Изучаем технологию монтажа кровли из пвх мембраны. Ремонт мембранной кровли своими руками

13.03.2017

Все сегодняшние насосные станции, функционирующие практически в каждом частном доме, требуют водоснабжения, которое, в свою очередь, включает в себя две составляющие. Это, прежде всего, насос, предназначающийся для закачки воды, и гидроаккумулятор, накапливающий ее и поддерживающий требуемое давление в сети. К слову, гидроаккумулятора вполне можно устанавливать и отдельно от насосного оборудования, но в данном случае объем емкости должен быть большим.

Самой важной, пожалуй, детальную этого резервуара является мембрана для гидроаккумулятора – о том, что она собой представляет, для чего используется и какой может быть, пойдет речь в сегодняшней статье.

В чем преимущества применения гидроаккумулятора?

Если вмонтировать гидробак скажем, в водопроводную систему автономного типа, то он будет выполнять приведенные ниже немаловажные функции.

  • Он будет поддерживать требуемое давление в магистрали.
  • Он продлит эксплуатационный срок насоса, поскольку ограничивает его активацию/деактивацию.
  • Будет компенсировать утечки жидкости из водопроводной сети.
  • Защитит магистраль от гидравлических ударов во время включения насоса.

Очевидно, что гидробак – это крайне важная составляющая любой автономной системы водоснабжения, а потому от того, насколько стабильно он будет работать, зависит функциональность всей водопроводной сети.

Из чего состоит гидроаккумулятор?

Данное приспособление включает в себя следующие конструктивные элементы:

  • фланец с клапаном;
  • корпус из металла;
  • собственно, мембрану.

Обратите внимание! Мембрана в данном случае является самым важным элементом, а значит, ей всегда должна отводиться особая роль!

Как устроена мембрана для гидроаккумулятора?

Внешне она очень напоминает простую медицинскую грелку, если речь идет о гидробаке незначительных размеров (не более 100 литров). Если же резервуар более крупный (объемом свыше 100 литров), то описываемое изделие формой будет больше напоминать бутылку либо грушу.

Но это никак не влияет на суть: вне зависимости от того, каков объем гидроаккумулятора, мембрана всегда изготавливается из эластичного материала. Ее помещают внутрь железного корпуса так, что она как бы разделяет его на две части. В первой (то есть внутри самой мембраны) располагается вода, а во второй – воздух, который закачан внутрь приспособления. Дл чего все это нужно? А для того, чтобы насос после включения закачивал жидкость внутрь мембраны – та будет наполняться до определенного момента, то есть до того, когда давление в системе не достигнет предельно допустимого значения (если сеть бытового назначения, то это, как правило, 1,8-3 атмосферы). Этот показатель заранее выставляется на реле давления.

После этого насосное оборудование отключается. Жидкость же будет по-прежнему находиться по давлением, а потому сможет идти из кранов сантехнического оборудования с нормальным напором. И неудивительно, ведь она будет уже под воздействием сжатого воздуха, находящегося внутри гидробака.

Обратите внимание! Все это позволит сэкономить на электроэнергии и заметно продлить эксплуатационный срок оборудования (сам насос будет включенным гораздо меньше времени). Более того, применение гидробака в водопроводной системе хорошо и тем, что минимизирует резкие перепады давления, которые неизбежно сопровождают включение насосного оборудования.

Основные разновидности мембран для гидроаккумулятора

Классификаций несколько, рассмотрим вкратце каждую из них. Так, по своему предназначению мембрана для гидроаккумулятора может быть:

Ознакомимся детальнее с каждой из разновидностей. Итак, мембраны для гидроаккумулятора, которые используются в системах водоснабжения, обладают такими характеристиками:

  • они изготовлены из каучука;
  • рассчитаны на давление не более 7 атмосфер;
  • невосприимчивы к бактериям;
  • могут применяться при температуре в пределах 0-70 градусов.

Что же касается изделий, предназначающихся для отопительных систем, то такие имеют несколько другие характеристики:

  • они выполнены из материала EPDM (специальной резины, которая производится по особой технологии);
  • рассчитаны на давление не более 8 атмосфер;
  • могут применяться при температуре не более 99 градусов.

У описываемой в данной статье мембраны для гидроаккумулятора, как и у любого другого устройства или элемента, имеются свои недостатки. Речь, прежде всего, о ее неустойчивости к следующим негативным факторам:

  • резкие температурные перепады;
  • внезапное/частое сжатие;
  • слишком высокая температура (более 70 или 90 градусов соответственно);
  • слишком высокое давления (хотя данный момент не очень актуален для водоснабжения/отопления, поскольку рабочее давление бытовых насосов небольшое).

Тем не менее, вообще избежать негативного воздействия почти нереально. Так, в вечернее время увеличивается расход воды – все мы по приходу домой хотим приготовить ужин, принять душ и прочее. Из-за этого вода, накопленная в баке, быстро расходуется. Аналогичная ситуация наблюдается и в утреннее время. А потому, невзирая на то, что производители уверяют в пятилетнем гарантированном срок службы мембраны, в действительности она требует более частой замены (детальнее об этом поговорим в конце статьи). В идеале ее целостность следует проверять минимум раз в год.

Обратите внимание! Отдельного внимания заслуживает объем гидробака, что неудивительно, ведь, по сути, это ключевая характеристика. Современные модели производятся объемом от 8 литров.

Для бытового использования чаще всего приобретаются изделия на 24-80 литров (самые большие варианты могут вмещать до 2 000 литров, однако для обычного частного дома это неактуально по вполне очевидным причинам). Кроме того, немалой популярностью пользуются изделия на 100-200 литров (в частности, для домов, где проживает по 4 или 5 человек).

Классификация мембран по варианту исполнения

В соответствии с этой классификацией изделие может быть:

  • плоским;
  • баллонным.

Рассмотрим каждую из разновидностей более детально.

Плоские изделия

Каждая такая мембрана для гидроаккумулятора фиксируется внутри резервуара, деля его, как мы уже рассказывали выше, на мокрую и сухую зоны. Когда насосное оборудование включается, вода начинает закачиваться внутрь, из-за чего мембрана сжимается и образует чрезмерное давление в сухом отсеке. Когда это давление доберется до определенного уровня, насос будет отключен, а мембрана, в свою очередь, начнет выталкивать накопленную жидкость в трубопровод. Когда же напор опустится до минимально допустимого значения, насосное оборудование снова включится и цикл повторится.

Как видим, электроэнергия действительно экономится, равно как и ресурс самой насосной станции.

Изделия баллонного типа

Они также представляют собой емкость из резины, имеющую форму банки или груши. Принцип действия в данном случае не представляет собой ничего сложного и выглядит примерно следующим образом: вначале насос закачивает жидкость внутрь этого баллона, затем, когда между его стенками и стенками гидроаккумулятора образуется чрезмерное давление, оно будет выталкивать воду после того, как насос отключится, в водопровод.

Обратите внимание! Очевидно, что баллонные изделия значительно снижают негативное воздействие гидравлических ударов на водопроводную магистраль.

Популярные модели мембран для гидроаккумуляторов и средние цены

Сразу оговоримся, что различных моделей существует великое множество, равно как и производителей. А потому мы приведем небольшой рейтинг только самых популярных вариантов данного изделия. Для удобства наших посетителей все сведения ниже приведены в виде сводной таблицы.

Наименование, фото Краткое описание Среднерыночная стоимость, в рублях за штуку

1. UNIPUMP на 24 литра (EPDM)
Изделие отечественного производства, объем которого, как можно догадаться из названия, составляет 24 литра. Выполнено из эластичной резины (этилен/пропиленовой, синтетического происхождения). 2200

2. UNIPUMP на 5 литров (EPDM)
Характеристики в данном случае практически те же, за исключением объема – здесь он составляет всего 5 литров. 2100

3. «Джиллекс» на 24 литра
Эта гидроаккумуляторная мембрана также производится в России и способна вместить в себя до 24 литров. 2100

4. UNIPUMP на 300 литров (EPDM)

Описание и характеристики те же, что у двух первых вариантов, вот только вместительность достигает уже 300 литров. 9900

5. «Джиллекс» на 300 литров
Рассчитана на температуру воды не более 99 градусов, может вместить в себя до 300 литров воды. 8200

Как видим, несмотря на большое разнообразие, наибольшей популярностью в стране пользуется продукция именно двух упомянутых выше производителей. Что же, с особенностями и прочими вступительными моментами разобрались, а потому переходим к самому важному!

Проверка и диагностика неполадок гидробака

Начнем с того, что от работы гидроаккумулятора во многом зависит нормальная функциональность всей водопроводной системы. И если водоснабжение сбоит, то вы обязаны как можно раньше найти причину и произвести качественный ремонт. Иначе это может привести к появлению более серьезных поломок, из-за чего, в свою очередь, неизбежно выйдет из строя все оборудование. И наиболее распространенной причиной является именно мембрана для гидроаккумулятора.

Рассмотрим, как это выяснить, как выполнить диагностику и замену данного элемента.

Как правило, все неполадки легко устраняются своими руками. Ознакомимся с основными «симптомами» и с тем, что нужно предпринимать в той или иной конкретной ситуации.

Насос сбоит, часто включается/выключается

Скорее всего, вышла из строя мембрана. Чтобы диагностировать данную неисправность, отключите гидробак от водопроводной системы, после чего запустите слив жидкости. В случае если во время этого будет выходить воздух, значит, на мембране имеются механические повреждения. Проблему можно решить замену вышедшей их строя мембраны на новую.

Вода протекает из ниппеля

Это также является свидетельством поломки мембраны. Диагностика в данном случае та же, но замена поврежденного элемента может решить проблему.

Из крана вытекают прерывистые струи или за воздушным клапаном наблюдается течь

Здесь все то же самое, что и в предыдущих двух случаях.

Напор воды слабый

В данном случае существует сразу две возможные причины – выход из строя насоса либо неправильно подобранный объем гидроаккумулятора. В первом случае проблема решается установкой нового насоса, а во втором – проведением расчетов и заменой изделия на более подходящее.

В системе слишком низкое давление

Здесь все просто: либо ниппель сломался, либо в емкости попросту нет сжатого воздуха. Следовательно, для решения проблемы необходимо заменить ниппель или же накачать давление до требуемого показателя.

Течет вода из-под фланца

Причина, по всей видимости, заключается в нарушении герметичности соединений. Необходимо лишь подтянуть крепления или же заменить изношенный элемент.

Обратите внимание! Чтобы продлить эксплуатационный срок гидроаккумулятора, в обязательном порядке периодически осматривайте и диагностируйте основные узлы, а также мониторьте давление в водопроводной системе.

  1. Каждый месяц осматривайте устройство, проверяйте, насколько его рабочие параметры соответствуют норме (последняя индивидуальна для каждой конкретной модели бака).
  2. Если гидроаккумулятор не будет использоваться какое-то время, то его необходимо держать в сухом месте, заботясь о том, чтобы он не контактировал ни с какими нагревательными устройствами (в противном случае материал мембраны может высохнуть и разрушиться).
  3. Проверяйте, не появились ли в местах соединений либо на корпусе ржавые пятна.
  4. Приблизительно каждые шесть месяцев производите проверку мембраны на предмет ее целостности.
  5. Кроме того, регулярно смотрите, нет ли на соединениях влажных поверхностей либо подтеков.
  6. Наконец, если вы наблюдаете сбои в работе устройства или неисправности, устраняйте их незамедлительно!

Также вас наверняка интересует, как выполнить проверку начального давления внутри гидробака? Ничего сложного здесь нет – просто действуйте в соответствии с инструкцией.

Шаг первый . Вначале отключите гидроаккумулятор от магистрали.

Шаг второй . Слейте всю воду из него.

Шаг четвертый . Если показания манометра ниже тех, что были установлены по умолчанию, то, используя, к примеру, компрессор для автомобиля, накачайте давление до требуемого показателя.

Обратите внимание! Если ваша мембрана для гидроаккумулятора нуждается в замене, то в обязательном порядке приобретайте новое изделие с теми же характеристиками! Речь идет об объеме, габаритах, предельной температуре жидкости, диаметре горловины, материале, использованном при изготовлении, и прочем.

Во сколько обойдется замена?

Как уже отмечалось ранее, мембрана – это такой элемент описанного в статье оборудования, который ломается чаще всего. И неудивительно, ведь она постоянно растягивается и сжимается. Что же касается конкретной стоимости замены, то она зависит, прежде всего, от производителя, разновидности мембраны и самого гидробака.

Если по непрерывно пользуетесь водопроводной системой, то рекомендуем вам отдать предпочтение более дорогостоящей мембране, способной выдержать большое количество эксплуатационных циклов. Также заметим, что мембрана импортного производства будет стоить примерно так же, как половина нового гидробака. Зато срок службы такого изделия в несколько раз превышает аналогичный для более дешевых вариантов.

Пошаговая инструкция по замене мембраны

Итак, для начала отправьтесь в магазин инженерного сантехнического оборудования и приобретите новую мембрану. Идеальный вариант – вы снимете старух мембрану и возьмете ее с собой в магазин. Заметим, что мембраны могут отличаться в зависимости от конкретного производителя, причем в первую очередь – именно диаметром горловины. После прихода в магазин покажите старую мембрану и попросите, чтобы вам подобрали такую же новую. Если объем вашего резервуара составляет 24 литра, то вам выдадут такую же мембрану – то же на 24 литра. Аналогичная ситуация с гидробаком на 100 литров.

Важная информация! Большие модели гидроаккумуляторов имеют по паре входных/выходных отверстий, следовательно, мембраны для них также должны быть разными.

После покупки подходящего изделия можете приступать непосредственно к процедуре замены.

Для начала открутите шесть болтов фланца (есть вероятность, что в вашем гидробаке их количество будет большим). Извлеките предыдущую мембрану – та, по всей видимости, будет изношенной и порванной, а потому ее необходимо либо сразу отправить на свалку, либо использовать для изготовления чего-то полезного в хозяйстве.

Удалив предыдущую, приступайте к установке новой мембраны внутрь гидробака. При этом важно, чтобы края горловины изделия располагались точно на горловине гидроаккумулятора.

При установке фланца будьте предельно аккуратны, иначе горловина мембраны может съехать и потребуется повторно все разбирать. Далее осторожно прикрутите болты (рекомендуется делать это в различных местах, чтобы равномерно прижать изделие к гидробаку). Можете очень сильно их не затягивать.

После прикручивания фланца к гидробаку начинайте закачивать вокруг мембраны воздух. Возьмите для этих целей уже упомянутый выше насос для автомобиля, к примеру, и накачивайте. В данном примере насос накачивает приблизительно до трех атмосфер, а потому внутреннее давление вокруг мембраны составило около двух атмосфер.

Но вначале желательно накачать только одну атмосферу, чтобы давление внутри водопровода (а это три атмосферы) вдавило изделие внутрь гидробака, невзирая даже на то, что фланец прижимал края горловины. К слову, именно по этой причине в данном примере мастера решили закачивать более высокое давление, дабы мембрана не вытягивалась внутрь резервуара под воздействием напора воды.

Особенности заклеивания поврежденной мембраны

Для ремонта описываемого изделия может быть применен метод вулканизации. Благодаря последнему, эксплуатационный срок мембраны можно продлить еще на пару-тройку недель – этого должно хватить на поиск, приобретение и установку новой модели. Тем не менее, любые ремонтные работы в данном случае – это лишь временная мера, потому новую мембрану все равно придется приобретать.

А как насчет гидробака без мембраны?

Помимо стандартных гидроаккумуляторов промышленного производства, существует еще один альтернативный вариант – изготовить подобное устройство своими руками. По сути, гидробак без мембраны будет представлять собой простой резервуар для воды, поскольку именно она (мембрана) и «занималась» поддержанием давления в водопроводной системе. Тем не менее, в разы проще приобрести уже готовый гидробак – пусть и самый недорогой.

Для собственноручного изготовления такого гидробака вам потребуется следующее оборудование и материалы:

  • фитинги;
  • емкость, объем которой составляет минимум 30 литров;
  • ниппель;
  • шаровый кран;
  • прокладки, выполненные из резины;
  • кран на 1/2 дюйма;
  • герметик для уплотнения;
  • гайки и шайбы для крепежей.

После подготовки всего необходимого можете приступать непосредственно к рабочему процессу. Последний ничего сложного собой не представляет, а алгоритм необходимых действий представлен ниже.

Шаг первый. Вначале проделайте в резервуаре отверстия – в нескольких местах (сбоку, на днище либо крышке).

Шаг второй. В то отверстие, что расположено на крышке, установите кран на 1/2 дюйма, при этом в обязательном порядке используйте герметик и резиновые прокладки для уплотнения соединения, а в конце надежно зафиксируйте шайбами.

Шаг третий. Насадите на этот кран тройник.

Шаг четвертый. Возьмите запорный кран на 3/4 с надетым тройником и установите его в нижнее отверстие.

Шаг пятый. Осталось только отверстие сбоку – сюда устанавливайте шаровый кран.

Обратите внимание! Еще раз отметим, что все соединения следует обработать герметиком для более надежной фиксации.

В итоге еще раз подчеркнем, что при неисправном гидробаке водопроводная система не сможет нормально функционировать. И причина неисправности, это, как правило, мембрана для гидроаккумулятора. Но если будете следовать нашим советам и инструкциям, то с легкостью устраните любую возникшую проблему!

Не забывайте при этом о своевременной профилактике – она поможет продлить срок службы гидробака и самого трубопровода!

Видео – Инструкция по замене мембраны гидробака

Исключительно быстрый и наиболее простой метод создания кровли — выполнение ее на основе синтетического каучука, именуемого также поливинилхлоридом. ПВХ кровля получила название мембранной, она отличается долгим сроком службы, малым весом, высокой степенью экологичности, имеет ряд других преимуществ.


Виды мембран

Существуют три типа мембран, которые используются как кровельные материалы:

  1. ЭПДМ – изготовленная из специального каучука, имеющая хорошие физические свойства. Среди них: температурный диапазон -50 — +150 градусов Цельсия, устойчива к озону, погодным условиям, старению.
  2. ТПО – имеет устойчивый химический состав, повышенная сопротивляемость к воздействию химических веществ и микроорганизмов.
  3. ПВХ – это всем известный поливинилхлорид. До недавнего времени ПВХ мембраны были самыми распространенными из всех вышеприведенных.

Особенности, технология, процесс монтажа

Чтобы начать монтаж мембранной кровли своими руками, нужно определиться с видом соединения полотен. Для этого может применяться сварка горячим воздухом или склеивание при помощи специальных двухсторонних клейких лент.

Способы соединения швов:

  • Склеивание — способ не самый надежный в силу низкой прочности клеевых соединений. Применяется он в основном для мембран ЭПДМ, хотя нужно сказать, что этот способ проще. Сварка горячим воздухом дает соединение, которое по прочности не уступает основному материалу, однако требует наличие специального инструмента.
  • Сварка может быть автоматическая (с применением сварочных машин) и ручная (используется термофен). Если Вы делаете монтаж мембранной кровли своими руками, то покупать дорогостоящие сварочные машины не имеет смысла. Достаточным будет термофен или промышленный фен, который обладает небольшой производительностью, однако его цена на порядок ниже.

Чтобы правильно сварить кровельный материал нужно подобрать оптимальные параметры. На их изменение, влияет температура окружающего воздуха, влажность, скорость ветра. Оптимальными считаются температура 15 – 20 градусов тепла и нормальная влажность воздуха. Температура горячего воздуха должна быть в районе 500°С, давление осуществляется прикаточным валиком, который нужно купить отдельно. Если Вы делаете это впервые сначала лучше потренироваться на небольших, специально отведенных для этой цели полотнищах. Результатом должен стать целостный шов без отслаиваний и прожогов.

Самый простой способ крепления покрытия к основанию – балластный. Его применяют когда уклон скатов менее 10°. Чтобы полотно не унесло ветром, его слоем балласта, минимальный вес которого должен быть 50 кг / м² мембраны. В качестве балласта обычно применяется речная галька, окатанные гравий и щебень. Недостатком такого способа крепления является большой вес конструкции.

Если крыша не рассчитана на большой вес, тогда применяют механический способ крепления. Закрепление по периметру крыши делают при помощи специальных краевых реек. Остальную площадь крепят пластиковыми грибками на металлических анкерах. Механическое крепление более надежное и имеет меньший вес.

Также мембранное покрытие можно приклеить к основанию. Такой метод не находит широкого применения из-за своей дороговизны. Применяется по большей части на сложных крышах.

Преимуществами мембранной кровли являются: большой срок эксплуатации (50 лет), отличные гидроизоляционные свойства, невосприимчивость к частым сменам погодных условий. Из недостатков можно выделить высокую стоимость материалов.

Можно сделать вывод о целесообразности применения мембранной кровли. Несмотря на относительно дорогие материалы, простота возведения и долговечность, делают такое покрытие достаточно привлекательным для использования.

Проблему подачи воды в доме при наличии источника — скважины или колодца — вполне можно решить самостоятельно. В этой статье мы расскажем о самых простых и недорогих способах водоснабжения на разных этапах. Вы узнаете об основных принципах устройства автономного водопровода в загородном доме.

Далеко не всегда получается приобрести дом или дачу, готовые под ключ, где всё уже установлено, испытано и работает. До 50% объектов купли-продажи имеют либо незавершённый вид, либо требуют ремонта или реконструкции. Иногда речь идёт об участке с фундаментом, а то и без него. Индивидуальными источниками воды на таких участках обычно служат артезианские скважины или колодцы.

Примечание. На каждую скважину буровики выдают документ — «Паспорт скважины». В нём указаны параметры (глубина, ширина, расстояние до зеркала) и эксплуатационные характеристики скважины (производительность, качество воды), которые будут решающими при выборе насосного оборудования.

Внимание! В случае отсутствия «Паспорта скважины» не следует устанавливать и эксплуатировать постоянное оборудование «вслепую». Заказать услугу исследования скважины можно в любой организации соответствующего профиля.

Этап строительства, наружных работ или полив

Вода — необходимый элемент не только для живых организмов, но и для химических реакций. Понадобиться она может на разных этапах строительства и эксплуатации дома, дачи. Мы рассмотрим варианты срочного монтажа и подачи воды в разных случаях.

Когда разводки водопровода ещё нет, а вода уже нужна, разумно применить временный вариант. В этом случае вода будет доставляться только по участку, набираться в ёмкости, использоваться для приготовления раствора и прочих хозяйственных нужд. Работа такой системы будет производиться в ручном режиме, по необходимости и только в летний период.

Колодец хорош тем, что в нём можно использовать все виды водоподъёмных насосов. Недостаток его в том, что обычно это место общего пользования — колодец на участке большая редкость. Поэтому мы будем ориентироваться в основном на индивидуальные скважины, исходя из экономии средств на временные коммуникации.

В обоих случаях рекомендуется оборудовать примитивный пульт управления подачи воды. Водорозетка может быть выполнена в виде жёсткого колена в форме П или Г со штуцерами на входе и выходе. Ключ — любой переключатель в наружном исполнении. Если диаметр скважины позволяет, можно использовать в ней недорогой вибрационный насос без поплавка. Насос должен входить в трубу свободно, с запасом минимум 2 см по окружности. Если диаметр трубы не позволяет установить садовый насос, на этом этапе можно подобрать скважинный или наружный, который потом будет работать в постоянной системе.

Что понадобится:

  1. Любой погружной насос, конструктивно подходящий к источнику (в статье «Обзор погружных насосов для загородного дома» мы рассказывали о моделях этих агрегатов).
  2. Переключатель в наружном исполнении.
  3. Запас сплошного кабеля от ключа до насоса, установленного на глубину.
  4. Трос, верёвка.
  5. Материал для жёсткого колена — труба, колена трубы, штуцер под колено (1 дюйм на выходе).
  6. Обратный клапан (латунь или пластик) под резьбу на выходе насоса и штуцер под клапан (1 дюйм на выходе).
  7. Шланг под штуцеры (1 дюйм внутри).
  8. Хомуты, крепёж, материал козырька и щита.

Порядок работы

1. Определяем глубину установки (подвеса) насоса. Если скважина (колодец) малой или средней глубины (10-25 метров), оптимально установить насос в 1 метре от дна. Вибрационные насосы дают напор до 60 метров. Глубину скважины можно определить пробным опусканием груза на верёвке.

2. Если необходимо — подключаем сплошной кабель заданной длины к насосу.

3. Отмеряем нужную длину верёвки (троса), шланга.

4. Устанавливаем обратный клапан со штуцером на насос.

5. Подсоединяем шланг к штуцеру насоса и крепим хомутами.

6. Опускаем насос в скважину на заданную глубину и фиксируем страховочный трос.

7. Монтируем электрощит (доска с укреплённым на ней ключом и автоматом) и подсоединяем кабель к переключателю, на который подаём напряжение.

8. Собираем жёсткое колено и устанавливаем его крепежами на прочную основу (столб, труба, стена). Материал для колена можно выбрать подручный — металл, ППР, металлопластик. Подсоединяем шланг к штуцеру колена и фиксируем его хомутами.

При установке наружного (садового) насоса процедура упрощается до уровня интуитивного восприятия: шланг с сетчатым фильтром и обратным клапаном опускается одним концом в источник, а другим подсоединяется к насосу. Вся система фиксируется по месту.

В этом варианте нам не потребуется кран для запора воды — его функцию выполняет обратный клапан, благодаря которому труба постоянно заполнена водой. Если установить штуцер на высоте 1 метр, можно подавать воду для полива самотёком на довольно большой участок при условии, что он не имеет уклона в сторону источника воды.

Цена вопроса. В этой системе дороже всего будет стоить только сам насос — от 600 до 1500 руб. Штуцеры, шланг, трос, обратный клапан (пластик) и автомат обойдутся примерно в 300-500 руб.

Водоснабжение маленькой дачи с поливом, подача воды в помещение на дальнюю точку

Для полноценного функционирования скважины зимой понадобится устройство кессона — переходного помещения между источником (скважиной) и потребителем (системы водоразбора дома). Обычно его располагают ниже уровня земли, глубже промерзания грунта. Он выполняет несколько жизненно важных функций:

  1. Служит местом для установки оборудования, по сути, являясь насосной.
  2. Удерживает постоянную температуру за счёт энергии грунта.
  3. Поглощает шум от работы оборудования (насосной станции).

На этом этапе можно комбинировать временные элементы системы с постоянными. Есть элементы и показатели, которые останутся неизменными. Это глубина источника, расстояние до ввода в дом, глубина промерзания грунта, высота дома.

С учётом того, что мы стремимся постепенно ввести в эксплуатацию постоянную автономную систему водоснабжения , строительства кессона нам не избежать. Если мы эксплуатируем во временной системе вибрационный насос, то вся конструкция просто переносится в кессон.

Следующим постоянным элементом будет магистраль от кессона к вводу в дом. Этот участок лучше выполнить капитально, не зависимо от насосного оборудования. Трубу закладывать глубже промерзания грунта, диаметром не менее того, что в разводке дома, с шаровыми кранами с обеих сторон. Здесь возникает препятствие — путь от источника до потребителя может быть «тернист» и подлежит расчёту. Нас интересуют два основных показателя насоса: напор и глубина погружения водозабора (глубина всасывания для наружных).

Предположим, наши потребности на данном этапе весьма скромны: подача воды на высоту 2 метра от уровня 2-го этажа (от земли 5 м) в 10 метрах от скважины. Потребление — периодическое (наполнение ёмкостей), не более 1 м 3 в час. Глубина от насоса до зеркала воды — 5 метров.

Вычисляем высоту (Н), на которую насос должен поднять воду. 1 метр напора по вертикали равен 4 метрам горизонтального перемещения, на сопротивление системы — 5%:

  • Н = (6 + 10/4 + 2) + 10% = 11,55 — принимаем 12 метров.

При гидротехнических расчётах полученный показатель умножают на 2 — чтобы учесть дальнейшие условия эксплуатации. Итак, требуемый напор в нашем случае будет 24 метра.

Подобрав таким образом насос (с запасом мощности), мы включаем его в систему и устанавливаем в кессоне. В этом случае ручное управление на основе обратного клапана нам уже не подходит и пришло время внедрять автоматику. Первым и пока что единственным элементом управления будет реле давления. Его можно установить на вводе в дом (изнутри).

Что даёт реле давления? Оно срабатывает при открытии крана (падении давления) в системе и включает насос. Иными словами, автоматически подкачивает воду напрямую из скважины в систему. Мы подчёркиваем, что описанные устройства — временные меры, переходный этап к полноценной системе.

Внимание! Основная причина выхода из строя наружных и погружных насосов — частое кратковременное включение.

Обзор поверхностных насосов мы провели в предыдущей статье.

В таком виде система будет работать при открывании крана и позволит провести зиму с водой. Давление будет нестабильным, неравномерным, поэтому подключение водонагревательных приборов не рекомендуется.

Постоянное полноценное водоснабжение дачи или дома

Большая часть системы собрана и подключена. Осталось решить четыре задачи:

  1. Стабилизировать давление в системе.
  2. Защитить насос от частых кратковременных запусков.
  3. Дополнить и окончательно скомпоновать систему.
  4. Отфильтровать воду.

Задача 1 и 2

Давление выравнивается при помощи накопительного бака особой конструкции — гидроаккумулятора. Внутри него установлена герметичная резиновая мембрана, отделяющая водозаборный отсек от воздушного.

При включении гидроаккумулятора в систему происходит следующее: насос нагнетает воду в замкнутую систему, мембрана растягивается, создавая давление, срабатывает реле давления, насос отключается. Давление в системе поддерживается не насосом, а мембраной.

При малых объёмах потребления (мытьё рук, слив бачка унитаза) насос не включается на подкачку сразу, что в разы экономит его ресурс в сравнении с прямой системой. Для обеспечения дома, где проживает 4 человека, обычно достаточно бака на 30 литров, но существуют изделия на 50, 70, 100 и более литров. Рабочее давление гидроаккумляторов такого объёма — от 6 бар (атм). Реле давления выставляют в пределах 1-2,5 бар.

Задача 3 и 4

На этом этапе мы технически обеспечили подачу воды в дом на нужную высоту и расстояние под постоянным заданным давлением. Разумным шагом теперь станет «продление жизни» частям системы путём улучшения качества воды. Проще говоря, сейчас следует доукомплектовать систему фильтрами и смонтировать для постоянного использования.

Если скважина неглубокая и водозабор расположен близко ко дну, то установки грубого фильтра нам не миновать. Чтобы защитить крыльчатку и гидроаккумулятор, включаем в систему перед насосом (рядом с ним) фильтр грубой очистки. Непосредственно перед распределением воды в помещении устанавливают фильтры тонкой очистки для того, чтобы защитить чувствительные приборы домашней сантехники.

Внимание! Устанавливайте фильтры тонкой очистки в доступных местах для визуального контроля и своевременного обслуживания.

Классическим и наиболее удачным способом компоновки считается размещение всех описанных элементов (кроме фильтров тонкой очистки) в кессоне скважины. Это упрощает обслуживание и «прячет» шум под землю. При этом система не занимает места в доме.

Разумеется, описанные компоненты существуют в разных вариациях заводского исполнения. Самая удобная и популярная из них — портативная насосная станция. Она представляет собой гидрокомпрессор, компоненты которого подобраны с учётом взаимных показателей и собраны в заводских условиях. В неё входят:

  • поверхностный насос
  • гидроаккумулятор
  • манометр
  • реле давления
  • пульт управления

Затраты на поэтапную сборку насосной станции своими руками

Исходные данные:

  1. Насос поверхностный. Требуемый напор — от 24 м, давление на выходе — от 3 бар, глубина всасывания от 7 м.
  2. Гидроаккумулятор — 20-30 литров.
  3. Реле давления 1-3 бар с манометром — 1 шт.
  4. Обратный клапан (латунь) — 2 шт.
  5. Труба ПНД — 10 м.
  6. Труба ППР — 10 м.
  7. Кран шаровой — 2 шт.

Таблица расходов:

Позиция Производитель Цена ед., руб. Кол-во Стоимость, руб.
Насос поверхностный HAMMER NAC800A, КНР 2500 1 2500
QUATTRO ELEMENTI Giardino1000, Италия 3300 1 3300
GRUNDFOS JP 5, Германия 11000 1 11000
Гидроаккумулятор EUROAQUA Н024L, КНР 1600 1 1600
НАСОСЫ+ TANK 30L H, КНР 2100 1 2100
AQUAPRESS AFC 24SB, Италия 5200 1 5200
Реле давления с манометром Реле давления РДМ 5 (РМ 5) + манометр, Россия 400 1 400
Обратный клапан, латунь AL-KO, Германия 300 2 600
Труба ПНД - 20 10 200
Труба ППР - 20 10 200
Кран шаровой STA, Украина 70 2 140
Итого сопутствующий монтаж 1540
Итого насос + гидроаккумулятор 4100/5400/16200
Итого вся система 5640/6940/17740
Работа 5000
Итого материал и работа 10640/11940/22740

Обзор готовых насосных станций, подходящих под исходные требования:

Как видно из анализа, цена всей системы зависит от многих факторов, в том числе не учтённых в таблице (дополнительные, сопутствующие и транспортные расходы). Основной статьёй сметы являются насос и гидроаккумулятор. Их цена кардинальным образом зависит от производителя.

Как сделать гидроаккумулятор без мембраны своими руками

Специально для тех, кто привык всё делать сам, кратко опишем оригинальную и очень эффективную систему поддержания давления. Вместо заводского гидроаккумулятора устанавливаем герметичный бак из нержавеющей стали или пищевого алюминия. Подключаем к нему насос с поплавковым концевым переключателем. Устанавливаем на бак компрессор, который будет создавать нужное давление при любом уровне воды. Это сократит количество включений насоса ещё как минимум в два раза. При этом система усложнится за счёт компрессора.

Мембранная кровля – это современное и, пожалуй, самое совершенное решение устройства мягкой кровли. Сочетание надежности, повышенной стойкости к климатическим и атмосферным воздействиям, эластичности, способности сохранять качественные характеристики в пределах широкого температурного диапазона ставит этот материал в ряд передовых и высококачественных.

Использование полимерных мембран при устройстве мягких кровель уже является гарантией качества покрытия и его долговечности. Ремонт мембранной кровли при соблюдении правильной технологии укладки покрытия необходим значительно реже, чем в случае других материалов. Срок ее безремонтной службы– от 30 лет до 60.

Самым большим плюсом подобных кровель считается устойчивость к экстремальным температурам, что позволяет использовать мембрану в самых различных условиях.

Какие бывают мембраны

Кровельная мембрана – это пленочный полимерный материал. Назвать его точный состав довольно затруднительно, поскольку составляющие компоненты у разных производителей могут и не совпадать. Для получения более качественных образцов в его состав включают модифицированный битум, стекловолокно, всевозможные пластификаторы и другое.

Сегодня рынок предлагает три способа устройства подобной кровли:

– в его основе лежит пластифицированный ПВХ, армированный для прочности полиэфирной сеткой. Пластичность ему обеспечивают летучие пластификаторы, это около 40% состава. путем сваривания полотен горячим воздухом в единое полотно. Работы выполняют, используя специальное оборудование. Он устойчив к УФ-излучению и воздействию огня. Однако, яркие раскраски со временем несколько тускнеют, к тому же материал неустойчив к маслам, битумным материалам и растворителям. Еще одним негативным фактором является выделение полотном летучих соединений в атмосферу.


ТПО
– основу составляют термопластичные олефины, которые армированы либо стекловолокном, либо полиэстером (встречаются также и неармированные изделия). Из-за отсутствия в составе летучих пластификаторов он не так эластичен, что затрудняет монтаж. Его, как и в случае поливинилхлоридного, выполняют, сваривая полотна горячим воздухом. Эксплуатационный срок полученного покрытия достигает 60 лет, оно отличается большой прочностью и надежностью даже при низких температурах. Монтаж можно проводить также в зимнее время.

ЭПДМ –синтетический каучук, лежащий в его основе, армирован для прочности полиэфирной сеткой. Изделие отличается наиболее высокой эластичностью и сравнительно низкой ценой. в основном на клей, и, хотя он обеспечивает достаточную прочность соединения ЭПДМ покрытия, стыковочные швы тем не менее не теряют «проблемности» с точки зрения протекания воды.

Преимущества мембранных покрытий

  • Долговечность. Эксплуатационный срок составляет около 60 лет.
  • Высокая скорость монтажа, поскольку покрытие укладывают в один слой – производительность работ примерно 600 м 2 /смена.
  • Возможность выбора ширины рулонов позволяет покрывать крыши различной конфигурации, причем с наименьшим количеством стыков.
  • Качественный и однородный шов, который обеспечивается сваркой горячим воздухом.
  • Высокая эластичность, морозоустойчивость, стойкость к УФ, эксплуатационная и химическая.
  • Высокий класс пожаробезопасности – до Г-1.
  • Исключительная легкость покрытия, которая дополнительно не перегружает несущие конструкции.
  • Технические характеристики полимерных мембран дают возможность,не меняя технологии, монтировать их круглый год.

При таком количестве достоинств единственное неудобство мембранного покрытия – его цена. Они обходятся дороже своих конкурентов в полтора-два раза.

Способы устройства кровли

В зависимости от конструкции крыши монтаж выполняют одним из трех способов.

Механический – используется для крыш с большим углом наклона. Крепление проводят при помощи специального крепежа, а места соединений герметично скрепляют специальным оборудованием.

Балластный – подходит для крыш с уклоном меньше 10⁰. Балластом может служить, скажем, щебень.

Клеевой – применяется для крыш зданий, расположенных в зоне повышенных ветровых нагрузок. Полотно просто приклеивают к плоскости.

Как отремонтировать мембранное покрытие

Хотя за весь эксплуатационный срок мембрана дает усадку в пределах 0,5%, однако, и этого может быть достаточно для возникновения напряжения и разгерметизации в шовных соединениях. Покрытие может существенно повредиться при выполнении всевозможных работ, установке на крыше дополнительного оборудования или при неосторожной очистке крыши от снега и льда.

Чтобы заделать швы или устранить небольшие повреждение, арендовать спецоборудование, конечно, экономически нецелесообразно. Более того, старые мембраны частично теряют свою эластичность, поэтому намного хуже свариваются. Увеличивается стоимость сварочных работ на 20-25%.

Идеальным решением для таких случаев являются современные ремонтные технологии EternaBond, предполагающие прочное соединение однородных мембран. В основе этой технологии лежит химическая стимуляция адгезии, которая обеспечивает монолитность клеевого соединения, то есть не только герметичность, но и исключительную прочность шва. Внешне это рулонная лента, на которую нанесен с одной стороны клеевый слой – он и вступает в активную реакцию со структурой мембраны.

Восстановленный фрагмент может служить при любых температурах до 30 лет.

Сразу хочу предупредить, что этот топик не совсем по тематике Хабра, но в комментариях к посту про разработанный в MIT элемент идею вроде бы поддержали, так что ниже я опишу некоторые соображения о биотоливных элементах.
Работа, на основе которой написан данный топик, выполнялась мной в 11 классе, и заняла второе место на международной конференции INTEL ISEF.

Топливный элемент – химический источник тока, в котором химическая энергия восстановителя (топлива) и окислителя, непрерывно и раздельно подаваемых к электродам, непосредственно превращается в электрическую
энергию. Принципиальная схема топливного элемента (ТЭ) представлена ниже:

ТЭ состоит из анода, катода, ионного проводника, анодной и катодной камеры. На данный момент мощности биотопливных элементов недостаточно для использования в промэшленных масшатабах, но БТЭ с небольшой мощностью могут использоваться для медицинских целей как чувствительные датчики поскольку сила тока в них пропорциональна количеству перерабатываемого топлива.
К настоящему времени предложено большое число конструктивных разновидностей ТЭ. В каждом конкретном случае конструкция ТЭ зависит от назначения ТЭ, типа реагента и ионного проводника. В особую группу выделяют биотопливные элементы, в которых используются биологические катализаторы. Важной отличительной чертой биологических систем является их способность к селективному окислению различных топлив при низкой температуре.
В большинстве случаев в биоэлектрокатализе используют иммобилизованные ферменты, т.е. ферменты, выделенные из живых организмов и закрепленные на носителе, но сохранившие при этом каталитическую активность (частично или полностью), что позволяет использовать их повторно. Рассмотрим на примере биотопливный элемент, в котором ферментативная реакция сопряжена с электродной при использовании медиатора. Схема биотопливного элемента на основе глюкозооксидазы:

Биотопливный элемент состоит из двух инертных электродов из золота, платины или углерода, погруженных в буферный раствор. Электроды разделены ионообменной мембраной: анодное отделение продувается воздухом, катодное - азотом. Мембрана позволяет пространственно разделить реакции, протекающие в электродных отделениях элемента, и в тоже время обеспечивает обмен протонами между ними. Подходящие для биосенсоров мембраны разных типов выпускаются в Великобритании многими фирмами (ВДН, ВИРОКТ).
Введение глюкозы в биотопливный элемент, содержащий глюкозооксидазу и растворимый медиатор, при 20 °С приводит к возникновению потока электронов от фермента к аноду через медиатор. По внешней цепи электроны идут к катоду, где в идеальных условиях в присутствии протонов и кислорода образуется вода. Результирующий ток (в отсутствие насыщения) пропорционален добавке скоростьопределяющего компонента (глюкозы). Измеряя стационарные токи, можно быстро (5с) определить даже малые концентрации глюкозы - до 0,1 мМ. Как сенсор, описанный биотопливный элемент, имеет определенные ограничения, связанные с присутствием медиатора и определенными требованиями к кислородному катоду и мембране. Последняя должна удерживать фермент и в тоже время пропускать низкомолекулярные компоненты: газ, медиатор, субстрат. Ионообменные мембраны, как правило, удовлетворяют этим требованиям, хотя их диффузионные свойства зависят от рН буферного раствора. Диффузия компонентов через мембрану приводит к снижению эффективности переноса электрона вследствие побочных реакций.
На сегодняшний день имеются лабораторные модели топливных элементов с ферментными катализаторами, которые по своим характеристикам не отвечают требованиям их практического применения. Основные усилия в ближайшие несколько лет будут направлены на доработку биотопливных элементов и дальнейшее применение биотопливного элемента будет связано большей степенью с медициной, например: вживляемый биотопливный элемент, использующий кислород и глюкозу.
При использовании ферментов в электрокатализе главной проблемой, требующей решения, является проблема сопряжения ферментативной реакции с электрохимической, то есть обеспечение эффективного транспорта электронов с активного центра фермента на электрод, что может достигаться следующими путями:
1. Перенос электронов с активного центра фермента на электрод с помощью низкомолекулярного переносчика - медиатора (медиаторный биоэлектрокатализ).
2. Непосредственное, прямое окисление и восстановление активных центров фермента на электроде (прямой биоэлектрокатализ).
При этом медиаторное сопряжение ферментативной и электрохимической реакции в свою очередь можно осуществить четырьмя способами:
1) фермент и медиатор находятся в объеме раствора и медиатор диффундирует к поверхности электрода;
2) фермент находится на поверхности электрода, а медиатор в обьеме раствора;
3) фермент и медиатор иммобилизованы на поверхности электрода;
4) медиатор пришит к поверхности электрода, а фермент находится в растворе.

В данной работе катализатором катодной реакции восстановления кислорода служила лакказа, а катализатором анодной реакции окисления глюкозы - глюкозооксидаза (ГОД). Ферменты использовались в составе композитных материалов, создание которых является одним из наиболее важных этапов создания биотопливных элементов, одновременно выполняющих функцию аналитического датчика. Биокомпозитные материалы в данном случае должны обеспечивать селективность и чувствительность определения субстрата и в тоже время обладать высокой биоэлектрокаталитической активностью, приближающейся к ферментативной.
Лакказа представляет собой Cu-содержащую оксидоредуктазу, основной функцией которой в нативных условиях является окисление органических субстратов (фенолы и их производные) кислородом, который при этом восстанавливается до воды. Молекулярная масса фермента составляет 40000 г/моль.

К настоящему времени показано, что лакказа является наиболее активным электрокатализатором восстановления кислорода. В ее присутствии на электроде в атмосфере кислорода устанавливается потенциал близкий к равновесному кислородному потенциалу, и восстановление кислорода протекает непосредственно до воды.
В качестве катализатора катодной реакции (восстановления кислорода) использовали композитный материал на основе лакказы, ацетиленовой сажи АД-100 и нафиона. Особенностью композита является структура, обеспечивающая ориентацию молекулы фермента по отношению к электронпроводящей матрице, необходимую для прямого переноса электрона. Удельная биоэлектрокаталитическая активность лакказы в композите приближается к наблюдаемой в ферментативном катализе. Способ сопряжения ферментативной и электрохимической реакции в случае лакказы, т.е. способ переноса электрона от субстрата через активный центр фермента лакказы на электрод, – прямой биэлектрокатализ.

Глюкозокооксидаза (ГОД) – фермент класса оксидоредуктаз, имеет две субъединицы, каждая из которых имеет свой активный центр – (флавинадениндинуклеотид) ФАД. ГОД является ферментом, селективным по отношению к донору электронов – глюкозе, а в качестве акцепторов электронов может использовать многие субстраты. Молекулярная масса фермента составляет 180000 г/моль.

В работе использовали композитный материал на основе ГОД и ферроцена (Фц) для анодного окисления глюкозы по медиаторному механизму. Композитный материал включает ГОД, высокодисперсный коллоидный графит (ВКГ), Фц и нафион, что позволило получить электронопроводящую матрицу с высокоразвитой поверхностью, обеспечить эффективный транспорт реагентов в зону реакции и стабильные характеристики композитного материала. Способ сопряжения ферментативной и электрохимической реакций, т.е. обеспечение эффективного транспорта электронов от активного центра ГОД на электрод – медиаторный, при этом фермент и медиатор были иммобилизованы на поверхности электрода. В качестве медиатора - акцептора электронов – использовали ферроцен. При окислении органического субстрата – глюкозы, ферроцен восстанавливается, а затем окисляется на электроде.

Если кому-то интересно, я могу подробно описать процесс получения покрытия электородов, но за этим лучше пишите в личку. А в топике я просто опишу полученную структуру.

1. АД-100.
2. лакказа.
3. гидрофобная пористая подложка.
4. нафион.

После того, как электорды получены мы перешли непосредственно к экспериментальной части. Вот так выглядела наша рабочая ячейка:

1. электрод сравнения Ag/AgCl;
2. рабочий электрод;
3. вспомогательный электрод - Рt.
В опыте с глюкозооксидазой - продувка аргоном, с лакказой - кислородом.

Восстановление кислорода на саже в отсутствии лакказы происходит при потенциалах ниже нуля и происходит в две стадии: через промежуточное образование перекиси водорода. На рисунке представлена поляризационная кривая электровосстановления кислорода лакказой иммобилизованной на АД-100, полученная в атмосфере кислорода в растворе с рН 4,5. В этих условиях устанавливается стационарный потенциал близкий к равновесному кислородному потенциалу (0,76 В). При потенциалах катоднее 0,76 В на ферментном электрода наблюдается каталитическое восстановление кислорода, которое протекает по механизму прямого биоэлектрокатализа непосредственно до воды. В области потенциалов катоднее 0,55 В на кривой наблюдается плато, которое соответствует предельному кинетическому току восстановления кислорода. Величина предельного тока составила около 630 мкА/см2.

Электрохимическое поведение композитного материала, на основе ГОД нафиона, ферроцена и ВКГ, исследовали методом циклической вольтамперометрии (ЦВА). Состояние композитного материала в отсутствии глюкозы в фосфатно-буферном растворе контролировали по кривым заряжения. На кривой заряжения при потенциале (–0,40) В наблюдаются максимумы относящиеся редокс-превращениям активного центра ГОД – (ФАД), а при 0,20-0,25 В максимумы окисления и восстановления ферроцена.

Из полученных результатов следует, что на основе катода с лакказой, в качестве катализатора кислородной реакции, и анода на основе глюкозооксидазы для окисления глюкозы, существует принципиальная возможность создания биотопливного элемента. Правда на этом пути есть множество препятствий, например пики активности ферментов наблюдаются при разном pH. Это привело к необходимости добавлять в БТЭ ионообменную мембрану.Мембрана позволяет пространственно разделить реакции, протекающие в электродных отделениях элемента, и в тоже время обеспечивает обмен протонами между ними. В анодное отделение поступает воздух.
Введение глюкозы в биотопливный элемент, содержащий глюкозооксидазу и медиатор, приводит к возникновению потока электронов от фермента к аноду через медиатор. По внешней цепи электроны идут к катоду, где в идеальных условиях в присутствии протонов и кислорода образуется вода. Результирующий ток (в отсутствие насыщения) пропорционален добавке скоростьопределяющего компонента - глюкозы. Измеряя стационарные токи, можно быстро (5с) определить даже малые концентрации глюкозы - до 0,1 мМ.

К сожалению довести идею этого БТЭ до практического внедрения мне не удалось, т.к. сразу после 11 класса я пошёл учиться на программиста, чем усердно занимаюсь и сегодня. Спасибо всем, кто осилил.