Как проверить симистор мультиметром, чтобы не покупать новую деталь? Симисторы: принцип работы, проверка и включение, схемы

При помощи домашнего тестера (мультиметра) можно проверять самые разные радиоэлементы. Для домашнего мастера, увлекающегося электроникой – это настоящая находка. Например, проверка тиристора мультиметром может избавить вас от необходимости поиска новой детали во время ремонта электрооборудования.

Это полупроводниковый прибор, выполненный по классической монокристальной технологии. На кристалле имеется три или более p-n перехода, с диаметрально противоположными устойчивыми состояниями. Основное применение тиристоров – электронный ключ. Можно эффективно использовать эти радиоэлементы вместо механических реле.

Включение происходит регулируемо, относительно плавно и без дребезга контактов. Нагрузка по основному направлению открытия p-n переходов подается управляемо, можно контролировать скорость нарастания рабочего тока.

К тому же тиристоры, в отличие от реле, отлично интегрируются в электросхемы любой сложности. Отсутствие искрения контактов позволяет применять их в системах, где недопустимы помехи при коммутации.

Деталь компактна, выпускается в различных форм-факторах, в том числе и для монтажа на охлаждающих радиаторах.

Управляются тиристоры внешним воздействием:

  • Электрическим током, который подается на управляющий электрод;
  • Лучом света, если используется фототиристор.

При этом, в отличие от того же реле, нет необходимость постоянно подавать управляющий сигнал. Рабочий p-n переход будет открыт и по окончании подачи управляющего тока. Тиристор закроется, когда протекающий через него рабочий ток опустится ниже порога удержания.

Тиристоры выпускаются в различных модификакциях, в зависимости от способа управления, и дополнительных возможностей.

  • Диодные прямой проводимости;
  • Диодные обратной проводимости;
  • Диодные симметричные;
  • Триодные прямой проводимости;
  • Триодные обратной проводимости;
  • Триодные ассиметричные.

Существует разновидность триодного тиристора, имеющая двунаправленную проводимость.

Что такое симистор, и чем он отличается от классических тиристоров?

Симистор (или «триак») – особая разновидности триодного симметричного тиристора. Главное преимущество – способность проводить ток на рабочих p-n переходах в обоих направлениях. Это позволяет использовать радиоэлемент в системах с переменным напряжением.

Принцип работы и конструктивное исполнение такое же, как у остальных тиристоров. При подаче управляющего тока p-n переход отпирается, и остается открытым до снижения величины рабочего тока.
Популярное применение симисторов – регуляторы напряжения для систем освещения и бытового электроинструмента.

Работа этих радиокомпонентов напоминает принцип действия транзисторов, однако детали не являются взаимозаменяемыми.

Рассмотрев, что такое тиристор и симистор, мы с вами научимся, как проверять эти детали на работоспособность.

Как прозвонить тиристор мультиметром?

Сразу оговоримся – проверить исправность тиристора можно и без тестера. Например, с помощью лампочки от фонарика и пальчиковой батарейки. Для этого включаем последовательно источник питания, соответствующий напряжению лампочки, рабочие выводы тиристора, и лампочку.

Важно! Не забудьте о том, что обычный тиристор проводит ток лишь в одном направлении. Поэтому соблюдайте полярность.

При подаче управляющего тока (достаточно батарейки АА) – лампочка будет гореть. Значит, управляющая цепь исправна. Затем отсоединяем батарейку, не отключая источник рабочего тока. Если p-n переход исправный, и настроен на определенную величину тока удержания – лампочка продолжает гореть.

Если под рукой нет подходящей лампы и батарейки, следует знать, как проверить тиристор мультиметром.

    1. Переключатель тестера устанавливаем в режим «прозвонка». При этом на щупах проводов появится достаточное напряжение для проверки тиристора. Рабочий ток не открывает p-n переход, поэтому сопротивление на выводах будет высоким, ток не протекает. На дисплее мультиметра высвечивается «1». Мы убедились в том, что рабочий p-n переход не пробит;
    2. Проверяем открытие перехода. Для этого соединяем управляющий вывод с анодом. Тестер дает достаточный ток для открытия перехода, и сопротивление резко уменьшается. На дисплее появляются цифры, отличные от единицы. Тиристор «открыт». Таким образом, мы проверили работоспособность управляющего элемента;

  1. Размыкаем управляющий контакт. При этом сопротивление снова должно стремиться к бесконечности, то есть на табло мы видим «1».

Почему тиристор не остался в открытом состоянии?

Дело в том, что мультиметр не вырабатывает величину тока, достаточную для срабатывания тиристора по «току удержания». Этот элемент мы проверить не сможем. Однако остальные пункты проверки говорят об исправности полупроводникового прибора. Если поменять местами полярность – проверка не пройдет. Таким образом, мы убедимся в отсутствии обратного пробоя.

Можно проверить и чувствительность тиристора. В этом случае, мы переводим переключатель тестера в режим омметра. Измерения производятся по раннее описанной методике. Только мы каждый раз меняем чувствительность прибора. Начинаем с предела измерения вольтметра «х1».

Чувствительные тиристоры при отключении управляющего тока сохраняют открытое состояние, что мы и фиксируем на приборе. Увеличиваем предел измерения до «х10». В этом случае ток на щупах тестера уменьшается.

Если при отключении управляющего тока переход не закрывается – продолжаем увеличивать предел измерения до срабатывания тиристора по току удержания.

Важно! Чем меньше ток удержания – тем чувствительнее тиристор.

При проверке деталей из одной партии (или с одинаковыми характеристиками), выбирайте более чувствительные элементы. У таких тиристоров гибче возможности по управлению, соответственно шире область применения.

Освоив принцип проверки тиристора – легко догадаться, как проверить симистор мультиметром.

Важно! При прозвонке необходимо учитывать, что этот полупроводниковый ключ имеет симметричную двустороннюю проводимость.

Проверка симистора мультиметром

Схема подключения для проверки аналогичная. Можно использовать лампу накаливания или мультиметр с широким диапазоном измерений в режиме омметра. После прохождения тестов при одной полярности, переключаем щупы тестера на полярность обратную.

Исправный симистор должен показать весьма похожие результаты проверки. Необходимо проверить открытие и удержание p-n перехода в обоих направлениях по всей шкале пределов измерения мультиметра.

Если радиодеталь, нуждающаяся в проверке, находится на монтажной плате – нет необходимости ее выпаивать для теста. Достаточно освободить управляющий вывод. Важно! Не забудьте предварительно обесточить проверяемый электроприбор.

В заключении смотрите видео: Как проверить тиристор мультиметром.

Как правило, проверка тиристора заключается в измерении сопротивления между его анодом и катодом. У исправного тиристора оно всегда бесконечно большое. Между же управляющим выводом и одним из контактов (у тиристоpa — катод) малое сопротивление (от 25 до 390 Ом в зависимости от вида полупроводника) – параметр который сопоставляется с рабочим полупроводником.

Если симистор или тиристор внешне кажется работоспособным, но все, же есть подозрение в его неисправности, то его необходимо проверить. Но как проверить симистор и тиристор на работоспособность?Среди большинства способов поиска неисправности тиристора или симистора, достаточно легкими (не требующими применения особых приставок) считаются два способа проверки.

Первый способ проверки тиристора или симистора

Его можно применить в случае наличия двух стрелочных омметра. Данные приборы нужно подключить по нижеуказанной схеме.

Нужно заметить, что измеряемое сопротивление между катодом и анодом проверяемого полупроводника должно стремиться к бесконечности до того, пока мы не подсоединим щупы другого омметра к управляющему контакту (необходимо соблюдать полярность). Посредством идущего с омметра напряжения, рабочий тиристор отпирается и его сопротивление между катодом и анодом мгновенно уменьшается до нескольких десятков ом.

Второй способ проверки

Данный способ проверки исправности полупроводника заключается в том, что отпирающее напряжение поступает через кнопку с анода.

Необходимо отметить, что вслед за одиночным нажатием кнопки, полупроводник малой мощности будет прибывать в открытом состоянии до тех пор, пока мы не отсоединим щуп омметра от анода тиристора.

Для подобной проверки исправности нет надобности выпаивать симистор из платы — необходимо только отсоединить управляющий контакт от цепей устройства.

В электронных схемах различных приборов довольно часто используются полупроводниковые устройства – симисторы. Их применяют, как правило, при сборке схем регуляторов. В случае неисправности электроприбора может возникнуть необходимость проверить симистор. Как это сделать?

Зачем нужна проверка

В процессе ремонта или сборки новой схемы невозможно обойтись без электрических деталей. Одной из таких деталей является симистор. Его применяют в схемах устройств сигнализации, световых регуляторах, радиоприборах и многих отраслях техники. Иногда его применяют повторно после демонтажа неработающих схем, и нередко приходится встречать элемент с утраченной от длительного использования или хранения маркировкой. Случается, что и новые детали надо проверить.

Как же быть уверенным, что симистор, установленная в схему, действительно исправен, и в будущем не нужно будет затрачивать много времени на отладку работы собранной системы?

Для этого необходимо знать, как проверить симистор мультиметром или тестером. Но сначала надо понять, что собой представляет данная деталь, и как она работает в электрических схемах.

По сути, симистор является разновидностью тиристора. Название составлено из этих двух слов – «симметричный» и «тиристор».

Разновидности тиристоров

Тиристорами принято называть группу полупроводниковых приборов (триодов), способных пропускать или не пропускать электрический ток в заданном режиме и в определенные промежутки времени. Так создают условия работоспособности схемы в соответствии с ее функциями.

Управление работой тиристоров осуществляется двумя способами:

Для это цели сойдет обычный омметр или авометр, работающий в режиме омметра. Чтобы проверить тринистор, следует подключить к нему омметр плюсовым щупом к аноду, минусовым - к катоду. Вначале установить измерительный предел x1 и замкнуть пинцетом выводы аноды и управляющего электрода. Стрелка на индикаторе при этом отклонится приблизительно до середины шкалы.

Затем нужно убрать пинцет: если тринистор открывается и остается открытым при небольшом анодном токе (т.е. он чувствительный) - положение стрелки не изменится.

Аналогичные действия проделать на пределе измерения x10. Если сопротивление при этом составляет 140..300 Ом, значит тринистор работает при небольшом анодном токе. Если после отключения пинцета стрелка возвращается на нулевое значения шкалы, значит это тринистор с большим анодным током удержания.

Проверка симистора полностью аналогична: нужно подключить омметр к условным катоду и аноду и перемкнуть выводы управляющего электрода и анода.

Как проверить рабочее состояние тиристора и симистора?

Электронные схемы основаны на полупроводниковых элементах. В 1960 годах многие конструкторские бюро проводили работы, направленные на улучшение показателей тиристоров, которые пропускают электроток в одном направлении. В результате практических опытов на заводе «Электровыпрямитель» были разработаны и запатентованы симисторы. Особо стоит отметить тот факт, что зарубежные ученые смогли добиться подобного прорыва лишь спустя 6 месяцев. В английском языке такой полупроводниковый прибор получил название TRIAC (триак).

Устройство и принцип действия

Если взять техническое определение, то симистор это симметричный триодный тиристор: именно так расшифровывается эта аббревиатура. Основное отличие симисторов: их принцип работы, а именно способность пропускать ток в обоих направлениях. Это значительно расширяет сферу применения полупроводников, давая новые возможности для создания компактных схем управления.

Симистор представляет собой полупроводниковый прибор с пятью переходами типа n-p-n. Такая конструкция позволяет задействовать устройство в электрических цепях переменного тока. Для более понятного восприятия приведем схему, которой обычно обозначается симистор.

Как видно из предложенной схемы, симистор представляет собой трехполюсное устройство на основе полупроводников. Такой прибор имеет три вывода:

  1. Выводы Т1 и Т2 являются силовыми электродами и разделяются по полярности подключения на анод и катод;
  2. Вывод G является управляющим электродом или затвором, позволяет осуществлять управление симистором.

Как уже отмечалось, принцип работы основан на прохождении электрического сигнала в обоих направлениях. Это позволяет использовать симисторы в качестве электронного реле в любых схемах, где нужно регулировать нагрузку или прохождение тока по цепи.

Кратко рассмотрим принцип работы этого универсального устройства. Нормальное положение симистора – закрытое, то есть, ток через него не проходит.

  • На управляющий вывод G подается сигнал (напряжение). При этом сигнал может быть любой полярности: как отрицательной, так и положительной;
  • При превышении мощности сигнала определенного уровня (в зависимости от конструкции и назначения триака), происходит отпирание симистора. Это означает, что между силовыми электродами Т1 и Т2 начинает протекать ток;
  • При изменении полярности управляющего сигнала, электрический ток проходит в обратном направлении.

Обратите внимание! Еще одной особенностью симисторов является тот факт, что после отпирания устройства нет необходимости поддерживать постоянный управляющий сигнал. Симистор самостоятельно закроется после падения напряжения на силовых электродах ниже значения удержания.

Такой принцип работы симисторов получил широкое применение во всех приборах, где необходимо регулировать силу тока или напряжение: от зарядных устройств до настройки яркости освещения.

Плюсы и минусы устройства

После того как мы разобрались, что такое симистор, давайте изучим достоинства и недостатки этого управляющего прибора. К достоинствам относят:

  • Основной плюс триака – в приборе отсутствуют механические контакты. Из этого исходят остальные преимущества устройства;
  • Длительный срок эксплуатации, при этом поломки практически не случаются;
  • Принцип работы симистров исключает искрение в процессе эксплуатации даже при больших мощностях проходящего тока. Это особенно важно в релейных схемах: не создаются дополнительные радиопомехи;
  • Кроме этого, такие полупроводниковые приборы имеют невысокую стоимость.

Но, как и любое устройство, симметричные тиристоры не лишены некоторых минусов:

  • Значительное тепловыделение в процессе работы;
  • Чувствительность к электромагнитным помехам и шумам;
  • Неспособность работать при высоких частотах переменного тока;
  • Падение напряжения до двух вольт на приборе, находящемся в открытом состоянии. При этом этот показатель не зависит от мощности проходящего тока. Этот фактор является препятствием для применения симисторов в маломощных установках;

В то же время, симисторы при больших токах греются, что требует применения радиаторов для охлаждения корпуса. В промышленности встречается охлаждение мощных триаков активным способом – при помощи вентилятора.

В некоторых цепях возможно возникновение шумов и помех. Поэтому для подключения управляющего электрода лучше использовать экранированный провод.

Развитие технологий

Особенностью четырех-квадрантных симисторов является их ложное срабатывание, что может привести к выходу из строя. Это требовало применения дополнительной защитной цепочки, включающей различные элементы. Относительно недавно были разработаны трех-квадрантные устройства, которые обладают определенными преимуществами:

  • За счет уменьшения количества необходимых элементов, плата стала еще более компактной;
  • Как следствие, снижение потерь напряжения и уменьшение стоимости готового изделия;
  • За счет отсутствия демпфера и дросселя, стало возможным использовать симметричные тиристоры в цепях с повышенной частотой.

Также упрощение схемы позволило использовать трех-квадрантный симистор в нагревательных приборах: такая конструкция меньше греется и не реагирует на окружающую температуру.

Сфера применения

Принцип работы и компактные размеры симисторов позволяют применять их практически повсеместно. В самом начале своего появления триаки использовались при проектировании мощных трансформаторов и зарядных устройств. Сегодня же, с развитием производства небольших полупроводников, симметричные тиристоры стали значительно компактнее, что позволяет использовать их в самых различных установках и сферах.

В промышленности мощные приборы используются для управления станками, насосами и другим электрооборудованием, где требуется плавное изменение проходящего тока. В быту применение симисторов еще более обширно:

  • Это практически весь электроинструмент: от ручной дрели и шуруповерта до зарядного устройства для автомобильных аккумуляторов;
  • Многие бытовые электроприборы: пылесосы, фены, вентиляторы и так далее;
  • В бытовых компрессорных установках (кондиционеры и холодильники);
  • Электронагревательные устройства: камины, духовки, СВЧ печи.

Повсеместное применение триаков послужило толчком для разработки – популярного сегодня устройства для плавного регулирования освещения. Принцип работы механического диммера основан на использовании симистора.

Проверка симисторов

Любой даже самый долговечный прибор рано или поздно выходит из строя. Не исключением стал и симистор. Поэтому важно знать, как можно проверить триак на работоспособность, чтобы произвести его замену. Для этого можно использовать два метода.

Первый метод заключается в использовании двух аналоговых омметров. Дальнейшие измерения производятся следующим образом:

  • Щупы первого омметра подключаются к катоду и аноду симистора. Будет удобнее, если щупы зафиксировать зажимами, чтобы они не соскакивали. Если включить прибор, сопротивление будет очень велико: стрелка будет «лежать»;
  • Щупы второго омметра подключаются следующим образом: один щуп фиксируется на аноде, а вторым щупом прикасаются к управляющему электроду.

Если симметричный тиристор исправен, то произойдет его отпирание, а сопротивление на первом омметре упадет до нескольких ом.

Подобным образом можно проверять симисторы, не выпаивая их: достаточно отсоединить затвор. Далее проверка производится описанным выше методом.

Второй метод проверки подразумевает . Чтобы измерения оказались верными, переключатель тестера ставится в положение «проверка диодов». Затем измерительные щупы фиксируются на аноде и катоде. В случае с гладкими щупами-иглами, можно использовать переходник из проволоки. В отличие от аналогового омметра, мультиметр покажет сопротивление равное 1. Затем тонкой проволокой замыкаем анод и затвор. Произойдет отпирание полупроводника и на дисплее тестера отобразится реальное сопротивление симистора.