукции на предприятиях зависит от выделенной суммы, его значения представлены предприятиями и содержатся в таблице.

Найти распределение средств между предприятиями, обеспечивающее максимальный прирост выпуска продукции, причем на одно предприятие можно осуществить не более одной инвестиции.

Решение. Разобьем решение задачи на четыре этапа по количеству предприятий, на которых предполагается осуществить инвестиции.

Рекуррентные соотношения будут иметь вид:

для предприятия № 1

для всех остальных предприятий

Решение будем проводить согласно рекуррентным соотношениям в четыре этапа.

1–й этап. Инвестиции производим только первому предприятию. Тогда

2–й этап. Инвестиции выделяем первому и второму предприятиям. Рекуррентное соотношение для 2–го этапа имеет вид

при х = 20 f2(20) = max (8 + 0,0 + 10) = max (8, 10) = 10,

при x = 40 f2(40) = max (16,8 + 10,20) = max (16, 18, 20) =20,

при х = 60 f2(60) = max (25,16 + 10, 8 + 20,28) = max (25,26, 28,28) =28,

при х = 80 f2(80) = max (36,25 + 10,16 + 20,8 + 28,40) = max (36, 35, 36, 36, 40) = 40,

при х = 100 f2(100) = max (44,36 + 10,25 + 20,16 + 28,8 + 40,48) = max (44, 46, 45, 44, 48, 48) = 48,

при х = 120 f2(120) = max (62,44 + 10,36 +20,25 + 28,16 + 40,8 + 48,62) = max (62, 54, 56, 53, 56, 56, 62) = 62.

3–й этап. Финансируем 2–й этап и третье предприятие. Расчеты проводим по формуле

при х = 20 f3(20) = mах (10, 12) = 12,

при x = 40 f3(40) = max (20,10 + 12,21) = max (20, 22, 21) = 22,

при х = 60 f3(60) = max (28,20 + 12,10 + 21,27) = max (28, 32, 31, 27) = 32,

при х = 80 f3(80) = max (40,28 + 12,20 + 21,10 + 27,38) = max (40, 40, 41, 37, 38) = 41,

при x = 100 f3(100) = max (48,40 + 12,28 + 21,20 + 27,10 + 38,50) = max (48, 52, 49, 47, 48, 50) = 52,

при х = 120 f3(120) = max (62,48 + 12,40 + 21,28 + 27,20 + 38,10 + 50,63) = max (62, 60, 61, 55, 58, 60, 63) = 63.

4–й этап. Инвестиции в объеме 120 млн р. распределяем между 3–м этапом и четвертым предприятием.

При х = 120 f4(120) = max (63,52 + 11,41 + 23,32 + 30,22 + 37,12 + 51,63) = max (63, 63, 64, 62, 59, 63, 63) = 64.

Получены условия управления от 1–го до 4–го этапа. Вернемся от 4–го к 1–му этапу. Максимальный прирост выпуска продукции в 64 млн р. получен на 4–м этапе как 41 + 23, т.е. 23 млн р. соответствуют выделению 40 млн р. четвертому предприятию (см. табл. 29.3). Согласно 3–му этапу 41 млн р. получен как 20 + 21, т.е. 21 млн р. соответствует выделеник 40 млн р. третьему предприятию. Согласно 2–этапу 20 млн р. получено при выделении 40 млн р. второму предприятию.

Таким образом, инвестиции в объеме 120 млн р. целесообразно выделить второму, третьему и четвертому предприятиям по 40 млн р. каждому, при этом прирост продукции будет максимальным и составит 64 млн р.

Минимизация затрат на строительство и эксплуатацию предприятий

Задача по оптимальному размещению производственных предприятий может быть сведена к задаче распределения ресурсов согласно критерию минимизации с учетом условий целочисленности, накладываемых на переменные.

Пусть задана потребность в пользующемся спросом продукте на определенной территории. Известны пункты, в которых можно построить предприятия, выпускающие данный продукт. Подсчитаны затраты на строительство и эксплуатацию таких предприятий.

Необходимо так разместить предприятия, чтобы затраты на их строительство и эксплуатацию были минимальные.

Введем обозначения:

х - количество распределяемого ресурса, которое можно использовать п различными способами,

xi - количество ресурса, используемого по i–му способу (i = );

gi(xi) - функция расходов, равная, например, величине затрат на производство при использовании ресурса xi по i–му способу;

φk(x) - наименьшие затраты, которые нужно произвести при использовании ресурса х первыми k способами.

Необходимо минимизировать общую величину затрат при освоении ресурса x всеми способами:

при ограничениях

Экономический смысл переменных xi состоит в нахождении количества предприятий, рекомендуемого для строительства в i–м пункте. Для удобства расчетов будем считать, что планируется строительство предприятий одинаковой мощности.

Рассмотрим конкретную задачу по размещению предприятий.

Пример. В трех районах города предприниматель планирует построить пять предприятий одинаковой мощности по выпуску хлебобулочных изделий, пользующихся спросом.

Необходимо разместить предприятия таким образом, чтобы обеспечить минимальные суммарные затраты на их строительство и эксплуатацию. Значения функции затрат gi(x) приведены в таблице.

В данном примере gi(х) - функция расходов в млн р., характеризующая величину затрат на строительство и эксплуатацию в зависимости от количества размещаемых предприятий в i–м районе;

φk(x) - наименьшая величина затрат в млн. р., которые нужно произвести при строительстве и эксплуатации предприятий в первых k районах.

Решение. Решение задачи проводим с использованием рекуррентных соотношений: для первого района

для остальных районов

Задачу будем решать в три этапа.

1–й этап. Если все предприятия построить только в первом районе, то

минимально возможные затраты при х = 5 составляют 76 млн р.

2–й этап. Определим оптимальную стратегию при размещении предприятий только в первых двух районах по формуле

Найдем φ2(l):

g2(1) + φ1(0) = 10 + 0 = 10,

g2(0) + φ1(l)= 0 +11 = 11,

φ2(l) = min (10, 11) = 10.

Вычислим φ2(2):

g2(2) + φ1(0) = 19 + 0 = 19,

g2(l) + φ1(l) = 10 + 11 = 21,

g2(0) + φ1 (2) = 0 + 18 = 18,

φ2(2) = min (19, 21, 18) = 18.

Найдем φ2(3):

g2(3) + φ1 (0) = 34 + 0 = 34,

g2(2) + φ1(l) = 19 + 11 = 30,

g2(1) + φ1(2) = 10 + 18 = 28,

g2(0) + φ1(3) = 0 + 35 = 35,

φ2(3) = min (34, 30, 28, 35) = 28.

Определим φ2(4):

g2(4) + φ1(0) = 53 + 0 = 53,

g2(3) + φ1(l) = 34 + 11 = 45,

g2(2) + φ1(2) = 19 + 18 = 37,

g2(l) + φ1(3) = 10 + 35 = 45,

g2(0) +φ1(4) = 0 + 51 = 51,

φ2(4) = min (53, 45, 37, 45, 51) = 37.

Вычислим φ2(5):

g2(5) + φ1(0) = 75 + 0 = 75,

g2(4) + φ1(l) = 53 + 11 = 64,

g2(3) + φ1(2) = 34 + 18 = 52,

g2(2) + φ1(3) = 19 + 35 = 54,

g2(1) + φ1(4) = 10 + 51 = 61,

g2(0) + φ1(5) = 0 + 76 = 76,

φ2(5) = min (75, 64, 52, 54, 61, 76) = 52.

3–й этап. Определим оптимальную стратегию при размещении пяти предприятий в трех районах по формуле

φ3(x) = min{g3(x3) + φ2(x – х3)}.

Найдем φ3(5):

g3(5) + φ2(0) = 74 + 0 = 74,

g3(4) + φ2(1) = 54 + 10 = 64,

g3(3) + φ2(2) = 36 + 18 = 54,

g3(2) +φ2(3) = 20 + 28 = 48,

g3(1) + φ2(4) = 9 + 37 = 46,

g3(0) + φ2(5) = 0 + 52 = 52,

φ3(5) = min (74, 64, 54, 48, 46, 52) = 46.

Минимально возможные затраты при х = 5 составляют 46 млн р.

Определены затраты на строительство предприятий от 1–го до 3–го этапа. Вернемся 3–го к 1–му этапу. Минимальные затраты в 46 млн р. на 3–м этапе получены как 9 + 37, т.е. 9 млн р. соответствуют строительству одного предприятия в третьем районе (см. табл. 29.4). Согласно 2–му этапу 37 млн р. получены как 19 + 18, т.е. 19 млн р. соответствуют строительству двух предприятий во втором районе. Согласно 1–му этапу 18 млн р. соответствуют строительству двух предприятий в первом районе.

Ответ. Оптимальная стратегия состоит в строительстве одного предприятия в третьем районе, по два предприятия во втором и первом районах, при этом минимальная стоимость строительства и эксплуатации составит 46 ден. ед.

Нахождение рациональных затрат при строительстве трубопроводов и транспортных артерий

Требуется проложить путь (трубопровод, шоссе) между двумя пунктами А и В таким образом, чтобы суммарные затраты на его сооружение были минимальные.

Решение. Разделим расстояние между пунктами А и В на шаги (отрезки). На каждом шаге можем двигаться либо строго на восток (по оси X), либо строго на север (по оси Y). Тогда путь от А в В представляет ступенчатую ломаную линию, отрезки которой параллельны одной из координатных осей. Затраты на сооружение каждого из отрезков известны (рис. 29.2) в млн р.

Разделим расстояние от А до В в восточном направлении на 4 части, в северном – на 3 части. Путь можно рассматривать как управляемую систему, перемещающуюся под влиянием управления из начального состояния А в конечное В. Состояние этой системы перед началом каждого шага будет характеризоваться двумя целочисленными координатами х и у. Для каждого из состояний системы (узловой точки) найдем условное оптимальное управление. Оно выбирается так, чтобы стоимость всех оставшихся шагов до конца процесса была минимальна. Процедуру условной оптимизации проводим в обратном направлении, т.е. от точки В к точке А.

Найдем условную оптимизацию последнего шага.

Одной из важных экономических проблем является определение оптимальной стратегии замены старых станков, aipcraTOB и машин на новые. Старение оборудования означает его физический и моральный износ, в результате чего увеличиваются затраты на ремонт и обслуживание, возрастают производственные затраты по выпуску продукции, снижаются

производительность и ликвидная стоимость. Наступает время, когда старое оборудование выгоднее продать, заменить новым, чем эксплуатировать ценой больших затрат; причем его можно заменить новым оборудованием того же вида или новым, более совершенным. Оптимальная стратегия замены оборудования состоит в определении ее оптимальных сроков. Критерием оптимальности при этом может служить прибыль от эксплуатации оборудования, которую следует оптимизировать, или суммарные затраты на эксплуатацию в течение рассматриваемого промежутка времени, подлежащие минимизации.

Введем обозначения:

r(t) - ежегодные затраты на обслуживание оборудования возраста t лег;

g(t) - остаточная стоимость оборудования возраста t лег;

Р 0 - покупная цена оборудования.

Рассмотрим период N лет, в пределах которого требуется определить оптимальный цикл замены оборудования.

Обозначим через Л*(/) - оптимальные затраты, получаемые от

оборудования возраста t лет за оставшиеся N лет цикла использования оборудования при условии оптимальной стратегии.

Возраст оборудования отсчитывается в направлении течения процесса. Так, / = 0 соответствует случаю использования нового оборудования. На каждом этапе /V-стадийного процесса должно быть принято решение о сохранении, замене или проведении ремонта оборудования. Выбранный вариант должен обеспечивать получение минимизации суммарных затрат на эксплуатацию в течение рассматриваемого промежутка времени.

Предполагается, что переход от работы на оборудовании возраста t лег к работе на новом оборудовании совершается мгновенно, то есть замена старого оборудования и переход к работе на новом оборудовании укладываются в один период.

Пример 4.2

Оборудование эксплуатируется в течение пяти лет и после этого продается. В начале каждого года можно принять решение о сохранении оборудования или его замене новым. Стоимость нового оборудования Р 0 = 4000 руб. После t лет эксплуатации (1 g(t) = Р 0 2~‘ руб. (ликвидная стоимость). Затраты на содержание в течение года зависят от возраста оборудования t и равны r(t) = 600(/ + 1).

Определить оптимальную стратегию эксплуатации оборудования, чтобы суммарные затраты с учетом начальной покупки и заключительной продажи были минимальными.

Решение. Способ деления управления на шаги естественный - но годам, п = 5. Параметр состояния - возраст машины лу= t, ,v 0 = 0 - машина новая в начале первого года эксплуатации. Управление на каждом шаге зависит от двух переменных If и If.

Уравнения состояний зависят от управления:

Показатель эффективности А"-го шага:

(при If затраты только на эксплуатацию машины возраста t, при If машина продается (-4000 2~"), покупается новая (4000) и эксплуатируется в течение первого года (600), общие затраты равны (-4000 2 " + 4000 + 600)).

Пусть л’ (?) - условные оптимальные затраты на эксплуатацию машины, начиная с А"-го шага до конца, при условии, что к началу А"-го шага машина имеет возраст / лег. Запишем для функций Л"(г) уравнения Веллмана, заменив задачу максимизации задачей минимизации:

Величина 4000 2 0+11 - стоимость машины возраста t лет (по условию машина после пяти лет эксплуатации продается):

Из определения функций Л* (/) следует A min = Л*(0).

Представим геометрическое решение этой задачи. Отложим по оси абсцисс номер шага к, а по оси ординат - возраст машины /. Точка (к - 1, /) на плоскости соответствует началу А - -го года эксплуатации машины возраста / лет. Перемещение на графике в зависимости от принятого управления на /о-м шаге показано на рис. 4.3.


Рис. 4.3

Состояние начала эксплуатации машины соответствует точке,v‘(0, 0), конец - точкам.5(5,/). Любая траектория, переводящая точку ДА-1, /) из в.5, состоит из отрезков - шагов, соответствующих годам эксплуатации. Необходимо выбрать такую траекторию, при которой затраты на эксплуатацию машины окажутся минимальными.

Над каждым отрезком, соединяющим точки (А’ - 1, /) и (А, / + 1), записываются соответствующие управлению If затраты (600(/ + 1)), а над отрезком, соединяющим точки - 1, /) и (к , /), - затраты, соответствующие управлению If (4600 - 4000 2 "). Таким образом размещаются все отрезки, соединяющие точки на 1рафикс, соответствующие переходам из любого состояния лд_| в состояние s k (см. рис. 4.3).

Далее на размеченном фафе производится условная оптимизация. В состояниях (5, /) машина продается, условный оптимальный доход от продажи равен 4000 2~‘, но поскольку целевая функция связана с затратами, то в кружках точек (5, /) ставится величина дохода со знаком минус. Далее на последующих этапах выбираются минимальные затраты среди двух возможных переходов, записываются в кружок данной точки, а соответствующие управления на этом шаге помечаются пунктирной стрелкой. При этом на каждом шаге трафически решаются уравнения Веллмана (рис. 4.4).

После проведения условной оптимизации получим в точке (0, 0) минимальные затраты на эксплуатацию машины в тсченШ пяти лет с последующей продажей: A min = 11 900. Далее строится оптимальная траектория, перемещаясь из точки So(0, 0) по пунктирным стрелкам в.?. Получаем набор точек: {(0, 0), (1, 1), (2, 2), (3, 1), (4, 2), (5, 3)}, который соответствует оптимальному управлению U"(u c , U‘, U U c , U c). Оптимальный режим

эксплуатации состоит в том, чтобы заменить машину новой в начале третьего года.

Таким образом, размеченный график (сеть) позволяет наглядно интерпретировать расчетную схему и решить задачу методом динамического программирования.

Модели и вычислительные процедуры динамического программирования очень гибки в смысле возможностей включения различных модификаций задачи. Например, аналогичная задача может быть рассмотрена для большого числа вариантов управления, «ремонт», «капитальный ремонт» и г.д. Все эти факторы могут быть учтены вычислительной схемой динамического программирования.

Важной экономической проблемой является своевременное обновление оборудования: автомобилей, станков, телевизоров, магнитол и т.п. Старение оборудования включает физический и моральный износ, в результате чего растут затраты на ремонт и обслуживание, снижается производительность труда и ликвидная стоимость. Задача заключается в определении оптимальных сроков замены старого оборудования. Критерием оптимальности являются доход от эксплуатации оборудования (задача максимизации) либо суммарные затраты на эксплуатацию в течение планируемого периода (задача минимизации).

Предположим, что планируется эксплуатация оборудования в течение некоторого периода времени продолжительностью n лет. Оборудование имеет тенденцию с течением времени стареть и приносить все меньший доход r (t ) (t – возраст оборудования). При этом есть возможность в начале любого года продать устаревшее оборудование за цену S (t ), которая также зависит от возраста t , и купить новое оборудование за цену P .

Под возрастом оборудования понимается период эксплуатации оборудования после последней замены, определенный в годах. Требуется найти оптимальный план замены оборудования с тем, чтобы суммарный доход за все n лет был бы максимальным, учитывая, что к началу эксплуатации возраст оборудования составлял t 0 лет.

Исходными данными в задаче являются доход r (t ) от эксплуатации в течение одного года оборудования возраста t лет, остаточная стоимость S (t ), цена нового оборудования P и начальный возраст оборудования t 0 .

t n
r r(0) r(1) r(n)
S S(0) S(1) S(n)

При составлении динамической модели выбора оптимальной стратегии обновления оборудования процесс замены рассматривается как n -шаговый, т. е. период эксплуатации разбивается на n шагов.

Выберем в качестве шага оптимизацию плана замены оборудования с k -го по n -ый годы. Очевидно, что доход от эксплуатации оборудования за эти годы будет зависеть от возраста оборудования к началу рассматриваемого шага, т. е. k -го года.

Поскольку процесс оптимизации ведется с последнего шага (k = n ), то на k -ом шаге неизвестно, в какие годы с первого по (k -1)-й должна осуществляться замена и, соответственно, неизвестен возраст оборудования к началу k -го года. Возраст оборудования, который определяет состояние системы, обозначим t . На величину t накладывается следующее ограничение:

1 ≤ t t 0 + k – 1 (19.5)

Выражение (9.5) свидетельствует о том, что t не может превышать возраст оборудования за (k –1)-й год его эксплуатации с учетом возраста к началу первого года, который составляет t 0 лет; и не может быть меньше единицы (этот возраст оборудование будет иметь к началу k -го года, если замена его произошла в начале предыдущего (k –1)-го года).

Таким образом, переменная t в данной задаче является переменной состояния системы на k -ом шаге. Переменной управления на k -ом шаге является логическая переменная, которая может принимать одно из двух значений: сохранить (С ) или заменить (З ) оборудование в начале k -го года:

Функцию Беллмана F k (t ) определяют как максимально возможный доход от эксплуатации оборудования за годы с k -го по n -ый, если к началу k -го возраст оборудования составлял t лет. Применяя то или иное управление, система переходит в новое состояние. Так, например, если в начале k -го года оборудование сохраняется, то к началу (k + 1)-го года его возраст увеличится на единицу (состояние системы станет t + 1), в случае замены старого оборудования новое достигнет к началу (k + 1)-го года возраста t = 1 год.

На этой основе можно записать уравнение, которое позволяет рекуррентно вычислить функции Беллмана, опираясь на результаты предыдущего шага. Для каждого варианта управления доход определяется как сумма двух слагаемых: непосредственного результата управления и его последствий.

Если в начале каждого года сохраняется оборудование, возраст которого t лет, то доход за этот год составит r (t ). К началу (k + 1)-го года возраст оборудования достигнет (t + 1) и максимально возможный доход за оставшиеся годы (с (k + 1)-го по n -й) составит F k +1 (t + 1). Если в начале k -го года принято решение о замене оборудования, то продается старое оборудование возраста t лет по цене S (t ), приобретается новое за P единиц, а эксплуатация его в течение k -го года нового оборудования принесет прибыль r (0). К началу следующего года возраст оборудования составит 1 год и за все оставшиеся годы с (k + 1)-го по n -й максимально возможный доход будет F k +1 (1). Из двух возможных вариантов управления выбирается тот, который приносит максимальный доход. Таким образом, уравнение Беллмана на каждом шаге управления имеет вид:

Функция F k (t ) вычисляется на каждом шаге управления для всех 1 ≤ t t 0 + k - 1. Управление при котором достигается максимум дохода, является оптимальным.

Для первого шага условной оптимизации при k = n функция представляет собой доход за последний n -ый год:

(19.7)

Значения функции F n (t ), определяемые F n-1 (t ), F n-2 (t ) вплоть до F 1 (t ).

F 1 (t 0) представляют собой возможные доходы за все годы. Максимум дохода достигается при некотором управлении, применяя которое на первом году, мы определяем возраст оборудования к началу второго года.

Для данного возраста оборудования выбирается управление, при котором достигается максимум дохода за годы со второго по n -й и так далее. В результате на этапе безусловной оптимизации определяются годы, в начале которых следует произвести замену оборудования.

Пример 2. Найти оптимальную стратегию эксплуатации оборудования на период продолжительностью 6 лет, если годовой доход r (t ) и остаточная стоимость S (t ) в зависимости от возраста заданы в табл. 19.6, стоимость нового оборудования равна P = 13, а возраст оборудования к началу эксплуатационного периода составляет 1 год.

Таблица 19.6

t
r(t)
S(t)

I этап. Условная оптимизация.

1-й шаг: k = 6. Для него возможные состояния системы t = 1, 2, …, 6.

Функциональное уравнение имеет вид (19.7):

2-й шаг: k = 5. Для него шага возможные состояния системы t = 1, 2, …, 5.

Функциональное уравнение имеет вид:

3-й шаг: k = 4.

4-й шаг: k = 3.

5-й шаг: k = 2.

6-й шаг: k = 1.

Результаты вычислений Беллмана F k (t ) приведены в табл. 19.7, в которой k – год эксплуатации, t – возраст оборудования.

Таблица 19.7

k t

В табл. 19.7 выделено значение функции, соответствующее состоянию «З» – замена оборудования.

II этап. Безусловная оптимизация.

Безусловная оптимизация начинается с шага при k = 1. Максимально возможный доход от эксплуатации оборудования за годы с 1-го по 6-й составляет F 1 (1) = 37. Этот оптимальный выигрыш достигается, если на первом году не производить замены оборудования. Тогда к началу второго года возраст оборудования увеличится на единицу и составит: t 2 = t 1 + 1 = 2. Безусловное оптимальное управление при k = 2, х 2 (2) = С , т.е. максимум дохода за годы со 2-го по 6-й достигается, если оборудование не заменяется. К началу третьего года возраст оборудования увеличится на единицу и составит: t 3 = t 2 + 1 = 2. Безусловное оптимальное управление х 3 (3) = 3, т. е. для получения максимума прибыли за оставшиеся годы необходимо произвести замену оборудования. К началу четвертого года при k = 4 возраст оборудования станет равен t 4 = 1. Безусловное оптимальное управление х 4 (1) = С . Далее соответственно.

Известно, что оборудова­ние со временем изнашивается, стареет физически и морально. В процес­се эксплуатации, как правило, падает его производительность и растут эксплуатационные расходы на текущий ремонт. Со временем возникает необходимость замены оборудования, так как его дальнейшая эксплуата­ция обходится дороже, чем ремонт. Отсюда задача о замене может быть сформулирована так. В процессе работы оборудование дает ежегодно прибыль, требует эксплуатационных затрат и имеет остаточную стои­мость. Эти характеристики зависят от возраста оборудования. В любом году оборудование можно сохранить, продать по остаточной цене и при­обрести новое. В случае сохранения оборудования возрастают эксплуата­ционные расходы и снижается производительность. При замене нужны значительные дополнительные капитальные вложения. Задача состоит в определении оптимальной стратегии замен в плановом периоде, с тем чтобы суммарная прибыль за этот период была максимальной.

Для количественной формулировки задачи введем следующие обо­значения: r(t) - стоимость продукции, производимой за год на единице оборудования возраста t лет; u(t) - расходы, связанные с эксплуатацией этого оборудования; s(t) - остаточная стоимость оборудования возраста t лет; р - покупная цена оборудования; Т - продолжительность плано­вого периода; t = 0,1, 2,... , Т - номер текущего года.

Решение. Чтобы решить задачу, применим принцип оптимально­сти Р. Беллмана. Рассмотрим интервалы (годы) планового периода в по­следовательности от конца к началу. Введем функцию условно-опти­мальных значений функции цели Fk(t). Эта функция показывает мак­симальную прибыль, получаемую от оборудования возраста t лет за по­следние к лет планового периода. Здесь возраст оборудования рассмат­ривается в направлении естественного хода времени. Например, t = 0 соответствует использованию совершенно нового оборудования. Временные же шаги процесса нумеруются в обратном порядке. Напри­мер, при к = 1 рассматривается последний год планового периода, при к = 2 - последние два года и т. д., при к = Т - последние Т лет, т. е. весь плановый период. Направления изменения t и к показаны на рисунке.

В этой задаче систему составляет оборудование. Ее состояние ха­рактеризуется возрастом. Вектор управления - это решение в момент t = = 0,1, 2,... , Т о сохранении или замене оборудования. Для нахождения оптимальной политики замен следует проанализировать, согласно прин­ципу оптимальности, процесс от конца к началу. Для этого сделаем пред­положение о состоянии оборудования на начало последнего года (k = 1). Пусть оборудование имеет возраст t лет. В начале Т-го года имеются две возможности: 1) сохранить оборудование на Т-й год, тогда прибыль за последний год составит r(t) - u(t); 2) продать оборудование по остаточ­ной стоимости и купить новое, тогда прибыль за последний год будет равна s(t) - р + г(0) - u(0), где г(0) - стоимость продукции, выпущенной на новом оборудовании за первый год его ввода; u(0) - эксплуатацион­ные расходы в этом году. Здесь целесообразно разворачивать процесс от конца к началу. Для последнего года (к = 1) оптималь­ной политикой с точки зрения всего процесса будет политика, обеспе­чивающая максимальную прибыль только за последний год. Учитывая значение прибыли при различном образе действия (замена - сохране­ние), приходим к выводу, что решение о замене оборудования возраста t лет следует принять в случае, когда прибыль от нового оборудования на последнем периоде больше, чем от старого, т.е. при условии


Итак, для последнего, года оптимальная политика и максимальная прибыль F 1 {t) находятся из условия

Пусть к = 2, т. е. рассмотрим прибыль за два последних года. Де­лаем предположение о возможном состоянии t оборудования на начало предпоследнего года. Если в начале этого года принять решение о сохранении оборудования, то к концу года будет получена прибыль r(t) - u(t). На начало последнего года оборудование перейдет в состояние t + 1, и при оптимальной политике в последнем году оно принесет прибыль, равную F 1 (t + 1). Таким образом, общая прибыль за два года составит r(t) - u(t) + F 1 (t + 1). Если же в начале предпоследнего года будет при­нято решение о замене оборудования, то прибыль за предпоследний год составит s(t)-p+r(0)-u(0). Поскольку приобретено новое оборудование, на начало последнего года оно будет в состоянии t = 1. Следовательно, общая прибыль за последние два года при оптимальной политике в по­следнем году составит

Условно-оптимальной в последние два года будет политика, достав­ляющая максимальную прибыль:

Аналогично находим выражения для условно-оптимальной прибыли за три последних года, четыре и т. д. Общее функциональное уравнение примет вид

Таким образом, разворачивая весь процесс от конца к началу, получаем, что максимальная прибыль за плановый период Т составит F T (t 0). Так как начальное состояние to известно, из выражения для F T (t 0) находим оптимальное решение в начале первого года, потом вытекающее оптимальное решение для второго года и т.д. Обратимся к чи­словому примеру.

Разработать оптимальную политику замены оборудования при усло­виях:

1) стоимость r(t) продукции, производимой с использованием обо­рудования за год, и расходы u(t), связанные с эксплуатацией оборудова­ния, заданы таблицей;

2) ликвидационная стоимость машины не зависит от ее возраста и равна 2;

3) цена нового оборудования со временем не меняется и равна 15;

4) продолжительность планового периода 12 лет.

Итак, s(t) = 2, р = 15, Т = 12.

Запишем функциональные уравнения для F 1 (t) и F к (t) при числовых значениях нашего примера:

Пользуясь выражениями (8.9), (8.10), будем последовательно вычис­лять значения максимальной прибыли F к (t) и записывать их в специаль­ную таблицу (табл. 8.4). Первую строку получим, придавая параметру t в равенстве (8.9) значения 0,1,... ,12 и используя исходные данные табл. 8.3. Например, при t = 0

Заметим, что если прибыль от нового оборудования равна прибыли от старого, то старое лучше сохранить еще на год:


Из табл. 8.3 видно, что r(t) – u(t) с ростом t убывает. Поэтому при t > 9 оптимальной будет политика замены оборудования. Чтобы раз­личать, в результате какой политики получается условно-оптимальное значение прибыли, будем эти значения (до t = 9 включительно опти­мальной является политика сохранения) разграничивать жирной лини­ей. Для заполнения второй строки табл. 8.4 используем формулу (8.10). Для к = 2 получаем

Придадим параметру t значения 0,1,2,... ,12, значения r(t) и u(t) возьмем из табл. 8.3, а значения F 1 (t + 1) - из первой строки табл. 8.4. Для третьей строки расчетную формулу получим из равенства (8.10) при к = 3:

и т. д. Заполнив табл. 8.4, данные ее используем для решения постав­ленной задачи. Эта таблица содержит много ценной информации и позволяет решать все семейство задач, в которое мы погружали исходную задачу.

Пусть, например, в начале планового периода имеем оборудование возраста 6 лет. Разработаем "политику замен" на двенадцатилетний пе­риод, доставляющую максимальную прибыль. Информация для этого имеется в табл. 8.4. Максимальная прибыль, которую можно получить за 12 лет при условии, что вначале имелось оборудование возраста 6 лет, находится в табл. 8.4 на пересечении столбца t = 6 и строки F12(t); она составляет 180 единиц.

Значение максимальной прибыли F12(6) = 180 записано справа от ломаной линии, т.е. в области "политики замены". Это значит, что для достижения в течение 12 лет максимальной прибыли в начале первого года оборудование надо заменить. В течение первого года новое обору­дование постареет на год, т.е., заменив оборудование и проработав на нем 1 год, мы за 11 лет до конца планового периода будем иметь обо­рудование возраста 1 год. Из табл. 8.4 берем F11(l) = 173. Это значе­ние располагается в области "политики сохранения", т. е. во втором году планового периода надо сохранить оборудование возраста 1 год, и, про­работав на нем год, за 10 лет до конца планового периода будем иметь оборудование возраста 2 года.

Выясняем, что значение F10(2) = 153 помещено в области сохра­нения. Работаем на оборудовании еще год. Теперь до конца планового периода осталось 9 лет, а возраст оборудования составляет 3 года. Нахо­дим F9(3) = 136. Это область сохранения. Работаем на оборудовании еще год. Его возраст становится равным 4 годам. До конца планового перио­да остается 8 лет. Определяем F8(4) = 120. Это область замен. Заменяем оборудование на новое. Проработаем на нем в течение четвертого года. Оно постареет на год. До конца планового периода останется 7 лет. На­ходим F7(l) = 113. Это область сохранения. Продолжив подобные рассу­ждения, установим, что F6(2) = 93, F5(3) = 76 расположены в области сохранения, F4(4)=60 - в области замен, F3(l) = 53, F2(2) = 33, F1(3) = 16 - в области сохранения. Разработанную политику изобразим следующей цепочкой:

Таким образом, вместо поиска оптимальной "политики замен" на плановый период в 12 лет мы погрузили исходную задачу в семейство подобных, когда период меняется от 1 до 12. Решение ведется по прин­ципу оптимальности для любого состояния системы, независимо от ее предыстории. Оптимальная "политика замен" является оптимальной на оставшееся число лет. Табл. 8.4 содержит информацию для решения и других задач. Из нее можно найти оптимальную стратегию замены оборудования с лю­бым начальным состоянием от 0 до 12 лет и на любой плановый период, не превосходящий 12 лет. Например, найдем "политику замен" на пла­новый период в 10 лет, если вначале имелось оборудование пятилетнего возраста:

Задачу о замене оборудования мы упростили. На практике же дета­лями не пренебрегают. Легко учесть, например, случай, когда остаточная стоимость оборудования s(t) зависит от времени. Может быть принято решение о замене оборудования не новым, а уже проработавшим некото­рое время. Не составляет также труда учесть возможность капитального ремонта старого оборудования. При этом в понятие "состояние" системы необходимо включить время последнего ремонта оборудования. Функция Fk(ti,t2) выражает прибыль за последние к лет планового периода при условии, что вначале имелось оборудование возраста t1, прошедшее ка­питальный ремонт после t2 лет службы. Характеристики г, s и и также будут функциями двух переменных t1 и t2.

В процессе эксплуатации оборудование подвергается физическому и моральному износу. Существует два способа восстановления оборудования - полное и частичное. При полном восстановлении оборудование меняется на новое, при частичном оборудование ремонтируется. Для оптимального использования оборудования нужно найти возраст, при котором его необходимо заменить, чтобы доход от машины был максимальным или, если доход подсчитать не удается, издержки на ремонтно-эксплуатационные нужды были минимальными. Данный подход рассматривается с позиции экономических интересов потребителя.

Для оптимизации ремонта и замены оборудования требуется разработать на плановый период стратегию по замене машины. В качестве экономических интересов может быть использован один из двух подходов:

1. Максимум дохода от машины за определенный промежуток времени.

2. Минимум затрат на ремонтно-эксплуатационный нужды, если доход подсчитать не удается.

Данная задача решается методом динамического программирования. Основная идея этого метода заключается в замене одновременного выбора большего количества параметров поочередным их выбором. Этим методом могут быть решены самые различные задачи оптимизации. Общность подхода к решению самых различных задач является одним из достоинств этого метода.

Рассмотрим механизм оптимизации ремонта и замены оборудования. Для решения задачи введем следующие обозначения:

t - возраст оборудования;

d(t) - чистый годовой доход от оборудования возраста t;

U(t) - издержки на ремонтно-эксплуатационные нужды машины возраста t;

С - цена нового оборудования.

Для решения этой задачи введем функцию fn(t) , которая показывает величину максимального дохода за последние n - лет при условии, что в начале периода из n - лет у нас была машина возраста t - лет.

Алгоритм решения задачи следующий:

1) f1(t) = max d(0) - С

) fn(t) = max fn-1(t+1) + d(t)

fn-1(1) + d(0) - С

Увеличение издержек приведет к снижению чистого дохода, который рассчитывается так:

d(t) = r(t) - u(t)

r(t) - годовой объем дохода от оборудования возраста t;

u(t) - годовые затраты на ремонтно - эксплуатационные нужды

оборудования возраста t.

Подход максимизации дохода

Для решения этой задачи введем функцию fn(t) , которая показывает величину максимального дохода за последние n - лет при условии, что в начале периода из n-лет у нас было оборудование возраста t-лет.

Если до конца периода остался 1 год

Если до конца периода осталось n лет

(t) = max

где t - возраст оборудования;

d (t) - чистый годовой доход от оборудования возраста t;

C - цена нового оборудования.

Увеличение издержек приведет к снижению чистого дохода, который рассчитывается так

(t) = r(t) - u(t)

где r (t) - годовой объем дохода от оборудования возраста t;

u(t) - годовые затраты на ремонтно-экплуатационные нужды оборудования возраста t.

Рассчитаем чистый доход по формуле, зная динамику поступления дохода и роста издержек на ремонт.

Таблица 2. Чистый доход от оборудования по годам